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ABSTRACT

This report documents a $C$ implementation of the reverse search vertex enumera-
tion algorithm for convex polyhedra of Avis and Fukuda. The implementation uses
multiple precision rational arithmetic and contains a few improvements over the origi-
nal algorithm, resulting in a small reduction in the complexity in most cases. For a
polyhedron with $n_{0}$ inequalities in $d$ non-negative variables and non-degenerate ori-
gin, it finds all bases in time $O(n_{0}d^{2})$ per basis. It is also shown how the implemen-
tation can be improved to run in time $0(n_{0}d \min(n_{0},d))$ time per basis for any
polyhedron. This implementation can handle problems of quite large size, especially
for simple polyhedra (where each basis corresponds to a vertex). Computational
experience is included in the report.

1. Background
A new enumeration method called “Reverse Search“ was recently introduced by Avis and

Fukuda[l] (hereafter referred to as AF) and applied to the problem of finding all vertices of a convex
polyhedron. This report documents a $C$ implementation of the algorithm. The implementation uses
multiple precision rational arithmetic and contains a few improvements over the original algorithm. It
can handle problems of quite large size, especially for simple polyhedra. Computational expenence is
included in the report.

This implementation in $C$ was motivated by an earlier implementation by K. Fukuda and I.
Mizukoshi in Mathematica [6]. Their implementation demonstrates the simplicity and effectiveness of
the method, and provides impressive graphical output (see, eg. Figure 3.5). However, due to the
inherent limitations of Mathematica, it is only computationally feasible for small problems. The $C$

implementation described here runs several hundred times faster for the medium sized problems
described in Section 3. Most of Section 1 can be omitted by potential users, who may turn directly to
Section 2. If the problem is not in the standard form of (1.3), it will be necessary to refer to Section
1.2.

It is assumed throughout that the reader is familiar with the paper AF. Briefly and informally, the
$Randavertexofthatpolyhedron.Avertexisspecifiedbygivingtheindicesofdinequalitiesal\#orithmworksasfollows.Supposewehaveasystemoflinearinequalitiesdefiningapolyhedronin$

whose bounding hyperplanes intersect at the vertex. For any given linear objective function, the sim-
plex method generates a path along edges of the polyhedron until a vertex maximizing this objective
function is found. For simplicity, let us assume for the moment that the optimum vertex is contained
on exactly $d$ bounding hyperplanes. The path is found by pivoting, which involves interchanging one
of the equations defining the vertex with one not currently used. The path chosen from an initial given
vertex depends on the pivot rule used. In fact, care must be taken because some pivot rules generate
cycles and do not lead to the optimum vertex. However, a particularly simple rule, known as Bland’s
rule or the least subscript rule[3], guarantees a unique path from any starting vertex to the optimum
vertex. If we look at the set of all such paths from all vertices of the polyhedron, we get a spanning
tree of the edge graph of the polyhedron rooted at the optimum vertex. Our algorithm simply starts at
an “optimum vertex“ and traces out the tree in depth first order by “reversing“ Bland’s rule.
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A remarkable feature is that no additional storage is needed at intermediate nodes in the tree.
Going down the tree we explore $dJ$ valid “reverse” pivots in lexicographical order from any given
intermediate node. Going back up the tree, we simply use Bland’s rule to return us to the parent node
along with the current pivot indices. From there it is simple to continue by considering the next lexico-
graphic “reverse pivot, etc. The algorithm is therefore non-recursive and requires no stack or other
data structure. One possible difficulty arises at so-called degenerate vertices, vertices which lie on more
than $d$ bounding hyperplanes. It is desirable to report each vertex once only, and this can be achieved
without storing the output and searching. By using duality, we can also use this algorithm for
enumerating the facets of the convex hull of a set of points in $R^{d}$ . It can also be used for enumerating
all of the vertices of the Voronoi Diagram of a set of points in $R^{d}$ , since this can be reformulated as a
convex hull problem in $R^{d+1}$ (see [5]). We now give a formal statement of the problem. The label-
ling of the variables is slightly different than AF in order to conform with $C$ indexing conventions.
For more information and background on Linear Programming and vertex enumeration of polyhedra,
the reader is referred to [4].

1.1. Dictionaries
Let $A$ be a $m\cross n$ matrix, with columns indexed by the set $E=\{0,1, 2, n-1\}$ . Fix distinct

indices $f$ and $g$ of $E$ . Consider the system of equations:
$A\chi=0$ , $x_{g}=1$ . (1.1)

For any $J\subseteq E,$ $x_{J}$ denotes the subvector of $x$ indexed by $J$ , and $A_{J}$ denotes the submatrix of $A$ con-
sisting of columns indexed by $J$ . A basis $B$ for (1.1) is a subset of $E$ of cardinality $m$ containing $f$

but not $g$ , for which $A_{B}$ is nonsingular. We will only be concemed with systems (1.1) that have at
least one basis, and will assume this for the rest of the paper. Given any basis $B$ , we can transform
(1.1) into the dictionary:

$x_{B}=-A_{B}^{-1}A_{N}x_{N}=\overline{A}x_{N}$ , (1.2)

where $N=E-B$ is the co-basis , and $\overline{A}denotes-A_{B}^{-1}A_{N}.\overline{A}$ is called the coefficie$nt$ matrix of the
dictionary, with rows indexed by $B$ and columns indexed by $N$ , so that $\overline{A}=$ $(\overline{a}_{ij} : i\in B, j\in N)$. Note
that the co-basis always contains the index $g$ .

A variable $x_{i}$ is primal feasible if $i\in B-f$ and $\overline{a}_{ig}\geq 0$ . A variable $x_{j}$ is dual feasibie if
$j\in N-g$ and $\overline{a}_{fJ}\leq 0$. A dictionary is primal feasible if $x_{l}$ is primal feasible for all $i\in B-f$ and
dual feasible if $x_{j}$ is dual feasible for all $j\in N-g$ . A dictionary is optimal if it is both primal and
dual feasible. An optimal dictionary is shown schematically in Figure 1.1.

$N-g$ $g$

$f$

$B-f$ $=\overline{A}$

Figure 1.1 : An Optimal $D\ddagger ct\ddagger onary$

( $\oplus=non$-negative entry, $\Theta=non$-positive entry)

A basic solution to (2.1) is obtained from a dictionary by setting $x_{N-g}=0,$ $x_{g}=1$ . If any basic vari-
able has value zero, we call the basic solution and corresponding dictionary degenerate,

Degenerate optimal dictionaries pose a problem for reverse search, since there may be many
optimal dictionaries, and each has to be enumerated. For this reason we define an augmented diction-
ary which always has a unique $\dagger optimum^{\prime 1}$ solution. The augmented dictionary is just the original
optimal dictionary if this is non-degenerate. Otherwise, let $x_{B}=\overline{A}x_{N}$ be a degenerate optimal diction-
ary. Let B’7 $B$ denote the indices of the variables with value zero in the corresponding basic solution
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and the index $f$ . We augment $\overline{A}$ by a column with index $g’=n\dagger 1$ , defined by:

$\overline{a}_{ig’}=\{\begin{array}{l}l\overline{a}_{ig}=0\overline{a}_{ig}otherwise\end{array}$

Let $N’=N-g+g’$. This augmented dictionary is shown schematically in Figure 1.2.
$N’-g’$ $g$ $g’$

$f$

$B’-f$

$=$
$\overline{A}$

$B-B’-f$

Figure 1.2 : An Augmented Degenerate Optimal Dictionary

1.2. Vertex enumeration for Polyhedra
A (convex) polyhedron $P$ is the solution set to a system of $n_{0}$ inequalities in $d$ non-negative

variables:
$P=\{y\in R^{d}|A’y\leq b, y\geq 0\}$ , (1.3)

where $A’$ is an $n_{0}\cross d$ matrix and $b$ is a $n_{0}$-vector. A vertex of the polyhedron is a vector $y\in P$ that
satisfies a linearly independent set of $d$ of the inequalities as equations. The
vertex enumeration problem for $P$ is to enumerate all of its vertices. Polyhedra not in the form (1.3)
can be transformed into this form once a vertex is found, see AF for details.

Let $m=d+1$ , $n=n_{0}+d+2$ , $f=0$, $g=n-1$ , $B=\{0, n-m,n-m+1,\ldots, n-2\}$ and
$N=\{1, \ldots, n-m-1, n-1\}$ . Form the dictionary $\overline{A}$ from $A’$ and $b$ as follows:

(a) all signs of $A’$ are reversed;
(b) vector $b$ is appended as an additional column;
(c) a row zero is appended with all entries-l;
(d) if any component of $b$ is zero, form the augmented dictionary as described in Section 1.1.

The program perforns a reverse search on the optimum augmented dictionary $x_{B}=\overline{A}x_{N}$.
Polyhedra not in the form (1.3) can be transformed into this form once a vertex is found. These

standard results are given here for completeness.

1.2.1. Polyhedra Without Non-Negativity Constrainis
In this section we show how to convert a polyhedron without non-negativity constraints into a

polyhedron in the form (1.3). Consider the polyhedron
$\overline{P}=\{x\in R^{d}|\overline{A}x\leq\overline{b}\}$ ,

defined by an $(n_{0}+d)\cross d$ matrix $\overline{A}$ . If $\overline{P}$ has vertices, then $n_{0}\geq 0$ and $\overline{A}$ must have full column rank.
In order to use the vertex enumeration algorithm, we transform $\overline{P}$ in to a polyhedron of form (1.3). To
do this it is necessary to have some vertex $\overline{x}$ of $\overline{P}$ . Such a vertex can always be found by solving a
linear program with constraint set $\overline{P}$ . The transformation consists essentially of mapping the known
vertex $\overline{x}$ to the origin, and of mapping $d$ hyperplanes defining $\overline{x}$ onto the $d$ coordinate planes.

Let $A_{1}$ be a $d$ dimensional submatnx of of $\overline{A}$ formed by choosing $d$ linearly independent rows of
$\overline{A}$ whose constraints are satisfied as equations by $\overline{x}$. Let $A_{2}$ be the remainder of the matrix $\overline{A}$ . Simi-
larly partition $\overline{b}$ into $b_{1}$ and $b_{2}$. Then we have
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$A_{1}\overline{x}=b_{1}$

A $ff\leq b_{2}$ . (1.4)

Such a partition must always exist if $\overline{x}$ is a vertex of $\overline{P}$ . Next define the d-dimensional vector $y$ by

$y=b_{1}-A_{1^{\chi}}$

Note that for any $x$ in $\overline{P}$ we have $y\geq 0$ . Since $A_{1}$ has full rank we can solve for $x$ getting
$X=A_{1}^{-1}(b_{1}-y)$ (1.5)

Substituting into (1.4) we have the system
$-A_{2}A_{1}^{-1}y\leq b_{2}-A_{2}A_{1}^{-1}b_{1}$

Therefore we get a polyhedron of form (1.3) by making the identification
$A’=-A_{2}A_{1}^{-1}$ ’ $b=b_{2}-A_{2}A_{1}^{-1}b_{1}$

It is not hard to show that the vertices of (1.3) are in one-to-one correspondence with the vertices of
$\overline{P}$ . Vertices of (1.3) can be transformed into vertices of $\overline{P}$ by using the system of equations (1.5).

1.2.2. Facet Enumeration of the Convex $Hull$ of a Set of Points
In this section we show how to transform the problem of enumerating all of the facets of the

convex hull of a set of points into a vertex enumeration problem for a polyhedron. Let
$P^{*}=\{p_{1}, p_{2}, \ldots, p_{n}\}$ be a set on $n$ points in $R^{d}$ . We assume that the point set is d-dimensional and,
by translating the points if necessary, that the origin lies in the interior of the convex hull of $P^{*}$ . An
inequality $ay\leq 1$ defines a facet of the convex hull of $P^{*}$ if $ap_{i}\leq 1,$ $i=1$ , ..., $n$ , and equality is
obtained for an affinely independent subset of at least $d$ of the points of $P^{*}$

Form the $n\cross d$ matrix $\overline{A}$ by letting row $i$ be $p_{i}$ . Then standard arguments show that the vertices
of

$\overline{P}=\{x\in R^{d}|\overline{A}x\leq 1\}$ , (1.6)

correspond to the facets of the convex hull of $P^{*}$ . In particular, if $\overline{x}$ is a vertex of $\overline{P}$ , then $\overline{x}y\leq 1$

defines a facet of the convex hull of $P^{*}$ Using the results of the previous subsection, (1.6) can be
transformed into the form of (1.3).

1.3. Pivoting
A pivot $(r, s)$ on a basis $B$ , and corresponding dictionary $x_{B}=\overline{A}x_{B}$ , is an interchange of some

$r\in B-f$ with some index $s\in N-g$ giving a new basis $B’$ . The new coefficient matrix $A’=(a_{i\acute{j}})$ is
given by

$a_{s’r}= \frac{1}{\overline{a}_{rs}}$ , $a_{i\acute{r}}= \frac{\overline{a}_{is}}{\overline{a}_{rs}}$ , $a_{sj}=- \frac{\overline{a}_{rj}}{\overline{a}_{rs}}$ , $a_{i\acute{j}}= \overline{a}_{ij}-\frac{\overline{a}_{is}\overline{a}_{rj}}{\overline{a}_{rs}}$ , $(i\in B-r, j\in N-s)$ . (1.7)

A pivot is primal feasible if the new basic solution obtained from (1.2) is non-negative. Note
that a pivot maintains the property that $f\in B$ and $g\in N$ . A basic solution to (1.2) is degenerate if $x_{l}=0$

for some $i\in B-f$ . Let $B$ be a basis such that the dictionary (2.2) is primal feasible. We call a pivot
that is chosen by the following rule a Bland pivot.
Bland’s Rule.
(1) Let $s$ be the smaUest index such that $x_{s}$ is dual infeasible, that is, $\overline{a}_{fs}>0$ .

(2) Set $\lambda=\min t-\frac{\overline{a}_{ig}}{\overline{a}_{is}}$ : $i\in B-f,\overline{a_{is}}<0$ }. Let $r$ be the smallest index obtaining this minimum.

The pivot $(r, s)$ maintains the primal feasibility of the dictionary. If step (1) does not apply, the dic-
tionary is also dual feasible and hence optimal.

As remarked in the previous section, if the optimal dictionary is degenerate there may be multiple
optimal dictionaries. However, in the augmented dictionary defined in the last section, all except one of
the optimal dictionanies will contain negative entries in column $g’$ . With respect to $g’$ the other optimal
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dictionaries are “primal infeasible“ but dual feasible. If we use a dual form of Bland’s rule (letting
column $g’$ play the role of column $g$ ), we will pivot to the unique optimum augmented dictionary.
Dual Bland’s Rule
(1) Let $r\in B’-f$ be the smallest index that is primal infeasible, that is $a_{rg’}<0$ .

(2) Set $\lambda=\min t-\frac{\overline{a}_{fJ}}{\overline{a}_{rj}}$ : $j\in N’-g’,\overline{a}_{rj}>0$ }. Let $r$ be the smallest index attaining this minimum.

The pivot $(r, s)$ maintains the dual feasibility of the dictionary. If step (1) does not apply, the diction-
ary is optimal.

In AF, the problem of a degenerate optimal dictionary is overcome by a kind of two phase
method. Phase 1 enumerates optimal dictionaries by reversing Dual Bland’s rule starting with the
unique optimum augmented dictionary. For each such dictionary, phase 2 enumerates all primal dic-
tionaries leading to this dictionary by reversing Bland’s rule.

In this implementation, we use essentially the same approach expressed a little differently. First
we combine both pivot rules so that a repeated application of the Combined Rule leads to the unique
optimum augmented dictionary. This Combined Pivot rule is then reversed to enumerate all primal
feasible dictionaries for the original problem. This rule works always on the augmented dictionary
defined in the last section.
Combined Pivot Rule
(1) If $\overline{A}$ is not dual feasible choose pivot $(r, s)$ according to Bland’s rule, otherwise
(2) Choose pivot $(r, s)$ according to Dual Bland’s rule.

If $\overline{A}$ is any primal feasible dictionary derived from the original optimum augmented dictionary
$A^{*}$ , then repeated application of the Combined Pivot rule will lead to $A^{*}$

1.4. Reverse Pivoting
Let $\overline{A}$ and $A’$ be two dictionaries with the same dimensions. Suppose application of some pivot

rule X to $A’$ yields pivot $(s_{\iota}r)$ which takes $A’$ to $\overline{A}$ . Then we say that $(r, s)$ is a reverse pivot for $\overline{A}$

with respect to pivot rule X. In this section we derive necessary and sufficient conditions for a reverse
pivot with respect to the Combined Pivot rule. First, the following two lemmas give necessary and
sufficient conditions for a reverse pivot with respect to Bland’s rule and Dual Bland’s rule.
Lemma l. $(r, s)isareversepivotwithrespecttoBland’ slulefor\overline{A}$ if and only if the following five
conditions hold:

(i) $\overline{a}_{fs}<0$ .

(ii) $\overline{a}_{rs}<0$.

(iii) -
$\frac{\overline{a}_{rg}}{\overline{a}_{rs}}=\min$ $\{- \frac{\overline{a}_{ig}}{\overline{a_{\iota s}}} : i\in B-f,\overline{a_{is}}<0\}$ .

(iv) $\overline{a}_{ig}\neq 0$ or $\overline{a_{\iota s}}\leq 0$ for $i\in B-f-r,$ $i<s$ .

(v) $\overline{a}_{fj}\leq\frac{\overline{a}_{fs}\overline{a}_{rj}}{\overline{a}_{rs}}$ for $j\in N-g-s,$ $j<r$ .

Proof: First we show the necessity of conditions $(i)-(v)$ . Suppose $(s, r)$ is selected as a reverse pivot
for $A’$ . Then applying Bland’s rule to $A’$ and considering the pivot foImula we see that:

(a) If $\overline{a}_{fs}\geq 0$ then $a_{f^{r}}\leq 0$ and $s$ is not selected.

(b) If $\overline{a}_{rs}\geq 0$ then $a_{rs}\geq 0$ and $r$ is not selected.

(c) If condition (iii) fails, let $i$ be an index achieving the minimum ratio. Then $a_{i\acute{g}}<0$ contradictmg
the primal feasibility of $A’$ .
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(d) $If,\overline{a}_{ig}=0$ and $\overline{a}_{is}>0$ for $i\in B-f-r,$ $i<s$ , then the minimum ration in condition (iii) is zero,
and $a_{ir}<0$ . Therefore $s$ is not the smallest row index achieving this ratio.

(e) If condition (v) fails then there is some $j\in N-g-s,$ $j<r$ for which $a_{fJ}>0$. Therefore $r$ is not
chosen as the leaving index in $A’$ .

For the sufficiency of the conditions, apply the pivot $(r, s)$ to $\overline{A}$ obtaining dictionary $A’$ . From
the pivot fornula we see that conditions (i),(ii),(iii) and (v) imply that $A’$ has the sign pattem shown in
Figure 1.3.

$r$ $g$

$=$ $A’$

Figure 1.3 : Sign Pattern of Dictionary $A$

(O=non-negative entry, $\Theta=non$-positive entry)

It is clear that part (1) of Bland’s rule selects index $r$ . It remains to see that part (2) selects index $s$ .
Let $B’=B-r+s$ denote the basis of $A’$ . Applying the pivot formula, for $i\in B’-s-f$ :

$- \frac{a_{lg}}{a_{ir}^{J}}=\{\frac{\overline{a}_{is}\overline{a}_{rg}}{\overline{a}_{rs}}-\overline{a}_{ig}\}/\{\frac{\overline{a}_{is}}{\overline{a}_{rs}}\}=\overline{a}_{rg}-\frac{\overline{a}_{ig}\overline{a}_{rs}}{\overline{a}_{lS}}$.

and

$- \frac{a_{s_{S}’}}{a_{s’r}}=1\frac{-\overline{a}_{rg}}{\overline{a}_{rs}}\}/\{\frac{1}{\overline{a}_{rs}}I=\overline{a}_{rg}$.

Therefore, since $\overline{a}_{iff}\geq 0,\overline{a}_{rs}<0$ we have

$\min\{-\frac{a_{ig}}{a_{ir}\prime} : i\in B’-f, a_{i\acute{s}}<0\}=\min\{\overline{a}_{rg},\overline{a}_{rg}-\frac{\overline{a}_{ig}\overline{a}_{rs}}{\overline{a_{is}}} : i\in B-f-r,\overline{a_{is}}>0\}=\overline{a}_{rg}$. (1.8)

The minimum is clearly unique in (1.8) if $\overline{a}_{ig}>0$ for $i\in B-f$ , in other words if $\overline{A}$ is non-degenerate.
In this case, condition (iv) does not apply and part (2) of Bland’s rule applied to $A’$ gives index $s$ .
Otherwise index $s$ will not be chosen if there is some other minimizer $i<s,$ $i\in B-f$ such that
$a_{is}<0$ . But in this case, $\overline{a_{ig}}=0$ and $\overline{a_{\iota s}}>0$, which is excluded by condition (iv). $\square$

Lemma 2. $(r, s)$ is a reverse pivot with respect to Dual Bland’s rule for a dual feasible dictionary $\overline{A}$

if and only if the following five conditions hold:

(I) $\overline{a}_{rg’}>0$ .

(II) $\overline{a}_{rs}>0$ .

(III) $- \frac{\overline{a}_{fs}}{\overline{a}_{rs}}=\min t-\frac{\overline{a}_{f1}}{\overline{a}_{rj}}$ : $j\in N’-g’,\overline{a}_{rj}>0$ }.

(IV) $\overline{a}_{fJ}\neq 0$ or $\overline{a}_{rj}\geq 0$ for $j\in N’-g’-s$ , $j<r$ .

(V) $\overline{a_{ig’}}\geq\frac{\overline{a}_{rg’}\overline{a_{is}}}{\overline{a}_{rs}}$ for $i\in B’-f-r$ , $i<s$ .
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Proof: This can be proved in an analogous way to Lemma 1. Altematively, if follows from Lemma 1
$B^{ndthefo11owingobse\ddagger vation:A}a1and’ sru1etothedictionary-A,wherethero1esofindicesfandgarereversed.\coprod^{p1ying}\iota^{Dua1B1and’ sru1etoadicuonaryAisequivalent}$

to applying

Note that in view of conditions (ii) and (II), a pivot $(r, s)$ camot be a reverse pivot with respect
to both Bland’s rule and Dual Bland’s rule. A degenerate optimal dictionary may, however, admit both
reverse Bland pivots and reverse Dual Bland pivots. Before stating our main result, we need to restate
condition (V) in order to make it more convenient for testing in certain situations.
Lemma 3. Condition (V) of Lemma 2 can be replaced by:

(V’)(a) If $\overline{a}_{is}=0$ then $\overline{a}_{ig’}\geq 0$ , for $i\in B’-f$ , $i<s$ .

(V’)(b) $\frac{\overline{a}_{rg’}}{\overline{a}_{rs}}\leq\min t+\infty\frac{\overline{a_{ig’}}}{\overline{a_{is}}}$ : $i\in B’-f,$ $i<s,\overline{a}_{is}>0$ }.

(V’)(c) $\frac{\overline{a}_{rg’}}{\overline{a}_{rs}}\geq\max tarrow\frac{\overline{a}_{ig’}}{\overline{a}_{ts}}$ : $i\in B’-f,$ $i<s,\overline{a}_{is}<0$ }.

Proof: Consider any $i\in B’-f,$ $i<s$ . If $\overline{a}_{is}=0$ then clearly (V) and (V’)(a) are equivalent. If $\overline{a}_{is}>0$

then condition (V) becomes
$\underline{\overline{a}_{ig’\geq}}\underline{\overline{a}_{rg’}}$

$\overline{a}_{is}$ $\overline{a}_{rs}$

which is equivalent to (V’)(b). Similarly if $\overline{a}_{is}<0$ condition (V) is equivalent to (V’)(c). $\square$

Combining the lemmas we arrive at the following result with is the basis of our implementation.

Theorem 1. $(r, s)$ is a reverse pivot with respect to the Combined Pivot rule if and only if the condi-
tions of either Lemma 1 or Lemma 2 apply. All reverse pivots from a given dictionary can be deter-
mined in $O(m(n-m) \min(m,n-m))$ time.
Proof: The first statement follows immediately from the lemmas, so it remains to show how the time
complexity is obtained. Suppose we have some given dictionary $\overline{A}$ of dimension $m\cross(n-m)$ . We first
show a complexity bound of $O(m(n-m)^{2})$ by processing $\overline{A}$ column by column.

Beginning with Lemma 1, we will fix some column index $s$ and test all possible pivots $(r, s)$ ,
$r\in B-f$ . When we begin processing column $s$ , we first compute the set of all indices that obtain the
minimum ratio in condition (iii). By using an array of flags, condition (iii) can then be tested in $O(1)$

time per row index. In a similar way, if $\overline{A}$ is degenerate we can compute the smallest index $i\in B-f$

such that $\overline{a_{ig}}=0$ and $\overline{a_{is}}>0$ , if such an index exists. Now condition (iv) can also be tested in $O(1)$

time per row index. The cost of this preprocessing is $O(m)$ time per column, for a total of
$O((n-m)m)$ time for the entire dictionary.

With the above preprocessing, the only condition requiring more than $0(1)$ time is condition (v).
This condition may require $O(n-m)$ time per candidate. Note, however, that it is not performed if
any of the previous tests fails. Since there are $m(n-m)$ candidates, the complexity of testing for all
reverse pivots from a given dictionary is $O(m(n-m)^{2})$ .

Now consider testing the conditions of Lemma 2. Conditions (I), (II) can be tested in $0(1)$ time,
and conditions (m), (IV) can be tested in $O(n-m)$ per candidate $(r, s)$ . It remains to show how con-
dition (V) can be efficiently tested. For this we use the altemate condition given in Lemma 3. For fixed
column $s$ , we first test condition (V’)(a). If this fails there can be no reverse pivot using this column.
Otherwise, the right hand sides of conditions (V’)(b) and (V’)(c) are computed in $O(m)$ time and
stored. Then for each row index $r$ , the condition (V’) can be tested in $0(1)$ time.

The above argument shows that if $\overline{A}$ is processed column by column, all reverse pivots can be
found in $O(m(n-m)^{2})$ time. However, in case $m<n-m$ it pays to process the dictionary row by
row. In this case the method used for testing Lemma 1 above is essentially used for testing Lemma 2,
and vice versa. Condition (v) of Lemma 1 needs to be rewritten in a similar way as Condition (V) of
Lemma 2. This gives a complexity of $O(m^{2}(n-m))$ for finding all reverse pivots from $\overline{A}$ . The details
are omitted. $\square$
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The above complexity result is an improvement on the complexity of $O(nm(n-m))$ reported in
AF. For example, for the vertex enumeration problem of section 1.2, in fixed dimension $d$ the above
method has complexity $O(n_{0})$ per basis, compared to $O(n_{0^{2}})$ per basis in AF. Also, as in AF if the
optimum dictionary is unique, the complexity is bounded by $O(n(n-m))$ for non-degenerate pivots.
For in this case Lemma 2 never applies, and we know that the minimum in condition (iii) of Lemma 1
is unique. Therefore, condition (v) of Lemma 1 is only tested once per candidate column. Conditions
(iii) and (v) therefore take a total of $O(n)$ time per column.

It seems likely that a more sophisticated analysis may give an amortized worst case time bound
of $O(m(n-m))$ even in the degenerate case. Limited computational experience shows that condition
(v) is usuaUy not required to reject an invalid candidate for a reverse pivot. For example, on a 9-
dimensional problem with 14 hyperplanes and a unique optimal dictionary, 4086 reverse Bland pivots
were tested. Of these, 2170 were rejected by condition (i), 1005 by condition (ii), 498 by condition
(iii) and 1 by condition (iv). Condition (v) was therefore executed only 316 times, and a total of 943
coefficients of row zero were generated. The polyhedron has 89 $ve$rtices and 97 feasible bases, and its
graph and reverse search tree are shown in Figure 3.5.

2. Implementation
The revers$e$ search vertex enumeration algorithm was implemented in ANSI $C$ and is named

$ve04.c$ . This section refers to Version 0.4, released March 31, 1993. This program and some sample
input files can be obtained by anonymous $ftp$ from mutt.cs.mcgill.ca (132.206.3.13). Please use login
name “ftp” and change to directory $pub/C$ . To run, simply compile the file $ve04.c$ and run the a.out
file. A runtime option of $0$ (eg. a.out $0$ ) will cause the program to print all bases, rather than all ver-
tices. For the distinction, see the paragraph on degeneracy later in this section. Most users will sim-
ply want all vertices. Please report any bugs to the author at avis@cs.mcgill.ca.

The main changes with release 0.4 are the ability to restart the program from any basis and new
divide and $gcd$ procedures coded by Jerry Quinn. The divide routine in previous versions contains a
bug and occasionally gives incorrect results. Version 0.4 is roughly twice as fast as earlier versions.
Input files for previous versions require a small modification: append a line with a single $|||n$ , indicat-
ing that the program is not restarting in the middl$e$ of a calculation (see Figure 3.1). To restart from a
known basis, answer $y”$ to the question ‘Restarting from known cobasis? $(y/n)$ and then enter the
vertex number, basis number, depth and cobasis indices for the restart (see Figure 3.2).

Unlimited precision rational anithmetic was employed to avoid numerical problems. In this section
we describe the data structure and structure of procedure main which drives the reverse search. The
major functions called from main are described briefly.

The dictionary $\overline{A}$ contains most of the data in $ve04.c$ . Predefined constants $M$ and $N$ bound the
maximum number of rows and columns of $\overline{A}$ . These may be modified by the user to fit the require-
ments of the problem to be solved. They are currently set to 40 each respectively. Each $entI\gamma$ in $\overline{A}$ is
a rational number, which is stored as a pair of extended precision integers, one for the numerator and
one for the denominator. These integers are in tum each stored as an array, indexed (by $C$ convention)
0, $1,\ldots,DIGITS-1$ , where DIGITS is a predefined constant, currently set at 201. Let $a$ denote such an
array. In index zero we store the length, length $(a)$ and the sign, sign $(a)$ of the integer. The integer
itself is stored in positions $1,2,\ldots,length(a)$ . Each position of $a$ contains a $|digit^{\prime\dagger}$ of the integer in
base BASE, with low order digits first. On 32-bit machines it is convenient to set $BASE=\iota\alpha$)$00$ so
each position of $a$ contains in fact 4 decimal digits. Therefore, with DIGITS$=201$ up to about 800
digits can be handled. As an example, the integer $- 27$ 1828182845904 is stored as $a[0]=-4$,
$a[1]=5904,$ $a[2]=8284,$ $a[3]=8281,$ $a[4]=271$ . This data structure is described in Gonnet and
Baeza-Yates[7] and is defined as type $mp$ in $ve04.c$ . From this handbook we use basic routines to
add, subtract and multiply to extended precision integers. The division routine was coded by Jerry
Quinn and is based on Knuth[8]. On top of these basic functions we use a standard Euclidean algo-
rithm for computing the greatest common divisor. With these functions it is straight forward to imple-
ment rational arithmetic.

The parameter DIGITS greatly effects the storage required, since the main array uses
$N^{*}M^{*}DIGITS$ integers. DIGITS can be reset by the user to any desired value. To get an upper bound
on the maximum precision needed in the calculation we can use the well known Hadamard inequality
(see for example[8]). If $b=(b_{ij})$ is an $m$ by $m$ matrix, then

$|det(b_{ij})| \leq\prod_{1\leq i\leq m}[\sum_{1\leq j\leq m}a_{ij^{2}]^{1/2}}$
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For example, if $a$ is $\overline{A}$ is integral with no entry larger than $10^{y}$ then th$e$ largest $m$ by $m$ determinant
is at most $m^{m/2}10^{my}$ , so $my\dashv\triangleleft.5m\log_{10}m$ digits of precision are enough. To allow for intermediate
results, four times this many digits should be allocated.

From the above description, we see that the dictionary $\overline{A}$ is actually stored as two three-
dimensional arrays: a numerator array $NA$ and a denominator array $DA$ . The entries $NA[i]U]$ and
$DA[i][i]$ are each one-dimensional arrays containing $re$spectively the numerator and denominator of
$\overline{a}_{ij}$ . Along with the dictionary $\overline{A}$ , we store two additional one-dimensional (integer) arrays $B$ and $C$ ,

storing, respectively, the basic and co-basic indices.
In Section 1.2 we showed how to construct the initial dictionary $\overline{A}$ for the vertex enumeration

problem for a given polyhedron $P$ . Recall, the variables are indexed 0, $1,\ldots,n-1$ and the dictionary has
$m$ rows and $n-m$ columns. Section 1.2 also gives the initial values for $B$ and $C$ . A pivot inter-
changes an index of $B$ and $C$ . Since we would like to keep these arrays sorted we have two options:
reorder the rows and columns of the dictionary after each pivot, or keep track of the location (row or
column index) of each variable. The second option was chosen as it is computationally faster, employ-
ing an additional array $LOC$ to store locations. In this way, $B[i]$ contains the $i$ th smallest index in the
basis, and $LOC[B[i]]$ contains the row index of $NA$ and $DA$ where the corresponding row of diction-
ary $\overline{A}$ is stored. Similarly, $C[i]$ contains the $j$ th smaUest index in th$e$ co-basis, and $LOC[CU]]$ con-
tains the column index of $NA$ and $DA$ where the corresponding column of dictionary $\overline{A}$ is stored.

One additional array is used to speed up the reverse pivot calculations. As described in the proof
of Theorem 1, a boolean array minratio of flags is computed each time we start checking for a reverse
pivot from some new column. The flag minratio $[i]$ is TRUE if the variable with index $B[i]$ obtains
the minimum ratio for the column. Finally a number of flags are kept to record degeneracy, feasibility
etc. The entire global data base is given in Figure 2.1.

#define DIGITS 201 $/^{*}number$ of digits of extended precision $*/$

#define TRUE 1
#define FALSE $0$

#define BASE 10000
#define $M40$ $/* \max$ number of rows in matrix $*/$

#define N40 $/* \max$ number of cols in matrix $*/$

typedef int mp[DIGITS]; $/*type$ mp holds one multi-precision integer $*/$

mp $NA[M+1][N+2],DA[M+1][N+2]$ ; $/^{*}$ Hold numerator and denominator of array A $*/$

int $m=0,n=0$; $/*actual$ dimensions of matrix A are $m$ by n-m $*/$

int $g=0$ ; $/^{*}g=n- m- 1$ is index of RHS $*/$

int last; $/^{*}$ last=g if opt is non-degen, else$=n- m$ $*/$

$intB[M+1],$ $C[N+2]$ ; $/*holdbasisandco$-basis indices in order $*/$

int $LOC[N+M+3]$ ; $/*$ ]$ocation$ of given index 0..m-l are rows, $*/$

$/*o..last$ are cols of A $*/$

int degenerate FALSE; $/^{*}$ TRUE if current dictionary is degenerate $*/$

int ddegenerate$=FALSE$; $/^{*}$ TRUE if current dictionary is dual degen. $*/$

int degenopt$=FALSE$; $/*TRUE$ if optimal dictionary is degenerate $*/$

int $minratio[M+1]$ ; $/^{*}$ TRUE if $B[i]$ obtains $\min$ ratio else FALSE $*/$

int dmi$matio[N+2]$ ; $/^{*}$ TRUE if $cU$ ] obtains $\min$ ratio else FALSE $*/$

int ratios$=FALSE$ ; $/*TRUE$ if ratios calculated for the current col $*/$

int dratios$=FALSE$ ; $/*TRUE$ if ratios calculated for th$e$ current row $*/$

int dual$=TRUE$; $/^{*}$ TRUE if dual feasible, ie. row $0$ negative $*/$

Figure 2.1 Global Data Base

3. Computational Experience
In this section we give a sample run and some preliminary computational results. Consider the

following three dimensional polyhedron $P$ :
$x_{1}-2x_{2}+3x_{3}\leq 1$

$-4x_{1}+5x_{2}-6x_{3}\leq 2$

$7x_{1}-8x_{2}+9x_{3}\leq 3$
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$x_{1}\geq 0$, $x_{2}\geq 0$, $x_{3}\geq 0$

Figure $3_{:}1$ gives a sample run for for $P$ . The output gives the values of the variables at each vertex.
The onginal variables of the problem appear as $x[1],x[2],x[3]$ . In addition a slack variable is added for
each inequality, th$ese$ appear, respectively, as $x[4],x[5],x[6]$ . Normally the user is only interested in the
original variables. For each vertex, the program prints the values of the basic variables. The cobasic
variables are all zero, and there indices are listed. For example, at Vertex #1 all of the original vari-
ables have value zero. Vertex #3 corresponds to the vertex with $x_{1}=0,$ $x_{2}=4$ and $x_{3}=3$ . Th$e$re is some
degeneracy in this problem as we observe that there are 6 vertices and at least 8 bases: there may be
some additional bases after Basis #8 but no new vertices.

In Figure 3.2 we show how to restart the program from a known vertex. This is particularly use-
ful if there is a machine shutdown (or power failure!) during a long computation. In the figure we res-
tart from Vertex#4Basis#5which is at Depth$=2inthetree$ . To restart, use the same input file as for
a regular run except answer $\dagger\prime y^{||}$ to the question “Restarting from known cobasis? $(y/n)|$

’ and then enter
the vertex number, basis number, depth and cobasis indices for the restart.

Some preliminary computational experience is given in Figure 3.3. These examples contain both
simple polyhedra and highly degenerate polyhedra. Problem 1 had a matrix generated uniformly in the
range -1000..1000 and $b$ vector all ones. Problem 2 is due to Akihisa Tamura, and has all data from
the set {0,-1,1}. Problem 3 is the tmncated Metric Cone on four points, consisting essentially of $aU$

triangle inequalities on these four points. Problem 4 and 5 were constructed arbitrarily with integer
data in the range -100..100. The reverse search tree generated for problem 4 and the graph of its
polyhedron is shown in Figure 3.5. Problem 6 was arbitrarily constructed with matrix entries in the
range-lO.. 10 and $b$ vector 1.. 13. Problem 7 is a Kuhn-Quandt problem, with matrix entries randomly
chosen in the range $0.$ .1000 and $b$ vector entries $aU$ 10000. All times shown are for a SPARC station
1.

The test run for Problem 5 was run with the $C$ profiler gprof to see where the execution time is
spent. With the profiler, the running time was 9.25 seconds distributed as shown in Figure 3.4.

From this profile we see that about 84% of th$e$ execution time is spent in pivoting and only about
13% in testing for reverse pivots, using the ideas of Theorem 1. Earlier implementations without
Theorem 1 used substantially more time in testing reverse pivots than in pivoting. The number of
pivots made is always 2*(number of bases - 1) using the reverse search method. This suggests further
significant improvements in running time can only be made by improving the low level multi-precision
arithmetic procedures used in pivoting.

Finally we briefly discuss the problem of degeneracy. A degenerate problem is a problem where

$e^{orsomevertexorvertimorethdqua1itiesxesatisfiedasequation}f_{quationsexistforagivenvertex,asmanyas[k}cesmanyan_{7^{e_{basesmayrepresentit.Therevers^{S}e}}d}$

.
$searchmethodIfk>dsuch$

will evaluate all of these bases, although only one (the lexicographically minimum) will be output. For
highly degenerate problems it can be of great advantage to perturb the right hand side slightly by
adding or subtracting small randomly chosen numbers. If the resulting polyhedron is non-degenerate
the total number of vertices is govemed by the Upper Bound Theorem of P.McMullen (see[4]). This
states. that the maximum number of vertices of any polyhedron defined by $n_{0}$ inequalities in $d$ non-
negative variables is

$[n_{0}+n_{0} \lfloor\frac{d}{2}\rfloor]+[n_{0}+n_{0}\lfloor\frac{d-1}{2}\rfloor]$

This is then an upper bound on the output size for a non-degenerate problem. In the extreme case a

$completelydegenerateproblem,inwhicheachinequa1tyisboundedbyahyp.erplanepassingthroughtheorigin,couldhavetheroughlyquadratica\mathbb{I}y1arger[n_{0_{d^{+d}}}]numberofbasesTherefore,peKurbation$

is greatly recommended.
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INPUT:

$>Vertex$ Enumeration for Polyhedron {Ax $<=b,x>=0$ }
$>A$ is an $m$ by $n$ rational matrix, $b$ is a non-negative $m$ vector

$>Enter$ number of rows(max$=40$) and columns(max$=40$) of A
33

$>Enter$ Numerator Matrix (with optional sign)

Row $1=1- 2$ 3
Row $2=- 45- 6$
Row $3=7- 8$ 9

$>Enter$ Numerator of Positive $b$ Vector
$b[1]=1$
$b[2]=2$
$b[3]=3$

$>DenominatorsaU$ ones? $(y/n)$

$y$

$>Restarting$ from known cobasis? $(y/n)$ ;
$n$

OUTPUT:

Basis $0456$ Location $0123$
Co-Basis 123 Location $012$ dual feasible

$A[0][2]=-y1[4]=- 1/6$ $[6]=1/6$ $[7]=- 1/3$

$A[1][2]=1/2$ $[4]=3/4$ $[6]=- 1/4[7]=0/1$
$A[3][2]=1/2$ $[4]=- 7/12[6]=1/12[7]=1/3$
$A[5][2]4/1$ $[4]=- 1/2$ $[6]=- 1/2[7]=4/1$

Vertex #1 Basis $\# 1$ Depth$=0$ Entering$=0$ Co-Basis 123
$x[4]=1/1$ $x[5]=v1$ $x[6]=3/1$

Vertex #2 Basis $\# 2$ Depth$=1$ Entering$=2$ Co-Basis 135
$x[2]=2/5$ $x[4]=9/5$ $x[6]=31/5$

Vertex #3 Basis $\# 3$ Depth$=2$ Entering$=3$ Co-Basis 145
$x[2]4/1$ $x[3]=3/1$ $x[6]=8/1$

Vertex #4 Basis $\# 5$ Depth$=2$ Entering$=1$ Co-Basis 246
$x[1]=0/1$ $x[3]=1/3$ $x[5]=4/1$

Vertex #5 Basis $\# 7$ Depth$=2$ Entering$=1$ Co-Basis 236
$x[1]=3/7$ $x[4]=4/7$ $x[5]=26\Pi$

Vertex #6 Basis $\# 8$ Depth$=3$ Entering$=2$ Co-Basis 356
$x[1]=31/3$ $x[2]=26/3$ $x[4]=8/1$

Figure 3.1 Sample Run
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INPUT:

$>Vertex$ Enumeration for Polyhedron {Ax $<=b,x>=0$ }
$>A$ is an $m$ by $n$ rational matrix, $b$ is a non-negative $m$ vector
$>Enter$ number of rows$( \max=40)$ and columns(max$=40$) of $A$ :

$********same$ as Figure 3.1 $***************$

Restarting from known cobasis? $(y/n):y$

Enter Vertex $\#$ or zero: 4

Enter Basis $\#$ or zero: 5

Enter Depth or zero: 2

Enter Co-Basis for restart: 3 indices between 1 and 6: 246

Restarting from Vertex $\# 4$ Basis $\# 5$ Depth$=2$ Co-Basis 246
Basis $0135$ Location $0132$ degenerate
Co-Basis 246 Location 102 dual infeasible

$A[0][2]\Rightarrow 2/1[4]=-.1/6$ $[6]=1/6$ $[7]=- 1/3$

$A[1][2]=1/2$ $[4]=3/4$ $[6]=- 1/4[7]=0/1$
$A[3][2]=1/2$ $[4]=- 7/12[6]=1/12[7]=1/3$
$A[5][2]=0/1$ $[4]=- 1/2$ $[6]=- 1/2[7]=4/1$

Vertex #4 Basis $\# 5$ Depth$=2$ Entering$=0$ Co-Basis 246
$x[1]=0/1$ $x[3]=1/3$ $x[5]=4/1$

Vertex #5 Basis $\# 7$ Depth$=2$ Entering$=1$ Co-Basis 236
$x[1]=3/7$ $x[4]=4/7$ $x[5]=26/7$

Vertex #6 Basis $\# 8$ Depth$=3$ Entering$=2$ Co-Basis 356
$x[1]=31/3$ $x[2]=26/3$ $x[4]=8/1$

Figure 3.2 Restart of Sample Run from Vertex 4

Figure 3.3 Computational Results
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Figure 3.4 Execution Profile for Problem 5

4. Future Work
The present implementation can be improved in many ways. At present it does not achieve the

theoretical complexity of $O(m(n-m) \min(m, n-m))$ because it always processes reverse pivots in
column order, and the speed up for condition (V’) is not implemented. Hence the current implementa-
tion has complexity $O(m(n-m)^{2})$ if the optimum dictionary is unique, and otherwise $O(m(n-m)n)$.
This is unlikely to matter in practice unless the input problem has few rows but many columns. It may
not matter at all if the amortized cost per candidate reverse pivot is in fact constant, as suggested by
expenment.

With the restart feature, the current code is suitable for distributed processing. It is easy to
modify the code to compute a reverse search tree down to some preset depth $k$ . Each node at level $k$

can then be treated as an independent problem and assigned to a separate processor. Using the depth
counter, these processes can be programmed to stop after they have completely enumerated the sub-tree
for which the given startup node is the root. It is planned to formalize this with some standard proto-
col for distributed computing. Various options for the program should be incorporated as command
line arguments. Finally, it is planned to incorporate the current code into the Mathmatica package[6].
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