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Remarks on Fujiwara’s Stationary Phase Method

with a Phase Function Involving Electromagnetic Fields

SRRXFEHABERRXH LHE4LE Tetsuo Tsuchida
Department of Mathematics, Faculty of Science

Kanazawa University, 920-11 Kanazawa, Japan

1. Introduction

We consider an oscillatory integral of the form

L . L-1
I({t,-},S, a, v)(zL,zo) _ H( vi )d/Z/ e—ivS(zL,...,zo)a(zL’ .. ’20) H dzj.
. 2xt; d(L—1) .
j=1 J R 1=1
(1.1)
Here each z;,j = 0,1,--- ,L, runs in R, v > 1 is a constant and ¢;,5 = 1,---, L, are

positive constants. Fujiwara [5] discussed this integral for L large and developed the
stationary phasé method with an estimate of the remainder term for the phase function
S(zL, -+ ,20) coming from the action integral for a particle in electric fields. In this
paper we extend his results to the case for the phase function involving both electric and

magnetic fields.
We denote the I-th component of z € R? by (z);, and use the notations: oy =
9z, = (‘:11_)1 ---0&‘:)4 with a multi-index a = (a1,--- ,a4), and 8; f(2;) = 0., f(z;) as

the gradient of f(z;).

Our assumption for the phase function S(zz,---,2¢) is the following: |
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(H.1) S(zr,--- ,20) is a real-valued function of the form
L
S(zz, -+ ,z0) = ) Si(tj,25,2-1), (1.2)
i=1
where

|z; —zj_1|?

%, +w1(tJ’zJ)zJ—1)a J‘: 1) ,L, (13)
2

St 5, 25-1) =
and w;(t;,;,z;_1) satisfies the following conditions:

(i) For any m > 2 there exists a constant K, > 0 independent of j and t; such that

8% 88 w:(t; < K- 1.4
e e ML AL o

(i) Let (Z1,--- ,Z0) be an arbitrary solution of the system of the equation
6,,.5,'+1(t,-+1,£,-+1,i,-)+8,ij(tj,aE,~,£,~_1):0, j=1,---,L—-1. (15)

For any m > 1, there exists a constant B,, independent of (ZL,+* 120),L and tj,5 =

1,---, L, but dependent on d such that

L-1
S0Y (e +0e; +85,,,)702, (w5 @i 41))(Z-1, 25, Zj41)] < By (1.6)

i=1|g|=1,1<]al<m
where (8,,_, + 0s; + 82;,,)° = H:=1(0(z,-_1)x + 8(a;) + O(2;41),)** for a multi-index
a=(ay, - ,aq)

In the form of oscillatory integrals Yajima [10] constructed the propagator of
Schrodinger evolution equation for a particle in a certain electromagnetic field. This
case gives an example of the phase satisfying (H.1), in which S;(t;,2;,2;-1) is the action
integral along the classical path of the particle.

When S(zr,-- ,2o) satisfies (H.1), then if Ty, = t; + --- + ¢z is small enough, for

any zo,zz € R? there exists the unique critical point (2}_,, - ,2}), i.e.

09j5j+1(ti+11z;‘+1’z;) + ai’jsj(ti’z;'iz;—l) =0, j=1,--- yL—1, (17)
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where 27 = 21,25 = 2o (The proof is in §3).

To state the assumption for the amplitude function, we use Fujiwara’s notation:

M1

a(zL’ zn) = a(zL,zE_l,- .. ,2;,20).

Similarly, for any pair of integers k, m with k+ 1 < m let (25, --2},_;) be the partial

m

critical point, i.e.
(9,,.Sj+1(tj+1,z;+1,z;)+0,].5 (¢, zJ’zJ 1)=0, j=k+1,--- ,m—1,

where 2} = 2,2, = z,,. Then we set

J— * *
a(zLa"' 1 8m s Thy " ,Zn)—a(ZL,"' 18ma Ty 19" 3819 Zhy " azO)-

If m =k+1, we define

1
a(zL,"' 1 Ch4118k, " 320) = a(sz' oy @h+19 8k, '20)-

The assumption for the amplitude function is the following:
(H.2) a(zL,-- ,z0) is a real-valued function in B(RYZ+1), For any K > 0 there exist
constants Ax and Xx with the following properties:
For any sequence of positive integers with jo = 0< j; -1 < ;1 < jp—-1< - <j, <

Ls=1,...,0—1,

6202 a"f--*a“f- 12 251, 2 < AxXY, (18
ere 1 0jra(2r,25,,25,-1,2j,_1y-12j,—1,20)| < Ak Xg,  (1.8a)

e BL

if |o;| < K, j=0,51—1,41,--,4s — 1,4s, L. If j, = L, then we read the above inequality

as

a - X, —1q9x
0 : H 62;:_1 8 “‘a(zL,z,-,_l,zJ-‘_l, .o ,z,-l_l,zo)| S AKX;( (18b)
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Let us state our main theorems. Let H be the d(L — 1) x d(L — 1) matrix

1 1 1
f -+_1t2 1 tzl 01 0
4 iy i 0
H= 0 -1 141 _1 g ,
ts ts ty ty

and W the Hessian matrix of Ef’zl wj(tj,zj,zj_1) at the critical point (27 _,,.

cy21)-

Theorem 1. Assume (H.1) and (H.2). There ezists a posilive constant § such that if

TL:t1+---+t1,<6then
1

vi

21I'TL

I({tj}1 S, a, V)(zL,zo) = (

1
x (a(zz,20) + r(2L,20)),

)42 exp{—ivS(er,z0)} det(I + H1W)~

1/2

(1.9)

and for any K > 0 there ezist positive constants Cx and M(K) such that if |ag|, |ag| <

K,

arp Qo
‘OGL aﬁo

L
(21, 20)| < Ap(x)([J (1 + Cx Xaeqxyp™'t5) - 1).

j=1

(1.10)

Constants § and Ck are independent of a, L,{t;},21,29 and v but depend on the dimen-

sion d of space R? and {x,,} and {B,.,}. M(K) depends only on K and d.

Theorem 2. Assume thata =1 and (H.1) and let § be the constant as in Theorem 1.

Then for any K > 0 there ezists a constant Cx such that if |ag|, |az| < K,

L
0528507 (2L, 20)| < [J(1+ Cxv™'t;TL) — 1.

i=1

Fujiwara [5] treated the case that the phase function is of the form

L
S(zln"' )20) = Zsj(tj’zhzj—l)’

=
with
|2; — 21|’

i—=1....
2tJ' J ?

Si(ti,zj,2j-1) = +tjwi(ty, zj,25-1),

(1.11)
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where w;(t;,2;,2;_1) satisfies (1.4). The estimate of (2, o) in Theorem 1 is the same
as his, but that in Theorem 2 differs from his in the power of T : our power is 1 while
his power is 2.

In §2 we see that the phase function coming from the action integral for a particle in
electromagnetic fields satisfies (H.1). In §3 the existence of the critical point of the phase
function is proved. We refer the other properties of the critical point and the proofs of

Theorems 1 and 2 to [9).

2. Piecewise classical path in electromagnetic fields

We give an example of S(zr,--,z0) which satisfies the assumption (H.1). We
consider a particle in electromagnetic fields in R%. In this section we denote the I-th
component of z € R? by z;. We make the following assumption for the vector and scalar
potentials A(t,z) and V(z):
Assumption (A). For k =1,...,d, Ax(t,2) is a real-valued function of (¢,2z) € R x R¢,

and for any a, 82 A4(t,2) is C' in (t,2) € R x R?. There exists ¢ > 0 such that
|02 Au(t,2)| + 1020 Au(t,2)| < Cay || 21, (t,2) eR xR, (2)

|02 B(t,z)| < Call + |z|)_l_" e} > 1, (2:2)

where B(t, ) is the skew symmetric matrix with (k,!)-component By(t,z) = (04;/0z) —
0Ai/02;)(t,z) and |B| denotes the norm of matrix B regarded as an operator on R4,

V(z) is a real-valued C* function which satisfies
62V(2)| < Cay  |af > 2. (2.3)

This assumption for vector potentials was used by Yajima [10]. In particular, con-

stant magnetic fields satisfy this assumption.
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Let H(t,z,¢) be the Hamiltonian
H(t,z,£) =271(¢ - A(t,2))? + V(=2).
Then Hamilton’s equation is
& =0;H(t,z,¢), €=-08,H(tz,¢)

with 2 = dz/dt and f = df/dt. When we introduce the position-velocity variables by

(g(2),v(t)) = (=(2),£(t) — A(t, (1)), the equation is Lagrange equation:
q(t) = »(t), o(t) = B(t,q(t))v(t) + F(t,q(t)), (2.4)

where F(t,z) = —(0;A)(t,2) — (0,V)(z). The next lemma is a result of Yajima [10].
Lemma 2.1. Let |t — 3| < 1.

(i) For any a with |a| > 1, there ezists a constant C., such that for any solution

(g(r),o(r)), s < T <1, of (2.4),
/ (62 B)(r, o(r))|o(r)ldr < CL.

(i1) There ezists a constant T > 0 such that if 0 < |t — 8| < T, then for any z,y € R¢
there ezists a unique solution (q(r),v(7)), 8 <7 <t, of (2.4) with q(s) =y and q(t) = =.
Proof. We refer the proof to Yajima [10, Lemma 2.1 and Proposition 2.6]. |

Let T > 0 be as in Lemma 2.1(ii) and |t — s] < T. We write the unique solution

q(7) of (2.4) with g(s) = y and ¢(t) = z as

q(r) = ¢’(r) + d'(r)

where ¢°(7) = z _:(z —y) +y. Then we have

t —

q'(r) = B(r,q(r))e(r) + F(r,q(7)), (25)
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and
q'(s)=q'(t)=0.

Lemma 2.2. There ezists a constant 0 < T° < min(T,1) such that if |t — s| < T° then

for any a, B with | + 8| > 1,
10508 q L= < 1102056 ||Lr < Caglt — 3. (2.6)

The proof is omitted.

Let S(t, s,2,y) be the action of the classical path (g(7), v(7)) joining (s,y) to (¢, 2):

S(t,8,2,9) = / L(r,q(r), v(r))dr, 27)

where L(7,q,v) is the Lagrangian corresponding to H(r,z,{):

‘02

L(r,q,v) = vf—H(%,a:,{) =3

+ A(7,q)v ~ V(q)-

For any sequence 0 = Ty < T} < --- < Ty < T® and any points 2 ¢ R¢ , 5 =0,...,L,
we put

Si(t;, 27,2~ Y) = S(T;,Tj_1,2 , &), j=1,...,L,

where t; = T; — Tj_;. We denote by ga = ¢ + gL the piecewise classical path joining

(Tj,27),j=0,...,L,ie. ¢} is

- T,

T s _ . . .
A= —22( -d )+, Ga<r<T, j=1...,1
2

and g} satisfies

da(r) = B(r,9a(7))4a(r) + F(r,9a(r)), Tja <7< T,
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and ¢4 (7;) =0, j =0,..., L. The action along the piecewise classical path can be written

as

L
S(QA) = S(sz"' ,zo) = Zsj(tjvzj)zj—l)‘
i=1

Theorem 2.3. Let Ty < T°. Then S(2%,---,2% = Ef.':l S;(t;,2",277) satisfies
Assumption (H.1).
Proof. First we verify (H.1). Let g(7) = ¢°(7) + ¢'(7) be the classical path joining

(8,y) to (t,z). We have

Stoey) = [ (EL O | g(r, gr))i(r) - V(a(r) dr

2
2z — 2 t -1 r 2
— s [ s et - Viatr) dr
—E o)
where
otz = [ (B4 s grie) v e 09)

Since g satisfies (2.5), it follows that

(By)(t, 5, 2,3) = / 8y ®(B(r,a(r))i(7) + F(r, q(r)) dr — Au(s,3).

Noting 8,,q% = (t — 7)(t — 8) " '8km, we obtain

t d d

t—1T1 ) .

Euby)(t,0,2,9) = [ TS Bunduin + 3 8ydaar Bumim
s m=1

n,m=1

d
+ Z 0111‘1771 ) 6szh)dT - (alllAk)(57 y)'

m=1

So from Assumption (A), Lemma 2.1(i) and Lemma 2.2, we have

103, 8ya ] < Co(1+Clt — a]) + C4(1+ Clt — s]) + Cilt — s|(1+ Clt — o) + C1 < s,
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where k; is independent of z,y and t — s. For the other higher derivatives of w, similar
arguments hold. So we have proved (H.1)(i).

Next we show (H.1)(ii). We put
“’J'(zj)zj_l) :w(TJ'vTJ'—lazj;zj_l)' (2.9)
We have similarly to the above

((98{—1 + 03{ + 0::{“)83{ (wj + wj1)(@ 71, 27, 27+

Tjt1 Tjp1— 1 d )
[T BE(S Bu(a e+ 0,0k
T; tiv1i A4 ' '

d d
+ Z (03:'“ + aa{)(qA)noaanm(q.A)m + Z(az{+l + (9_,{)(‘1A)m : az,,.Fk)dT

n,m=1 m=1
T — T4 - .
+/ — > Bium(8,5 + 0,i-1)4am
Tj-l J m=1

d d
+ Y (8,5 +8,5-1)(ga)n 0z, Bam(da)m + > (8,5 +8,5-1)(ga)m - B, Fi)dr.

n,m=1 m=1
When (2%, --- ,2%)is a critical point of S(ga ), the piecewise classical path ga () coincides

with the classical path ¢(r) joining (0, 2°) and (T, Z%). So we have from Lemma 2.2

I(az{—l + 03{ + 03{"")3;{(“"1' + wj+1)(£j—1,5j,5j+1)|

Tj41
<SCltji+t)+C . |@B)(7q(7))lo(r)ldr.
Therefore, we have by Lemma 2.1(i)
L-1
ZI(“L;‘-I + 0,5 +0,541)8,5 (wj + wja)(F 71, &, 8011
i=1

TL
<CTi+C / (8B)(r,q(r))l[o()ldr

S Bly
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where B, is independent of (z7,...,2°), L and Ty if Ty, < T°. Similar discussions hold

for other differentiation (8,i-1 + 055 + 8,i+1)%. Thus we have proved (H.1)(ii). R

3. Phase functions
In this section we discuss the unique existence of the critical point of S (Lemma 3.5).
The method is similar to Yajima [10]. In what follows, we assume (H.1) and abbreviate
S;(t;,z;,2;-1) as Sj(z;,2;-1) and w;(t;,2;,2;_1) as w;(2;,2;-1). To avoid additional
complexity we put d = 1. Lemma 3.1. Let 2tjx; < 1,5 =1,---,L. Then for any y
and k € R, there ezists a unique (zg,--- ,z}l) = (zg(y,k),--- ,zi(y, k)) which satisfies
; .

zgzy, zltl_y =k and

i i i !
Ty~ T T, .
1 t 1_ 2 s 1" = ij,-(zg.,zg_1)+0,-w,-+1(zg+1, zg.), i=1,---,L-1. (3.1)

Proof. We have zul = zul(y,k) =tk +y. Put
Rl=Z _Titl o s q... L (3.2)
Then the system of the equation (3.1) is equivalent to

kg+1 - k; = aj“’i(”!‘-l + tjkg, atE'—1)

+ Ojwipa(zl_y + ikl ekl 2 k), =1, -1 .
3.3

If 2t;52 < 1, for any y,k € R, the map ¥, :
kz — Ql(kz) =k + (01(.01)(3/ + tlk,y) + (010)2)(3/ + t]_k + tzk;, y + tlk)

is a contraction. So there exists a unique kg = kg(y, k) which satisfies (3.3) for j = 1.
Hence we have zuz(y, k) = zul(y, k) + tzkg(y, k). Similarly we have the unique existence of

kL, ,k}l and 24, .. ,zuL, successively. [
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As in the proof of Lemma 3.1, we set kg(y, k) = . ,ij=1,---,L,
i
where kg =k and zg =y. Let T; =ty +--- 4+ t;.
Lemma 3.2. If2t;x, <1,j=1,---, L, then for |a + 8| > 1,
16585 (2} (y, k) — v — Tk)| < CagT)P1*, (3.4)
0207 (k! (y, k) — k)| < CagT)?. 3.5
y “i % BLj

Proof. We can prove this by induction on ! = |a + 8|. Here we show (3.4,5) for the

case | = 1 only. We denote z?(y,k) by z;, kg(y,k) by k;, (9;’0525 by z?ﬁ and 0;"(9£kg by

ap
k.

Let [ = 1. Then we have from (3.2,3),

z;ﬁ—z] l_tkaﬂ’ j=1,"°,L,

kB — k5P = (8-1+ 0; + 8;41)8; (wj + wj41)25%,

+ ((9;(&1] + wjy1) + 8j+10jw5+1)tjk;'ﬂ + 01'+1‘91'“’J'+1t1'+1k;'!f1a 7=1,...

So we obtain with ¢} = (8;-1 + 8; + 8;41)0;(w; + wjr1)(2j-1,2j,2j+1)
(1= maty ) [R5E1 | + 125°) < (1 + (3m2 + 1)) [R5 | + (1 + |67 ])|=52

Hence if 1 — K2tj41 > %, then

%]+ 1258 < (1 + 28] + 2(3k2 + 1)t; + 2mat; 1) (k5P| + |27

JL—1.
(3.6)

10)-

Here we have used (14 b)(1 —a)~! <1+ 2(a +5) for 0 < 2a < 1. Since k7?,25° = 0 or

1, it follows from Assumption (H.1)(ii) that |ka‘81| + |z°”3| < C. So we have

J
18,(k; — k)| < C and |8, (2; —y— T;k) = | 3 tu6, ] < CT;.

=1
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Moreover since we have

j
|0uz;| = 10u(z; — 9)| = | Y_ tiduki| < CT;,

=1

we obtain by summing (3.6) for j

j
|0u(k; — k)| < CT; and |8u(2; — y — Tyk)| = | Y _ ti0u(ks — k)| < CT}.
=1

We need the inverse of the map (y, k) — (v, zi(y, k)). To this end we introduce the

new variables:
2;(y, k) = 2} (y, k/T}) and k;(y,k) = T;k} (v, k/T}), i=1,---,L. (3.7)
Lemma 3.3. For any o and 3, there ezists Cnpg such that
1056 (6,; — 1)| + |65 8, (62; — 1))
+ (0504 (8, ;)| + 1058, (9uk; — 1)| < CapT;.
Proof. This follows from Lemma 3.2. §
Lemma 3.4. There ezists a constant T > 0 such that if Ty < T, then the map (y,k) —
(y,2) = (y,2L(y, k)) is a global diffeomorphism on R x R.
Proof. Let T satify 2CoT < 1 with the constant Cyo in Lemma 3.3 and 2x,7 < 1.

Then by Lemma 3.3 the map k — U(k) = 2+ k — Z.(y, k) is a contraction. So Lemma

3.4 1s proved. 1

Let (y,k(y, z)) be the inverse of the map (y,k) » (v,2) = (v, 21(y,k)) in Lemma

3.4 and set k(y,z) = k(y,z)/TL. Put

z;’(y)z) = zg‘(yak(ya z)), j=1,---,L-1,

2 (y,z) — 2} z
k;(y,z) — ](y’ ) t‘ J—l(y’ ),
2

1=1,---,1L, (3.8)
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where 2 = y and 2] = 2.

Lemma 3.5. If Ty < T, then zj(y,2),j = 1,--- ,L — 1 is the unique critical point of S

with 25 = y and 2} = 2, i.e. il salisfies (1.7).

Proof. Let y, 2 € R. Then by Lemma 3.1, for y, k = k(y, z) there exists a unique

z! v, k), -- ,zu ¥, k)) which satisfies (3.1). And we have z! v, k(y,2)) = z by Lemma
0 L L

3.4.

[1].
[2].
(3.
[4]-

[5].
(6.

[7]-
(8]-

[9)-

[10].

These zg('y,k(y, z)) are nothing but the desired zj(y,z). 1
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