goooboooogn
0 8730 19940 125-132

125

ON CLASSICAL MECHANICS
CORRESPONDING TO THE DIRAC EQUATION
-SUMMARY

Artsusmr INOUE  (H#.L 3%)
DEPARTMENT OF MATHEMATICS
ToOkYO INSTITUTE OF TECHNOLOGY

9 November 1993 at RIMS

IDEA AND RESULTS

We consider the free Dirac equation: For 9(t,q) : R x R3 — C4,
5 . Ko
i h— = D(t D= carra— 2
(1) 4 atfﬁ(t,Q) W( ’Q), k=lcaki aqk +mc ,Bs

where we use the Dirac representation of matrices

(I 0 _ (0 o% _
ﬁ—(o —I)’ ak_(ak 0) for. k=1,2,3,

0 1 0 —i 1 0 10
an={1 o) 2={; o) = o =1) 1=\0 1)

We claim that there exists the “classical mechanics” corresponding to the Dirac equation, which is

with

governed by the symbol obtained from the Dirac equation and that the Dirac equation is obtained
by quantizing that symbol, that is, the Dirac equation is considered as the “Schrédinger picture” of
the quantization of that symbol. This explains the usage of the term “Dirac particle” as reasonable
comparing with that of the term “ Schrodinger particle”. In other word, we interpret the free
Dirac equation as a quantum mechanical evolution equation, like Schrédinger equation for a single

particle.

Remark. Rather dogmatically, we claim the meaning of classical mechanics as follows; The
notion of classical mechanics consists of a configuration manifold M, its cotangent manifold T* M,
a Hamiltonian H(q,p) € C°(T*M : R) and the Poisson bracket {-,:}, by which C>®°(T*M : R)
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forms a Lie algebra. The object of classical mechanics is to investigate the structure of solutions of
the equation of motion for each H(q,p) € C°(T*M : R). Whether the quantity derived by solving

that equation is observable by suitable mechanical tools or not, is another problem.

To state our result more precisely, we proceed as follows (unfamiliar terminology will be given

in Appendix):

(1) We identify a “spinor” 9(t,q) = “(¥1(t, q),%2(t, q),%a(t, q), ¥a(t,q)) : R x R® — C* with
an even supersmooth function u(t,z,0) = ue(t,z) + ui(t,z)0:102 + uz(t,x)0205 +us(t,x)0s6, :
R x R33 — ¢,,. Here, M3 is the superspace and u;_;(¢,z) is the Grassmann continuation of
Y;(t,q) for j = 1,2,3,4. Then, matrices above are interpreted as differential operators acting on

even supersmooth functions.

(2) Therefore, we may correspond the differential operator given by
h O 0 0 O \h O O \h O
D(z, 2L 9, 2\ = 2 A S
(=3 5 0a5) = (o aes) (o ael) 5z, ie(61 + aal) i 022
: 0 )ﬁ 0 0

~c(6: = 55 ) 7 5ms + (0 5]

(i)

which yields the superspace version of the free Dirac equation

- 9 RO, B\
1h— =D ——— _— .
(iii) zhatu(t, z,6) (m, . ax,e, ae)u(t,a;, 6)
Moreover, the “complete symbol” of (ii) is given by

) D(z,£,0,m) = (03 + m3)[c(01 — m1)&1 +ic(f1 + m1)&2 — c(f2 — 72) &3]
(iv) + mc2[1 + (65 + 73) (03 — m3)].

g

Remark. In case of the free Dirac equation, D(x 56%, 9, 6—‘90) and D(z, &, 0, ) are indepen-

dent of z.

~

(3) We consider the classical mechanics corresponding to D(z, &, 60, 7) given by

ii_m: 0D(z,&,0,) _d;gk:_(?D(x,f,Q,w)
v) dt™? O¢; Toodt Oz ’

EO :__8’19(:1:,5,9,#) _c_i_7r :_a’D(x,f,Q,w)

e om, dt ™ 8m

In another word, using the graded Poisson bracket {-,-} (see [3,4]), we have

%X(w(t),f(t),e(t),vr(t)) = {X,D}(z(t),£(),0(t), m(t)) forany X € ¢ qo(T*R3:R).
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(4) On the other hand, using Fourier transformation, we have readily that

oo tL05)-2

where D is a (Weyl type) pseudo-differential operator with symbol D(z, £, 6, 7).
(5) Put

Ziu(z, 0) = z;u(z, 6), Exu(z, 0) = ——ﬁ—u(m 0) for jk=1,2,3,

o —u(z,0) for I,m=1,2,3,

élu(x; 0) = olU((B, 0)1 frmu(.’t:, 0) 96,

which yields therefore

[fk’ wJ]'- =

Sl;-r

ik, ‘ [‘ﬁ'm,éz]+ = 8m with [A,Bly = AB + BA.

After proving that D is self-adjoint on £35 (%33 : €) with domain W (3B : €), we define

2(t) = e¥*P,e 4P, E(1) = eF Phe P,

0H(t) = exPhe=#tD, 7H(f) = e¥*Pf, e~ 1D,
which gives d

. 1.- .
_Lli.H L3 PR
dt $() = (680, Dl-, SE®) = HE D)

d 1

a_t'olH(t) = ;ﬁ[ng(t)’D]—a Et-ﬁg(t) = E[ﬁ'an(t))ﬁ]—'

(6) We get also Ehrenfest type results partially: Put, for any non-zero u(z, 8) € fgg (M3 : @),

(u, X (t)u)

(X(t)) = ()

for X =z; etc,

then
— (&1 (1)) = é)&((”‘"(t)) EH (), (0% (), &P (1)) = e(af (1))

which should be compaired with the first equation in (v),

d

7% zj(t) = caj(t) for j=1,2,3,

where a1 (t) = a1 (8(t), 7 (t)) = (0s(t) + m3(£)) (61() — m (1)), ete.
Concludingly, our Main assertions are as follows:

(1) There exists a Hamiltonian D(z, £, 8, 7) on T*R33 = 516 which defines the classical mechanics

represented by
d

dt(p {SD:DB with (,0(0 z, 670 71') Q00($,€, 9’7!.)'
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(2) The pseudo-differential operator D with symbol D(z, £, 8, 7) equals to ’D( T, 5 3—-,0, 2 ) which
is self-adjoint on £35(R31 : €).
(3) The classical quantity ¢(t,z, &, 8, 7) evolving with has the quantum counter part, the operator

valued functions(=observables) acting on £35(R%1 : ¢), which satisfies

d b= [T . . o

itho @ =[5 D]~ with $(0) = o
Here () is the operator valued function of ¢ and ¢ is the pseudo-differential operator with symbol
wo(z, &,0, 7). But, in general, ¢(t) doesn’t have the symbol which equals to o(t,z, &, 0,m).
(4) There seems no analogue of Eherenfest type result for some operators such as the spin vector,

though it has the classical counter part.

APPENDIX. FUNDAMENTALS OF SUPERANALYSIS

For symbols {0;}32, satisfying the Grassmann relation
ojok +0xk0; =0, jk=1,2,---,

we put
¢={X=) Xio': X1 €C}
IeT
where

T={I=(x) € {0,1}V: 1| =) ix < oo},
. ) k

ol =ohol ..., I=(i1,ig-),0%=1 0=(0,0,---)€eT.

Besides trivially defined linear operations of sums and scalar multiplications, we have a prod-
uct operation in ¢: For

X=)Y X!, Y=Y Yko¥,

JeJ KeT
we put

XY=Z(XY)IUI with (XY)I_ Z (- 1)T(IJK)XJYK
IeT I=J+K

Here, 7(I; J, K) is an integer defined by

olo¥ = (—I)T(I;J'K)O’I, I=J+K.
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Proposition. ¢ forms a co-dimensional Fréchet-Grassmann algebra over C, that is, an associative,

distributive and non-commutative ring with degree, which is endowed with the Fréchet topology.

Remark. (1) Degree in € is defined by introducing subspaces
Ty ={X = Z X0’} for j=0,1,---
1T \I|=3
which satisfy
C=872o%;, Ty Ciy € Cjta)-

(2) Define

proj;(X) = X; for X:ZXIUIEOC.
Iez

The topology in € is given by; X — 0 in ¢ iff for any I € Z, proj;(X) — 0 in C.

This topology is equivalent to the one introduced by the metric dist(X,Y) = dist(X — Y)
where dist(X) is defined by

. _ 1 |proj;(X)| i, _ Lw k; .
dlst(X)—Iezzzr(I)1+|projI(X)| with r(I)_1+2I§2 ir for IeT.

(3) We introduce parity in € by setting

0 if X = ZIGI,III:ev X0,
p(X) =4 1 if X =3 rez | 11=0a X107,
undefined if otherwise.

We put .
Cev = B2 P25 = {X € €: p(X) =0},

Cod = Bj20C2541) = {X € €: p(X) =1},
C = Cep @ Coad = Cev X Cod-

Analogous to €, we define
R={X e C:mX € R}, Ry =RNCy,
Rev =RNCey, Roa = RN Cod = Coas
R = Rev © Rod = Rey X Rod.
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We introduced the body (projection) map ng by
w8 X = projz(X) = Xsg=Xp forany X edC.
We define the (real) superspace ™™ by
M7 = M, x Ry,
The metric between X,Y € R™" is defined by,
distpmin(X,Y) = distma (X —Y)

with

. - 1 |projr(z;)| . 1 |proj;(6k)l
k()= 2 (Z 0 T Tprog 1) * 2 \ 2 T T [prog; (0] )

j=1 \IeZT k=1 \IeZ

We use the following notations:

X = (X4)T" = (z,6) e ™™ with
T = (Xa)%=1 = (2j)j=1 € R, 6= (Xa) 3R 1 = (Ok)pey € RO
We generaiize the body map 7er from S™In or AMIO 1o R™ by putting,
X =(z,0) e R"™"™ — 13X = Xp = (xB,0) = B = 7T = (TT1, -+ ,TBTm) € R™.

We call Zx,- € M.y even (alias bosonic) variable and 6, € M,q odd (alias ferminioc) variable,

respectively.
‘For m n
a=(a,a), a=(al:"’ )am) € N™, a=(al"" ’a’ﬂ) € {0’1} y
m n
lof = ey, lal =) ak, la| =|a|+]al,
=1 k=1
we put

)
3

0% =028 with 0% =98 .. 82, 8§ =0 ---5an.

Example. 692919293 = -—0193, 691693019293 = 02, ete.

For u,(q) € C*(R™; C), we put, for z = zp + zs,

(e o]

1 a
ua(z) = Z a—!ag‘ua(a:g)zs

ja|=0
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which is called the Grassmann continuation of u,(g) and define a function u € ¢ oo(R™I") by

u(X) = u(z,0) = Z uq(x)6°.

la|<n

Scalar products and norms:

(u,v) = / dzd0 d0e PO Uz, Bu(z,6) = 3 / dz 2o (@) va (),
Remin la|]<n Rmi0

(wo)e= ) (05w, 8%v) = Y (8SUa,B5va),

lal<k lal+lal<k

()= D ((1+|Xsl?)"20%u, (1 +|Xs|*)"/?8%v)
laj-+I<k

with
ul® = (u,u),  lullf = (wu), [l = @@, u))e.

Fourier transformations:

(Fov)(€) = (2nh)™™/? /

gm0
(Fov)(7) = Jn / _doe (o), (Fow)(6) = 3n / _dn e D)
9ROin ROIn

doe™" iz, (Fa)(e) = @Ry [ dget ™ Eohug)
| e

where " .
(ly) =D mys  (plw) = prwr, gn =¥,
j=1 k=1
We put
FOED =emp [ X EOUX) = T l(Fea) @ONFL7) )
(Fo)(@,0) = cmn [ d2EEX0(E) = Pl(F) @)(For)O)
where

(E|X) = k7 (E|z) —i(m]0) € Revy,  Cmm = (2h)™™/2g,.

Remark. Though the differential calculus on Fréchet spaces has some difficulties in general,
such a calculus on Fréchet-Grassmann algebra holds safely in our case. For example, the implicit
and inverse function theorems, and the chain rule of differentials are established as similar as the

standard case.
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