Title
A group generated by the Levy Laplacian (White Noise Analysis and Quantum Probability)

Author(s)
SAITO, KIMIAKI

Citation
数理解析研究所講究録 (1994), 874: 192-201

Issue Date
1994-06

URL
http://hdl.handle.net/2433/84105

Type
Departmental Bulletin Paper

Textversion
publisher
Kyoto University
A group generated by the Lévy Laplacian

KIMIAKI SAITÔ

Department of Mathematics
Meijo University
Nagoya 468, Japan

1. INTRODUCTION

The Lévy Laplacian Δ_L is one of infinite dimensional Laplacians introduced by P. Lévy in his book [Lé 22]. In his book, he mentioned that Δ_L comes from the singular part f''_s of the second derivative f'', i.e.,

$$\Delta_L f(x) = \int_0^1 f''_s(x;u) du.$$

This Laplacian has been studied by many authors. In 1975, T.Hida introduced Δ_L into the theory of generalized white noise functionals in [Hi 75]. H.-H. Kuo [Ku 83,89,92a,92b] defined the Fourier-Mehler transform on the space $(S)^*$ of generalized white noise functionals and gave a relation between its transform and Δ_L. An interesting characterization of Δ_L in terms of rotation groups was obtained by N. Obata [Ob 90]. Recently, T. Hida [Hi 92b] applied Δ_L to S. Tomonaga's many time theory in quantum physics.

The purpose of this paper is to construct a group generated by Δ_L.

In §2, we will explain a construction of the space of generalized white noise functionals and define the Lévy Laplacian Δ_L^T for a finite interval T in \mathbb{R} in that space. Moreover, we introduce an operator Δ and prove that Δ coincides with $2\Delta_L^T$ on a domain D_L^T in $(S)^*$. In §3, we will construct a (C_0)-group $\{G_t\}_{t \in \mathbb{R}}$ generated by Δ_L^T. In the last section, we will give a relation between the adjoint operator of Kuo's Fourier-Mehler transform and a group $\{G_{it}\}_{t \in \mathbb{R}}$.

2. THE LÉVY LAPLACIAN IN THE WHITE NOISE CALCULUS

In this section, we introduce a space of Hida distributions following [Hi 80], [KT 80-82] and [PS 91] (See also, [HKPS 93], [HOS 92] and [Ob 92]) and the Lévy Laplacian defined on a domain in this space.

1) Let $L^2(\mathbb{R})$ be the Hilbert space of real square-integrable functions on \mathbb{R} with norm $| \cdot |_0$. Consider a Gel'fand triple

$$S = S(\mathbb{R}) \subset L^2(\mathbb{R}) \subset S^* = S^*(\mathbb{R}),$$
where $S(\mathbb{R})$ is the Schwartz space consisting of rapidly decreasing functions on \mathbb{R} and $S^*(\mathbb{R})$ is the dual space of $S(\mathbb{R})$.

Let A be the following operator

$$A = -(d/dx)^2 + x^2 + 1.$$

For each $p \in \mathbb{Z}$, we define $|f|_p = |A^p f|_0$ and let S_p be the completion of S with respect to the norm $|\cdot|_p$. Then the dual space of S_p' of S_p is the same as S_{-p}.

2) Let μ be a probability measure on S^* with the characteristic functional given by

$$C(\xi) \equiv \int_{S^*} \exp\{i < x, \xi >\} \, d\mu(x) = \exp\{-\frac{1}{2} |\xi|_0^2\}, \quad \xi \in S.$$

Let $(L^2) = L^2(S^*, \mu)$ be the space of complex-valued square-integrable functionals defined on S^* and define the S-transform by

$$S\varphi(\xi) = C(\xi) \int_{S^*} \exp\{< x, \xi >\} \varphi(x) \, d\mu(x), \quad \varphi \in (L^2).$$

The Hilbert space admits the well-known Wiener-Itô decomposition:

$$(L^2) = \bigoplus_{n=0}^{\infty} H_n,$$

where H_n is the space of multiple Wiener integrals of order $n \in \mathbb{N}$ and $H_0 = C$. From this decomposition theorem, each $\varphi \in (L^2)$ is uniquely represented as

$$\varphi = \sum_{n=0}^{\infty} I_n(f_n), \quad f_n \in L^2_C(\mathbb{R}) \otimes^n,$$

where $I_n \in H_n$ and $L^2_C(\mathbb{R}) \otimes^n$ denotes the n-th symmetric tensor product of the complexification of $L^2(\mathbb{R})$.

For each $p \in \mathbb{Z}, p \geq 0$, we define the norm $||\varphi||_p$ of $\varphi = \sum_{n=0}^{\infty} I_n(f_n)$, by

$$||\varphi||_p = \left(\sum_{n=0}^{\infty} n! |f_n|_{p,n} \right)^{1/2},$$

where $|\cdot|_{p,n}$ is the norm of $S^*_{p,n}$ (the n-th symmetric tensor product of the complexification of S_p). The norm $||\cdot||_0$ is nothing but the (L^2)-norm. We put

$$(S)_p = \{ \varphi \in (L^2); ||\varphi||_p < \infty \}$$
for $p \in \mathbb{Z}, p \geq 0$. Let $(S)_{p}^{*}$ be the dual space of $(S)_{p}$. Then $(S)_{p}$ and $(S)_{p}^{*}$ are Hilbert spaces with the norm $\| \cdot \|_{p}$ and the dual norm of $\| \cdot \|_{p}$, respectively.

Denote the projective limit space of the $(S)_{p}, p \in \mathbb{Z}, p \geq 0$, and the inductive limit space of the $(S)_{p}^{*}, p \in \mathbb{Z}, p \geq 0$, by (S) and $(S)^{*}$, respectively. Then (S) is a nuclear space and $(S)^{*}$ is nothing but the dual space of (S). The space $(S)^{*}$ is called the space of Hida distributions (or generalized white noise functionals).

Since $\exp < \xi > \in (S)$, the S-transform is extended to an operator U defined on $(S)^{*}$:

$$U \Phi(\xi) = C(\xi) \ll \Phi, \exp < \cdot, \xi > \gg, \xi \in S,$$

where $\ll \cdot, \cdot \gg$ is the canonical pairing of (S) and $(S)^{*}$. We call $U \Phi$ the U-functional of Φ.

3) We next introduce the definition of the Lévy Laplacian following Kuo [Ku 92] (see also [HKPS 93]). Let U be a Fréchet differentiable function defined on S, i.e. we assume that there exists a map U' from S to S^{*} such that

$$U(\xi + \eta) = U(\xi) + U'(\xi)(\eta) + o(\eta), \eta \in S,$$

where $o(\eta)$ means that there exists $p \in \mathbb{Z}, p \geq 0$, depending on ξ such that $o(\eta)/|\eta|_{p} \to 0$ as $|\eta|_{p} \to 0$. Then the first variation

$$\delta U(\xi; \eta) = dU(\xi + \lambda \eta)/d\lambda|_{\lambda=0}$$

is expressed in the form

$$\delta U(\xi; \eta) = \int_{\mathbb{R}} U'(\xi; u) \eta(u) du$$

for every $\eta \in S$ by using the generalized function $U' (\xi; \cdot)$. We define the Hida derivative $\partial_{t} \Phi$ of Φ to be the generalized white noise functional whose U-functional is given by $U'(\xi; t)$.

Definition. (I) A Hida distribution Φ is called an L-functional if for each $\xi \in S$, there exist $(U \Phi)'(\xi; \cdot) \in L_{loc}^{1}(\mathbb{R}), (U \Phi)'_{s}(\xi; \cdot) \in L_{loc}^{1}(\mathbb{R})$ and $(U \Phi)'_{r}(\xi; \cdot, \cdot) \in L_{loc}^{1}(\mathbb{R}^{2})$ such that the first and second variations are uniquely expressed in the forms:

$$(U \Phi)'(\xi)(\eta) = \int_{\mathbb{R}} (U \Phi)'(\xi; u) \eta(u) du,$$

and

$$(U \Phi)'_{s}(\xi)(\eta, \zeta) = \int_{\mathbb{R}} (U \Phi)'_{s}(\xi; u) \eta(u) \zeta(u) du$$

$$+ \int_{\mathbb{R}^{2}} (U \Phi)'_{r}(\xi; u, v) \eta(u) \zeta(v) dudv,$$

(2.1)

for each $\eta, \zeta \in S$, respectively and for any finite interval T, $\int_{T} (U \Phi)'_{s}(\cdot; u) du$ is a U-functional.
(II) Let D_{L} denote the set of all L-functionals. For $\Phi \in D_{L}$ and any finite interval T in \mathbb{R}, the Lévy Laplacian Δ_{L}^{T} is defined by

$$\Delta_{L}^{T}\Phi = U^{-1}\left[\frac{1}{|T|} \int_{T} (U\Phi)^{''}_{s}(\cdot;u) \, du\right].$$

Remark. Explicit conditions for the uniqueness of the above decomposition (2.1) is given in [HKPS 93, chapter 6].

Let T be a finite interval in \mathbb{R}. Take a smooth function e defined on \mathbb{R} satisfying $0 \leq e(u) \leq 1$ for all $u \in \mathbb{R}$, $e(u) = 1$ for $|u| \leq 1/2$ and $e(u) = 0$ for $|u| \geq 1$. Let ρ_{n}^{*} be the Friedrichs mollifier. Put $e_{n}(u) = e(u/n)$ and $\theta_{n}^{T} = \sqrt{2}|\rho_{n}|_{0}^{-1}|T|^{-1/2}$, $n = 1,2,\ldots$.

We define an operator Δ for a Hida distribution Φ by

$$U[\Delta\Phi](\xi) = \lim_{n \to \infty} \int_{S} U\Phi''(\xi)(\theta_{n}^{T}e_{n}(\rho_{n}^{*}x), \theta_{n}^{T}e_{n}(\rho_{n}^{*}x)) \, d\mu(x),$$

if the limit exists in $U[(S)^{*}]$. From now on, we denote $e_{n}(\rho_{n}^{*}x)$ by $j_{n}(x)$. Let D_{L}^{T} denote the set of all L-functionals Φ satisfying $U\Phi(\eta) = 0$ for η with $\text{supp}(\eta) \subset T^{c}$. In [Sa 94], we obtained the following result. (For the proof, see [Sa 94].)

Theorem 1. Let T be a finite interval in \mathbb{R} and Φ an L-functional in D_{L}^{T}. Then, we have $\Delta\Phi = 2\Delta_{L}^{T}\Phi$.

3. The Lévy Laplacian as the Infinitesimal Generator

A generalized functional Φ is called a normal functional if its U-functional $U\Phi$ is given by a finite linear combination of

$$\int_{A^{k}} f(u_{1}, \ldots, u_{k})\xi(u_{1})^{p_{1}} \cdots \xi(u_{k})^{p_{k}} \, du_{1} \cdots du_{k},$$

where $f \in L^{1}(A^{k}), p_{1}, \ldots, p_{k} \in \mathbb{N} \cup \{0\}, k \in \mathbb{N},$ and A : a finite interval in \mathbb{R}. This functional Φ is in D_{L}. Let \mathcal{N}_{T} denote the set of all normal functionals in D_{L}^{T}. For $p > 1$ and $\Phi \in D_{L}^{T}$, we define a $-p$-norm $\cdot \cdot$ by

$$\|\Phi\|_{-p}^{2} = \sum_{k=0}^{\infty} \|(\Delta_{L}^{T})^{k}\Phi\|_{-p}^{2}(\in [0, \infty))$$

and denote the completion of \mathcal{N}_{T} with respect to the norm $\cdot \cdot_{-p}$ by $D_{L}^{(-p)}$. Then $D_{L}^{(-p)}$ is the Hilbert space with the norm $\cdot \cdot_{-p}$ and Δ_{L}^{T} is a bounded linear operator.
on $D^{(-p)}_L$. Hence a (C_0)-group $\{G_t, t \in \mathbb{R}\}$ is given by

$$G_t = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{t^k}{k!} (\Delta^T_L)^k,$$ \hspace{1cm} (3.2)$$

in the sense of the operator norm. It is easily checked that $\|G_t\| \leq e^{|t|}$, for any $t \in \mathbb{R}$.

Define an operator g_t on \mathcal{N}_T for $t \geq 0$ by

$$U[g_t \Phi](\xi) = \lim_{n \to \infty} \int_{\mathcal{S}} U\Phi(\xi + \sqrt{t} \theta_n^T j_n(x)) \, d\mu(x), \Phi \in \mathcal{N}_T.$$

For a normal functional Φ which $U\Phi$ is given as in (3.1) with the domain $A^k \subset T^k$, it is easily checked that

$$U[g_t \Phi](\xi) = \sum_{\nu_1=0}^{[p_1/2]} \cdots \sum_{\nu_k=0}^{[p_k/2]} \frac{p_1! \cdots p_k!}{(2\nu_1)!!(p_1-2\nu_1)! \cdots (2\nu_k)!!(p_k-2\nu_k)!} \left(\frac{2t}{|T|} \right)^{\nu_1+\cdots+\nu_k} \int_{A^k} f(u_1, \ldots, u_k) \xi(u_1)^{p_1-2\nu_1} \cdots \xi(u_k)^{p_k-2\nu_k} \, du_1 \cdots du_k.$$

Therefore, g_t is a linear operator from \mathcal{N}_T to itself. By Theorem 1, it can be checked that $G_t = g_t$ on \mathcal{N}_T. Since \mathcal{N}_T is dense in $D^{(-p)}_L$, we have the following

Theorem 2. For any $t \geq 0$, g_t is extended to the operator G_t.

4. The Fourier-Mehler Transform and the Lévy Laplacian

An characterization of Hida distributions was obtained by J. Potthoff and L. Streit [PS 91]. From [PS 91], we see that for any U-functional F, and ξ, η in \mathcal{S}, the function $F(\lambda \xi + \eta)$, $\lambda \in \mathbb{R}$, extends to an entire function $F(z \xi + \eta)$, $z \in \mathbb{C}$. Then we can define an operator g_{it}, $t \in \mathbb{R}$, by

$$U[g_{it} \Phi](\xi) = \lim_{n \to \infty} \int_{\mathcal{S}} U\Phi(\xi + \sqrt{it} \theta_n^T j_n(x)) \, d\mu(x),$$

if the limit exists. Since μ is symmetric, the integral is defined independent of choices of the branch of \sqrt{it}. As in (3.2), we can naturally define G_{it}, $t \in \mathbb{R}$, by

$$G_{it} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{(it)^k}{k!} (\Delta^T_L)^k,$$

on $D^{(-p)}_L$.

An infinite dimensional Fourier-Mehler transform F_θ, $\theta \in \mathbb{R}$, on $(S)^*$ was defined by H.-H. Kuo [Ku 91] as follows. The transform $F_\theta \Phi$, $\theta \in \mathbb{R}$ of $\Phi \in (S)^*$ is defined by the unique generalized white noise functional with the U-functional

$$U[F_\theta \Phi](\xi) = U\Phi(e^{i\theta} \xi) \exp \left[\frac{i}{2} e^{i\theta} \sin \theta |\xi|_0^2 \right], \quad \xi \in S.$$

Moreover, the adjoint operator F_θ^* of F_θ is given by

$$F_\theta^* \Phi = \sum_{n=0}^{\infty} I_n(h_n(\Phi; \theta)) \text{ for } \Phi = \sum_{n=0}^{\infty} I_n(f_n) \in (S),$$

where

$$h_n(\Phi; \theta) = \sum_{m=0}^{\infty} \frac{(n+2m)!}{n!m!} \frac{i}{2} \sin \theta)^m \exp \left[\frac{i}{2} (m+n) \theta \right] \tau^\otimes m * f_{n+2m};$$

$$\tau^\otimes m = \int_{\mathbb{R}^m} \delta_{t_1} \otimes \delta_{t_1} \otimes \cdots \otimes \delta_{t_m} \otimes \delta_{t_m} dt_1 \cdots dt_m.$$

This operator F_θ^* is a continuous linear operator on (S). (For details, see [Ku 91] and also [HKO 90]) On (S), the Gross Laplacian Δ_G (See [Gr 65, 67]) and the number operator N is given by

$$\Delta_G \Phi = \int_{\mathbb{R}} \partial_t^2 \Phi dt$$

and

$$N \Phi = \int_{\mathbb{R}} \partial_t^* \partial_t \Phi dt,$$

respectively (see [Ku 86]). The operator $e^{i\theta N}$ is called the Fourier-Wiener transform (see [HKO 90]). Now, we introduce an operator $e^{\frac{i}{2} \theta \Delta_G}$ from (S) into itself given by

$$e^{\frac{i}{2} \vartheta \Delta_G} \Phi = \sum_{n=0}^{\infty} I_n(\ell_n(\Phi; \theta));$$

(4.1)

$$\ell_n(\Phi; \theta) = \sum_{m=0}^{\infty} \frac{(n+2m)!}{n!m!} \left(\frac{i}{2} \theta \right)^m \tau^\otimes m * f_{n+2m},$$

for $\Phi = \sum_{n=0}^{\infty} I_n(f_n) \in (S)$. Then we have the followings.

Lemma 1.

$$F_\theta^* = e^{i\theta N} \circ e^{\frac{i}{2} (e^{i\theta} \sin \theta) \Delta_G}.$$

Proof: Take $\Phi = \sum_{n=0}^{\infty} I_n(f_n) \in (S)$. From (4.1), we see that

$$e^{\frac{i}{2} (e^{i\theta} \sin \theta) \Delta_G} \Phi = \sum_{n=0}^{\infty} I_n(\ell_n(\Phi; e^{i\theta} \sin \theta)).$$

Hence,

$$e^{i\theta N} \left(e^{\frac{i}{2} (e^{i\theta} \sin \theta) \Delta_G} \Phi \right) = \sum_{n=0}^{\infty} I_n(e^{i\theta} \ell_n(\Phi; e^{i\theta} \sin \theta)).$$
Since $e^{in\theta}l_n(\Phi; e^{i\theta} \sin \theta) = h_n(\Phi; \theta)$, we obtain (4.2).}

Lemma 2. For any $\Phi \in (S)$, we have

$$U[e^{\frac{i}{2} \theta \Delta_G \Phi}](\xi) = \int_{S^*} U\Phi(\xi + \sqrt{i\theta}y) \, d\mu(y). \tag{4.3}$$

Remark. For any $\Phi \in (S), \xi \in S$ and $z_1, z_2 \in \mathbb{C}$, the functional $U\Phi(z_1 \xi + z_2 \eta), \eta \in S$, can be extended to a functional $U\Phi(z_1 \xi + z_2 y)$, same symbol $U\Phi(z_1 \xi + z_2 y)$.

Proof: For $\Phi = \sum_{n=0}^\infty I_n(f_n) \in (S)$, the right-hand side of (4.3) has the following expansion:

$$\sum_{n=0}^\infty \int_{\mathbb{R}^n} f_n(u) \int_{S^*} \{\xi(u_1) + \sqrt{i\theta}x(u_1)\} \cdots \{\xi(u_n) + \sqrt{i\theta}x(u_n)\} d\mu(x) du$$

$$= \sum_{n=0}^\infty \sum_{\nu=0}^{\lfloor n/2 \rfloor} \frac{n!}{(2\nu)!!(n-2\nu)!} (i\theta)^\nu <\xi^{\otimes(n-2\nu)}, \tau^\nu * f_n> = \sum_{m=0}^\infty <\xi^{\otimes m}, l_m(\Phi; \theta)>.$$

From (4.1), we see that the last series is equal to $U[e^{\frac{i}{2} \theta \Delta_G \Phi}](\xi)$.}

Define an operator J_n by

$$U[J_n \Phi](\xi) = U\Phi \circ j_n(\xi), \quad \Phi \in D_L^{(-p)}, \quad \xi \in S.$$

For all $n \in \mathbb{N}$ and $\Phi \in D_L^{(-p)}$, we can easily check $J_n \Phi \in (S)$. Then we have the following.

Theorem 3. Let $\Phi \in D_L^{(-p)}$ be a generalized white noise functional with the U-functional given by $\psi(F_1, \ldots, F_n)$, where ψ is an entire function on \mathbb{C} and $F_1, \ldots, F_n \in U[\mathcal{N}_T]$. We assume the condition

$$\sum_{k_1, \ldots, k_n=0}^\infty \frac{1}{k_1! \cdots k_n!} |\partial_{u_1}^{k_1} \cdots \partial_{u_1}^{k_n} \psi(0, \ldots, 0)|.$$

$$\sup_N \int_{S^*} \left| (F_1 \circ j_N)^{k_1} \cdots (F_n \circ j_N)^{k_n} (ie^{i\alpha_N(t)} \xi + \sqrt{ie^{i\alpha_N(t)} \sin \alpha_N(t)} x) \right| \, d\mu(x) < \infty$$

holds for all $t > 0$ and $\xi \in S$, where $\alpha_N(t) = t(\theta_N^2)^{2}$. Then

$$\lim_{N \to \infty} U[F_{\alpha_N(t)} J_N \Phi](\xi) = U[G_{it} \Phi](\xi), \quad \xi \in S. \tag{4.4}$$

Proof: From Lemma 2, we have

$$U[e^{\frac{i}{2} i\alpha_N(t) \sin \alpha_N(t) \Delta_G J_N \Phi}](\xi) = \int_{S^*} U[J_N \Phi](\xi + \sqrt{ie^{i\alpha_N(t)} \sin \alpha_N(t)} y) \, d\mu(y).$$
This functional is expressed in the form given by
\[\sum_{\ell=0}^{\infty} \langle \xi^{\otimes \ell}, f_{N,\ell} \rangle, \]
where \(f_{N,\ell} \in S_{C}^{\otimes \ell} \). Hence, from Lemma 1, we get
\[U[F_{N}(t)](\xi) = \sum_{\ell=0}^{\infty} e^{i\alpha N(t)\ell} \langle \xi^{\otimes \ell}, f_{N,\ell} \rangle. \]

From the condition of this theorem and the Lebesgue convergence theorem, we can calculate as follows:

\[\lim_{N \to \infty} U[F_{N}(t)](\xi) = \lim_{N \to \infty} U[e^{i\alpha N(t)} \Delta g J_{N} \Phi](e^{i\alpha N(t)} \xi) \]
\[= \sum_{k_{1}, \ldots, k_{n}=0}^{\infty} \frac{1}{k_{1}! \cdots k_{n}!} \partial_{\xi_{1}}^{k_{1}} \cdots \partial_{\xi_{n}}^{k_{n}} \psi(0, \ldots, 0). \]

By the direct calculations, it is easily checked that
\[\lim_{N \to \infty} \int_{S^{*}} ((F_{1} \circ j_{N})^{k_{1}} \cdots (F_{n} \circ j_{N})^{k_{n}})(i e^{i\alpha N(t)} \xi + \sqrt{i e^{i\alpha N(t)} \sin \alpha N(t)} x) d\mu(x) \]
\[= U[g_{it} U^{-1} F_{1}](\xi)^{k_{1}} \cdots U[g_{it} U^{-1} F_{n}](\xi)^{k_{n}}. \]

Consequently, we obtain (4.4).

\textbf{REFERENCES}

