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Absence of point spectrum for a class of
discrete Schr\"odinger operators with

quasiperiodic potential

Masahiro Kaminaga* 神永正博

Abstract

Treated in this paper are one-dimensional discrete Schrodinger op-
erators with a quasiperiodic potentials, which are derived from the
model proposed by Kohmoto, Kadanoff and Tang in 1983. The aim of
this paper is to show the absence of point spectrum of the operators
under certain conditions.

Mathematics Subject Classification $(1991):47A10,47B39,47B80,47N50$

1 Introduction
We consider the following discrete one-dimensional Schr\"odinger operators on
$\ell^{2}(Z)$ given by

$(H_{\theta}\psi)(n)$ $:=\psi(n+1)+\psi(n-1)+V_{\theta}(n)\psi(n)$ , (1)

with a potential $V_{\theta}(n)$ given by

$V_{\theta}(n):=\lambda\chi_{A}(\Phi(\alpha n)+\theta)$ . (2)

Here $\lambda$ is a non-zero constant, $\chi_{A}$ is the characteristic function of an interval
A on the torus $\mathbb{R}/Z,$ $\Phi$ is the canonical projection from IR onto $IR/Z$ , and
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$\theta\in \mathbb{R}/Z$ . This operator was proposed by Kohmoto, Kadanoff and Tang
[5] for the case $of\alpha=(\sqrt{5}-1)/2$ , A $=\Phi([1-\alpha, 1))$ and $\theta=0$ . The
potential $V_{\theta}(n)$ with an irrational number $\alpha$ means a quasiperiodic one, and
the operator (1) is interpreted by Luck and Petritis [8] as a model describing
the phonon spectra in one dimensional quasicrystals. In this case, S\"ut\’o
([9],[10]) concluded the spectrum of $H_{0}$ was a Cantor set (i.e. nowhere dense
closed set without an isolated point) of zero Lebesgue measure and was purely
singular continuous. Further Bellissard, Iochum, Scoppola and Testard [1]
extended this result for any irrational number $\alpha$ . However, for the author’s
knowledge, the absence of the point spectrum of $H_{\theta}$ for non-zero $\theta$ is not yet
known for any irrational number $\alpha$ , and we deal with this probrem in the
present paper.

Remark 1 In the case $\alpha$ is a rational number, (2) yields a periodic sequence
and $H_{\theta}$ has purely absolutely continuous spectrum for every $\theta$ . In particular,
$H_{\theta}$ has no point spectrum for every $\theta$ .

Before stating our result, we introduce some notations which are used through
this paper. Let $a_{n}(\alpha)$ be the $n^{th}$ partial quotient of the continued fraction
of $\alpha$ ; i.e.,

$\alpha=a_{0}(\alpha)+\frac{1}{a_{1}(\alpha)+\frac{1}{a_{2}(\alpha)+}}$
.

$\backslash$

And let $p./q_{n}$ be the $n^{th}$ principal convergent of a irrational number $\alpha$ ; i.e.,

$p_{n+1}=a_{n}(\alpha)p_{n}+p_{n-1}$ , (3)

$q_{\pi+1}=a_{n}(\alpha)q_{n}+q_{n-1}$ , (4)

with $p_{0}=1,$ $p_{1}=a_{0}(\alpha),$ $q_{0}=0,$ $andq_{1}=1$ . Then, it is known (see e.g. Lang
[7, p.8]) that

$| \alpha-\frac{p_{n}}{q_{n}}|<\frac{1}{q_{n}q_{n+1}}$ $(n\geq 2)$ . (5)

We define the following sets;

$E(n)$ $:=\{\theta|V_{\theta}(m+q_{n})=V_{\theta}(m-q_{n})=V_{\theta}(m)(1\leq m\leq q_{n})\}$ ,

$M$ $:=\{\theta|\sigma_{p}(H_{\theta})=\phi\}$ ,
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where $\sigma_{p}(H_{\theta})$ is the set of the point spectrum of $H_{\theta}$ , and we have (Lemma 3
below):

$\lim_{narrow}\sup_{\infty}E(n)\subset M$ .

The aim of this paper is to show the following theorems.

Theorem 1 Suppose a real number $\alpha$ satisfies $0<\alpha<1$ , and let $A=$

$\Phi([1-\alpha, 1))$ . Then $\sigma_{p}(H_{\theta})=\phi$ for almost every $\theta$ with respect to the Lebesgue
measure.

For any interval $A$ , we have:

Theorem 2 Suppose $\lim\sup_{narrow\infty}a_{n}(\alpha)\geq 4$, then $\sigma_{p}(H_{\theta})=\phi$ for almost
every $\theta$ .

Delyon-Petritis [3] proved the absence of the point spectrum under the con-
dition $\lim\sup_{narrow\infty}a_{n}(\alpha)\geq 5$, and they proved directly

$\mu(\lim_{narrow}\sup_{\infty}E(n))=1$ ,

where $\mu$ denotes the Lebesgue measure on $IR/Z$ . Instead, we use the following
lemma, which is obtained by the theory of random Jacobi matrices.

Lemma 1 The set $M$ is Lebesgue measumble, and $\mu(M)-\triangleleft or$ 1.

Theorem 2 includes the result of Delyon-Petritis [3]. The author doesn’t
know an example of the operators of type (1) with the point spectrum for
almost every $\theta$ , and whether the assumption in Theorem 2 is best possible is
a open probrem, to his knowledge.

Remark 2 It is known (see $e.g$ . Khinchin [4 $p.60J$) that for almost every
$\alpha$ we have

$\lim_{narrow}\sup_{\infty}a_{n}(\alpha)=+\infty$ .

Remark 3 Arguments in [1] and [10] are based on Kotani [$6J$. As a conse-
quence of Kotani’s result one has the following theorem concerning spectral
properties of $H_{\theta}$ : For any interval $A\neq IR/Z$ or $\phi$ , for any irmtional number
$\alpha$ and for almost every $\theta$ with respect to the Lebesgue measure on $\mathbb{R}/Z,$ $H_{\theta}$

has no absolutely continuous spectrum.



199

2 Proof of Lemma 1
In this section we prove Lemma 1 with the spectral theory of random Jacobi
matrices. We remark that $V_{\theta}$ is an element of $\Omega=\{0, \lambda\}^{Z}$ . Define a shift
operator $T$ on $\Omega$ by $(Tf)(n)=f(n+1)$ , and define a metric on $\Omega$ by

$d(f_{1}, f_{2}):= \sum_{n=-\infty}^{\infty}2^{-|n|}|f_{1}(n)-f_{2}(n)|$ .

Then $\Omega$ is a compact separable metric space and $T$ is continuous. We denote
the Borel field on $\Omega$ by B. Let $\Gamma$ be a map from $\mathbb{R}/Z$ into $\Omega$ defined by
$\Gamma(\theta)=V_{\theta}$ , then $\Gamma$ is measurable. Hence we define a probability measure on
$(\Omega, B)P=\mu 0\Gamma^{-1}$ (i.e. $P(S)=\mu(\Gamma^{-1}(S))$ for any $S\in B$ ). It is easy to
verify that $P$ is a T-preserving probability measure and $(\Omega, T, P)$ is ergodic,
that is, $TB=B$ implies $P(B)=0$ or 1. We have the following lemma by
the theory of random Jacobi matrices.

Lemma 2 (Kunz-Souillard) There exists a closed set $\Sigma$ in IR such that

$\overline{\sigma_{p}(H_{\theta})}=\Sigma$ P–as.

Proof. See e.g. [2; p.196, Theorem 9.4].

The Lemma 1 is a straightforward adaptation of the above lemma.

Proof of Lemma 1.
Let $\Sigma$ be the set determined by Lemma 2. Then, there exists a P-

measurable null set $J$ such that $\overline{\sigma_{p}(H_{\theta})}=\Sigma$ holds for any $V_{\theta}\in\Omega-J$ .
Let $F=\{\theta|\overline{\sigma_{p}(H_{\theta})}=\Sigma\}$ , then, we have $\Gamma^{-1}(J)\supset F^{c}$ . From $\mu(\Gamma^{-1}(J))=0$

and the completeness of the Lebesgue measure, we have $\mu(F)=1$ . Hence, $M$

coincides with $F$ , or $M^{c}$ contains F. Therefore, $M$ is a Lebesgue measurable
set, and $\mu(M)=0$ or 1. $\square$

3 Proofs of Theorems 1 and 2
In this section we prove Theorems 1 and 2. The proofs are based upon the
improvement of the argument in Deyon-Petritis [3]. We prove Theorem 2
before the proof of Theorem 1.
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Lemma 3

$\lim_{narrow}\sup_{\infty}E(n)\subset M$ .

Proof. See Delyon-Petritis [3].

Lemma 4 Let
$c( \alpha)=\lim_{narrow}\sup_{\infty}a_{n}(\alpha)$ ,

then we have
$\lim_{narrow}\sup_{\infty}\frac{q_{n+1}}{q_{n}}\geq\frac{c(\alpha)+\sqrt{c(\alpha)^{2}+4}}{2}$

Proof. Let
$\beta=\lim\sup\underline{q_{n+1}}$ .

$narrow\infty$ $q_{n}$

Since the assertion holds in the case of $\beta=\infty$ , we give a proof in the case
of $\beta<\infty.$

. From (4), we have

$\beta=\lim_{narrow}\sup_{\infty}(a_{n}(\alpha)+\frac{q_{n-1}}{q_{n}})$.

Hence we have $c(\alpha)<\infty$ , and

$\beta\geq c(\alpha)+\frac{1}{\beta}$ ,

which implies the assertion. $\square$

Lemma 5 Suppose $\lim\sup_{\piarrow\infty}a_{n}(\alpha)=1$ , then the following holds:

$\lim_{narrow\infty}(q_{n}|q_{n}\alpha-p_{n}|)=\frac{1}{\sqrt{5}}$ .

Proof. Let

.
$\alpha_{n}=a_{n}(\alpha)+\frac{1}{a_{n+1}(\alpha)+\frac{1}{a_{n+2}(\alpha)+}}$

.
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Then, $a_{n}(\alpha)=1$ for sufficiently large n,and we have

$\alpha_{n}=\frac{1}{\omega}$ ,

where $\omega=(\sqrt{5}-1)/2$ . By Lang [7, p.8], we have

$q_{n} \alpha-p_{n}=\frac{(-1)^{n+1}}{q_{n+1}+\omega q_{n}}$ .

and,
$q_{n}|q_{n} \alpha-p_{n}|=\frac{1}{\frac{q_{n+1}}{q_{n}}+\omega}$ . (6)

On the other hand, for sufficiently large $n$ we have by (4)

$q_{n+1}=q_{n}+q_{n-1}$ ,

and we have
$\lim_{narrow\infty}\frac{q_{n+1}}{q_{\pi}}=\frac{1}{\omega}$ . (7)

From (6) and (7), we reach the assertion. $\square$

Proof of Theorem 2.
Considering Lemma 2 and Lemma 4, we are sufficient to show

$\mu(\lim_{narrow}\sup_{\infty}E(n))>0$ .

Let $\theta_{1}and\theta_{2}$ be the two end points of the interval $A$ . We define sets

$E_{i}(n)= \{\theta|\min_{1\leq m\leq q_{n}}|\Phi(m\alpha)+\theta-\theta_{i}|_{1}>|q_{n}\alpha-p_{n}|\}$ $(i=1,2)$ , (8)

where . $|_{1}$ denotes the distance from $0$ in $IR/Z$ . From (5), we have

$|(\Phi((m\pm q_{n})\alpha)+\theta)-(\Phi(m\alpha)+\theta)|_{1}=|q_{n}\alpha-p_{n}|$ , (9)

and from (8) and (9), we have

$E_{1}(n)\cap E_{2}(n)\subset E(n)$ . (10)
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By the definition of $E_{i}(n)$ , we have

$E_{i}(n)^{c}= \bigcup_{m=1}^{q_{n}}\{\theta||\Phi(m\alpha)+\theta-\theta_{i}|_{1}\leq|q_{n}\alpha-p_{n}|\}$ $(i=1,2)$ ,

thus
$\mu(E_{i}(n)^{c})\leq 2q_{n}|q_{n}\alpha-p_{n}|$ $(i=1,2)$ . (11)

From (5), (10) and (11), we have

$\mu(E(n))\geq 1-4\frac{q_{n}}{q_{n+1}}$ ,

therefore
$\lim_{narrow}\sup_{\infty}\mu(E(n))\geq 1-\frac{4}{\lim\sup_{narrow\infty}\frac{q_{n+1}}{q_{\hslash}}}$ .

By $c(\alpha)\geq 4$ and Lemma 4, we have

$\mu(\lim_{\piarrow}\sup_{\infty}E(n))\geq\lim_{narrow}\sup_{\infty}\mu(E(n))>0$ ,

which concludes the proof. $\square$

Proof of Theorem 1.
By Remark 1, it is sufficient to consider the case where $\alpha$ is irrational.

By the hypothesis, choose $\theta_{1}=\Phi(1-\alpha)$ and $\theta_{2}=\Phi(1)=0$ in (8), and we
have

$E_{1}(n)= \{\theta|\min_{1\leq m\leq q_{n}}|\Phi((m+1)\alpha)+\theta|_{1}>|q_{n}\alpha-p_{n}|\}$,

$E_{2}(n)= \{\theta|\min_{1\leq m\leq q_{\ovalbox{\tt\small REJECT}}}|\Phi(m\alpha)+\theta|_{1}>|q_{n}\alpha-p_{n}|\}$ .

Therefore,

$E_{1}(n) \cap E_{2}(n)=\{\theta|\min_{1\leq m\leq q_{n}+1}|\Phi(m\alpha)+\theta|_{1}>|q_{n}\alpha-p_{n}|\}$.

Hence, we obtain

$\mu(E(n))\geq 1-2(q_{n}+1)|q_{n}\alpha-p_{n}|$ . (12)

Firstly, consider the case where $\lim\sup_{narrow\infty}a_{n}(\alpha)\geq 2$ , then, from (5),(12)
and Lemma 4, we have

$\lim_{narrow}\sup_{\infty}\mu(E(n))>0$.
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Secondly, consider the case where $\lim\sup_{narrow\infty}a_{n}(\alpha)=1$ , then, from (12) and
Lemma 5, we have

$\lim_{narrow}\sup_{\infty}\mu(E(n))\geq 1-\frac{2}{\sqrt{5}}$ ,

which concludes the proof. $\square$
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