A group generated by the Lévy Laplacian

KIMIAKI SAITÔ

Department of Mathematics

Meijo University

Nagoya 468, Japan

1. Introduction

The Lévy Laplacian Δ_L is one of infinite dimensional Laplacians introduced by P. Lévy in his book [Lé 22]. In his book, he mentioned that Δ_L comes from the singular part f_s'' of the second derivative f'', i.e.,

$$\Delta_L f(x) = \int_0^1 f_s''(x; u) du.$$

This Laplacian has been studied by many authors. In 1975, T.Hida introduced Δ_L into the theory of generalized white noise functionals in [Hi 75]. H.-H. Kuo [Ku 83,89,92a,92b] defined the Fourier-Mehler transform on the space $(S)^*$ of generalized white noise functionals and gave a relation between its transform and Δ_L . An interesting characterization of Δ_L in terms of rotation groups was obtained by N. Obata [Ob 90]. Recently, T. Hida [Hi 92b] applied Δ_L to S. Tomonaga's many time theory in quantum physics.

The purpose of this paper is to construct a group generated by Δ_L .

In §2, we will explain a construction of the space of generalized white noise functionals and define the Lévy Laplacian Δ_L^T for a finite interval T in \mathbf{R} in that space. Moreover, we introduce an operator Δ and prove that Δ coincides with $2\Delta_L^T$ on a domain D_L^T in $(S)^*$. In §3, we will construct a (C_0) -group $\{G_t\}_{t\in\mathbf{R}}$ generated by Δ_L^T . In the last section, we will give a relation between the adjoint operator of Kuo's Fourier-Mehler transform and a group $\{G_{it}\}_{t\in\mathbf{R}}$.

2. THE LÉVY LAPLACIAN IN THE WHITE NOISE CALCULUS

In this section, we introduce a space of Hida distributions following [Hi 80], [KT 80-82] and [PS 91] (See also, [HKPS 93], [HOS 92] and [Ob 92]) and the Lévy Laplacian defined on a domain in this space.

1) Let $L^2(\mathbf{R})$ be the Hilbert space of real square-integrable functions on \mathbf{R} with norm $|\cdot|_0$. Consider a Gel'fand triple

$$S = S(\mathbf{R}) \subset L^2(\mathbf{R}) \subset S^* = S^*(\mathbf{R}),$$

where $S(\mathbf{R})$ is the Schwartz space consisting of rapidly decreasing functions on \mathbf{R} and $S^*(\mathbf{R})$ is the dual space of $S(\mathbf{R})$.

Let A be the following operator

$$A = -(d/dx)^2 + x^2 + 1.$$

For each $p \in \mathbb{Z}$, we define $|f|_p = |A^p f|_0$ and let \mathcal{S}_p be the completion of \mathcal{S} with respect to the norm $|\cdot|_p$. Then the dual space of \mathcal{S}'_p of \mathcal{S}_p is the same as \mathcal{S}_{-p} .

2) Let μ be a probability measure on S^* with the characteristic functional given by

$$C(\xi) \equiv \int_{\mathcal{S}^*} \exp\{i < x, \xi >\} \ d\mu(x) = \exp\{-\frac{1}{2}|\xi|_0^2\}, \ \xi \in \mathcal{S}.$$

Let $(L^2) = L^2(\mathcal{S}^*, \mu)$ be the space of complex-valued square-integrable functionals defined on \mathcal{S}^* and define the *S-transform* by

$$S\varphi(\xi) = C(\xi) \int_{S^*} \exp\{\langle x, \xi \rangle\} \varphi(x) \ d\mu(x), \ \varphi \in (L^2).$$

The Hilbert space admits the well-known Wiener-Itô decomposition:

$$(L^2) = \bigoplus_{n=0}^{\infty} H_n,$$

where H_n is the space of multiple Wiener integrals of order $n \in \mathbb{N}$ and $H_0 = \mathbb{C}$. From this decomposition theorem, each $\varphi \in (L^2)$ is uniquely represented as

$$\varphi = \sum_{n=0}^{\infty} \mathbf{I}_n(f_n), \ f_n \in L^2_{\mathbf{C}}(\mathbf{R})^{\hat{\otimes} n},$$

where $\mathbf{I}_n \in H_n$ and $L^2_{\mathbf{C}}(\mathbf{R})^{\hat{\otimes} n}$ denotes the n-th symmetric tensor product of the complexification of $L^2(\mathbf{R})$.

For each $p \in \mathbb{Z}, p \geq 0$, we define the norm $\|\varphi\|_p$ of $\varphi = \sum_{n=0}^{\infty} \mathbf{I}_n(f_n)$, by

$$\|\varphi\|_{p} = \left(\sum_{n=0}^{\infty} n! |f_{n}|_{p,n}\right)^{1/2},$$

where $|\cdot|_{p,n}$ is the norm of $\mathcal{S}_{\mathbf{C},p}^{\hat{\otimes}n}$ (the n-th symmetric tensor product of the complexification of \mathcal{S}_p). The norm $\|\cdot\|_0$ is nothing but the (L^2) -norm. We put

$$(\mathcal{S})_p = \{ \varphi \in (L^2); \|\varphi\|_p < \infty \}$$

for $p \in \mathbf{Z}, p \geq 0$. Let $(\mathcal{S})_p^*$ be the dual space of $(\mathcal{S})_p$. Then $(\mathcal{S})_p$ and $(\mathcal{S})_p^*$ are Hilbert spaces with the norm $\|\cdot\|_p$ and the dual norm of $\|\cdot\|_p$, respectively.

Denote the projective limit space of the $(S)_p, p \in \mathbb{Z}, p \geq 0$, and the inductive limit space of the $(S)_p^*, p \in \mathbb{Z}, p \geq 0$, by (S) and $(S)^*$, respectively. Then (S) is a nuclear space and $(S)^*$ is nothing but the dual space of (S). The space $(S)^*$ is called the space of *Hida distributions* (or generalized white noise functionals).

Since exp $\langle \cdot, \xi \rangle \in (S)$, the S-transform is extended to an operator U defined on $(S)^*$:

$$U\Phi(\xi) = C(\xi) \ll \Phi, \exp \langle \cdot, \xi \rangle \gg, \xi \in \mathcal{S},$$

where $\ll \cdot, \cdot \gg$ is the canonical pairing of (S) and $(S)^*$. We call $U\Phi$ the *U-functional* of Φ .

3) We next introduce the definition of the Lévy Laplacian following Kuo [Ku 92] (see also [HKPS 93]). Let U be a Fréchet differentiable function defined on \mathcal{S} , i.e. we assume that there exists a map U' from \mathcal{S} to \mathcal{S}^* such that

$$U(\xi + \eta) = U(\xi) + U'(\xi)(\eta) + o(\eta), \eta \in \mathcal{S},$$

where $o(\eta)$ means that there exists $p \in \mathbb{Z}$, $p \geq 0$, depending on ξ such that $o(\eta)/|\eta|_p \to 0$ as $|\eta|_p \to 0$. Then the first variation

$$\delta U(\xi;\eta) = dU(\xi + \lambda \eta)/d\lambda|_{\lambda=0}$$

is expressed in the form

$$\delta U(\xi;\eta) = \int_{\mathbf{R}} U'(\xi;u)\eta(u) \ du$$

for every $\eta \in \mathcal{S}$ by using the generalized function $U'(\xi;\cdot)$. We define the *Hida derivative* $\partial_t \Phi$ of Φ to be the generalized white noise functional whose U-functional is given by $U'(\xi;t)$.

Definition. (I) A Hida distribution Φ is called an L-functional if for each $\xi \in \mathcal{S}$, there exist $(U\Phi)'(\xi;\cdot) \in L^1_{loc}(\mathbf{R}), (U\Phi)''_s(\xi;\cdot) \in L^1_{loc}(\mathbf{R})$ and $(U\Phi)''_r(\xi;\cdot,\cdot) \in L^1_{loc}(\mathbf{R}^2)$ such that the first and second variations are uniquely expressed in the forms:

$$(U\Phi)'(\xi)(\eta) = \int_{\mathbf{R}} (U\Phi)'(\xi; u) \eta(u) \ du,$$

and

$$(U\Phi)''(\xi)(\eta,\zeta) = \int_{\mathbf{R}} (U\Phi)''_{s}(\xi;u)\eta(u)\zeta(u) du$$
$$+ \int_{\mathbf{R}^{2}} (U\Phi)''_{r}(\xi;u,v)\eta(u)\zeta(v) dudv, \tag{2.1}$$

for each $\eta, \zeta \in \mathcal{S}$, respectively and for any finite interval T, $\int_T (U\Phi)''_s(\cdot; u) \ du$ is a U-functional.

(II) Let D_L denote the set of all L-functionals. For $\Phi \in D_L$ and any finite interval T in \mathbf{R} , the Lévy Laplacian Δ_L^T is defined by

$$\Delta_L^T \Phi = U^{-1} \left[\frac{1}{|T|} \int_T (U \Phi)_s''(\cdot; u) \ du \right].$$

Remark. Explicit conditions for the uniqueness of the above decomposition (2.1) is given in [HKPS 93, chapter 6].

Let T be a finite interval in \mathbf{R} . Take a smooth function e defined on \mathbf{R} satisfying $0 \le e(u) \le 1$ for all $u \in \mathbf{R}$, e(u) = 1 for $|u| \le 1/2$ and e(u) = 0 for $|u| \ge 1$. Let $\rho_n *$ be the Friedrichs mollifier. Put $e_n(u) = e(u/n)$ and $\theta_n^T = \sqrt{2}|\rho_n|_0^{-1}|T|^{-1/2}$, $n = 1, 2, \ldots$ We define an operator Δ for a Hida distribution Φ by

$$U[\Delta \Phi](\xi) = \lim_{n \to \infty} \int_{\mathcal{S}^*} U \Phi''(\xi) (\theta_n^T e_n(\rho_n * x), \theta_n^T e_n(\rho_n * x)) \ d\mu(x),$$

if the limit exists in $U[(S)^*]$. From now on, we denote $e_n(\rho_n * x)$ by $j_n(x)$. Let D_L^T denote the set of all L-functionals Φ satisfying $U\Phi(\eta) = 0$ for η with $\operatorname{supp}(\eta) \subset T^c$. In [Sa 94], we obtained the following result. (For the proof, see [Sa 94].)

THEOREM 1. Let T be a finite interval in \mathbf{R} and Φ an L-functional in D_L^T . Then, we have $\Delta \Phi = 2\Delta_L^T \Phi$.

3. The Lévy Laplacian as the infinitesimal generator

A generalized functional Φ is called a *normal functional* if its U- functional $U\Phi$ is given by a finite linear combination of

$$\int_{A^k} f(u_1, \dots, u_k) \xi(u_1)^{p_1} \cdots \xi(u_k)^{p_k} du_1 \cdots du_k,$$
 (3.1)

where $f \in L^1(A^k), p_1, \ldots, p_k \in \mathbb{N} \cup \{0\}, k \in \mathbb{N}$, and A: a finite interval in \mathbb{R} . This functional Φ is in D_L . Let \mathcal{N}_T denote the set of all normal functionals in D_L^T . For p > 1 and $\Phi \in D_L^T$, we define a -p-norm $\blacksquare \cdot \blacksquare$ by

and denote the completion of \mathcal{N}_T with respect to the norm $\blacksquare \cdot \blacksquare_{-p}$ by $D_L^{(-p)}$. Then $D_L^{(-p)}$ is the Hilbert space with the norm $\blacksquare \cdot \blacksquare_{-p}$ and Δ_L^T is a bounded linear operator

on $D_L^{(-p)}$. Hence a (C_0) -group $\{G_t, t \in \mathbf{R}\}$ is given by

$$G_t = \lim_{n \to \infty} \sum_{k=0}^n \frac{t^k}{k!} (\Delta_L^T)^k, \tag{3.2}$$

in the sence of the operator norm. It is easily checked that $\blacksquare G_t \blacksquare \leq e^{|t|}$, for any $t \in \mathbb{R}$. Define an operator g_t on \mathcal{N}_T for $t \geq 0$ by

$$U[g_t\Phi](\xi) = \lim_{n\to\infty} \int_{\mathcal{S}^*} U\Phi(\xi + \sqrt{t}\theta_n^T j_n(x)) \ d\mu(x), \ \Phi \in \mathcal{N}_T.$$

For a normal functional Φ which $U\Phi$ is given as in (3.1) with the domain $A^k \subset T^k$, it is easily checked that

$$U[g_t\Phi](\xi) = \sum_{\nu_1=0}^{[p_1/2]} \cdots \sum_{\nu_k=0}^{[p_k/2]} \frac{p_1! \cdots p_k!}{(2\nu_1)!!(p_1 - 2\nu_1)! \cdots (2\nu_k)!!(p_k - 2\nu_k)!}$$

$$\left(\frac{2t}{|T|}\right)^{\nu_1+\dots+\nu_k} \int_{A^k} f(u_1,\dots,u_k) \xi(u_1)^{p_1-2\nu_1} \dots \xi(u_k)^{p_k-2\nu_k} du_1 \dots du_k.$$

Therefore, g_t is a linear operator from \mathcal{N}_T to itself. By Theorem 1, it can be checked that $G_t = g_t$ on \mathcal{N}_T . Since \mathcal{N}_T is dense in $D_L^{(-p)}$, we have the following

THEOREM 2. For any $t \geq 0$, g_t is extended to the operator G_t .

4. The Fourier-Mehler transform and the Lévy Laplacian

An characterization of Hida distributions was obtained by J. Potthoff and L. Streit [PS 91]. From [PS 91], we see that for any *U*-functional F, and ξ , η in S, the function $F(\lambda \xi + \eta)$, $\lambda \in \mathbf{R}$, extends to an entire function $F(z\xi + \eta)$, $z \in \mathbf{C}$. Then we can define an operator g_{it} , $t \in \mathbf{R}$, by

$$U[g_{it}\Phi](\xi) = \lim_{n \to \infty} \int_{\mathcal{S}^*} U\Phi(\xi + \sqrt{it}\theta_n^T j_n(x)) d\mu(x),$$

if the limit exists. Since μ is symmetric, the integral is defined independent of choices of the branch of \sqrt{it} . As in (3.2), we can naturally define G_{it} , $t \in \mathbf{R}$, by

$$G_{it} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{(it)^k}{k!} (\Delta_L^T)^k,$$

on $D_L^{(-p)}$.

An infinite dimensional Fourier-Mehler transform \mathbf{F}_{θ} , $\theta \in \mathbf{R}$, on $(\mathcal{S})^*$ was defined by H.-H. Kuo [Ku 91] as follows. The transform $\mathbf{F}_{\theta}\Phi$, $\theta \in \mathbf{R}$ of $\Phi \in (\mathcal{S})^*$ is defined by the unique generalized white noise functional with the *U*-functional

$$U[\mathbf{F}_{\theta}\Phi](\xi) = U\Phi(e^{i\theta}\xi) \exp\left[\frac{i}{2}e^{i\theta}\sin\theta|\xi|_0^2\right], \ \xi \in \mathcal{S}.$$

Moreover, the adjoint operator \mathbf{F}_{θ}^{*} of \mathbf{F}_{θ} is given by

$$\mathbf{F}_{\theta}^*\Phi = \sum_{n=0}^{\infty} \mathbf{I}_n(h_n(\Phi;\theta)) \text{ for } \Phi = \sum_{n=0}^{\infty} \mathbf{I}_n(f_n) \in (\mathcal{S}),$$

where

$$h_n(\Phi;\theta) = \sum_{m=0}^{\infty} \frac{(n+2m)!}{n!m!} (\frac{i}{2}\sin\theta)^m e^{i(m+n)\theta} \tau^{\otimes m} * f_{n+2m};$$
$$\tau^{\otimes m} = \int_{\mathbb{R}^m} \delta_{t_1} \otimes \delta_{t_1} \otimes \cdots \otimes \delta_{t_m} \otimes \delta_{t_m} dt_1 \cdots dt_m.$$

This operator \mathbf{F}_{θ}^{*} is a continuous linear operator on (\mathcal{S}) . (For details, see [Ku 91] and also [HKO 90]) On (\mathcal{S}) , the Gross Laplacian Δ_{G} (See [Gr 65, 67]) and the number operator N is given by

$$\Delta_G \Phi = \int_{\mathbf{R}} \partial_t^2 \Phi dt$$

and

$$N\Phi = \int_{\mathbf{R}} \partial_t^* \partial_t \Phi dt,$$

respectively (see [Ku 86]). The operator $e^{i\theta N}$ is called the Fourier-Wiener transform (see [HKO 90]). Now, we introduce an operator $e^{\frac{i}{2}\theta\Delta_G}$ from (S) into itself given by

$$e^{\frac{i}{2}\theta\Delta_G}\Phi = \sum_{n=0}^{\infty} \mathbf{I}_n(\ell_n(\Phi;\theta)); \tag{4.1}$$

$$\ell_n(\Phi;\theta) = \sum_{m=0}^{\infty} \frac{(n+2m)!}{n!m!} (\frac{i}{2}\theta)^m \tau^{\otimes m} * f_{n+2m},$$

for $\Phi = \sum_{n=0}^{\infty} \mathbf{I}_n(f_n) \in (\mathcal{S})$. Then we have the followings.

LEMMA 1.

$$\mathbf{F}_{\theta}^* = e^{i\theta N} \circ e^{\frac{i}{2}(e^{i\theta}\sin\theta)\Delta_G}. \tag{4.2}$$

PROOF: Take $\Phi = \sum_{n=0}^{\infty} \mathbf{I}_n(f_n) \in (\mathcal{S})$. From (4.1), we see that

$$e^{\frac{i}{2}(e^{i\theta}\sin\theta)\Delta_G}\Phi = \sum_{n=0}^{\infty} \mathbf{I}_n(\ell_n(\Phi;e^{i\theta}\sin\theta)).$$

Hence,

$$e^{i\theta N}(e^{\frac{i}{2}(e^{i\theta}\sin\theta)\Delta_G}\Phi) = \sum_{n=0}^{\infty} \mathbf{I}_n(e^{in\theta}\ell_n(\Phi;e^{i\theta}\sin\theta)).$$

Since $e^{in\theta}\ell_n(\Phi; e^{i\theta}\sin\theta) = h_n(\Phi; \theta)$, we obtain (4.2).

LEMMA 2. For any $\Phi \in (\mathcal{S})$, we have

$$U[e^{\frac{i}{2}\theta\Delta_G}\Phi](\xi) = \int_{\mathcal{S}^*} U\Phi(\xi + \sqrt{i\theta}y) \ d\mu(y). \tag{4.3}$$

Remark. For any $\Phi \in (\mathcal{S})$, $\xi \in \mathcal{S}$ and $z_1, z_2 \in \mathbb{C}$, the functional $U\Phi(z_1\xi + z_2\eta)$, $\eta \in \mathcal{S}$, can be extended to a functional $\widetilde{U\Phi}(z_1\xi + z_2y)$, same symbol $U\Phi(z_1\xi + z_2y)$.

PROOF: For $\Phi = \sum_{n=0}^{\infty} \mathbf{I}_n(f_n) \in (\mathcal{S})$, the right-hand side of (4.3) has the following expansion:

$$\sum_{n=0}^{\infty} \int_{\mathbf{R}^n} f_n(\mathbf{u}) \int_{\mathcal{S}^*} \{ \xi(u_1) + \sqrt{i\theta} x(u_1) \} \cdots \{ \xi(u_n) + \sqrt{i\theta} x(u_n) \} d\mu(x) d\mathbf{u}$$

$$=\sum_{n=0}^{\infty}\sum_{\nu=0}^{[n/2]}\frac{n!}{(2\nu)!!(n-2\nu)!}(i\theta)^{\nu}<\xi^{\otimes(n-2\nu)},\tau^{\nu}*f_{n}>=\sum_{m=0}^{\infty}<\xi^{\otimes m},\ell_{m}(\Phi;\theta)>.$$

From (4.1), we see that the last series is equal to $U[e^{\frac{i}{2}\theta\Delta_G}\Phi](\xi)$.

Define an operator J_n by

$$U[J_n\Phi](\xi) = U\Phi \circ j_n(\xi), \ \Phi \in D_L^{(-p)}, \ \xi \in \mathcal{S}.$$

For all $n \in \mathbb{N}$ and $\Phi \in D_L^{(-p)}$, we can easily check $J_n\Phi \in (\mathcal{S})$. Then we have the following.

THEOREM 3. Let $\Phi \in D_L^{(-p)}$ be a generalized white noise functional with the U-functional given by $\psi(F_1, \ldots, F_n)$, where ψ is an entire function on \mathbb{C} and $F_1, \ldots, F_n \in U[\mathcal{N}_T]$. We assume the condition

$$\sum_{k_1,\ldots,k_n=0}^{\infty} \frac{1}{k_1!\cdots k_n!} |\partial_{u_1}^{k_1}\cdots\partial_{u_n}^{k_n} \psi(0,\ldots,0)| \cdot$$

$$\sup_{N} \int_{\mathcal{S}^*} \left| ((F_1 \circ j_N)^{k_1} \cdots (F_n \circ j_N)^{k_n}) (ie^{i\alpha_N(t)} \xi + \sqrt{ie^{i\alpha_N(t)} \sin \alpha_N(t)} x) \right| \ d\mu(x) < \infty$$

holds for all t > 0 and $\xi \in \mathcal{S}$, where $\alpha_N(t) = t(\theta_N^T)^2$. Then

$$\lim_{N \to \infty} U[\mathbf{F}_{\alpha_N(t)}^* J_N \Phi](\xi) = U[G_{it} \Phi](\xi), \ \xi \in \mathcal{S}.$$
(4.4)

PROOF: From Lemma 2, we have

$$U[e^{\frac{i}{2}e^{i\alpha_N(t)}\sin\alpha_N(t)\Delta_G}J_N\Phi](\xi) = \int_{\mathcal{S}^*} U[J_N\Phi](\xi + \sqrt{ie^{i\alpha_N(t)}\sin\alpha_N(t)}y)d\mu(y).$$

This functional is expressed in the form given by

$$\sum_{\ell=0}^{\infty} \langle \xi^{\otimes \ell}, f_{N,\ell} \rangle,$$

where $f_{N,\ell} \in \mathcal{S}_{\mathbf{C}}^{\hat{\otimes} \ell}$. Hence, from Lemma 1, we get

$$U[\mathbf{F}_{\alpha_N(t)}^* J_N \Phi](\xi) = \sum_{\ell=0}^{\infty} e^{i\alpha_N(t)\ell} \langle \xi^{\otimes \ell}, f_{N,\ell} \rangle.$$

From the condition of this theorem and the Lebesgue convergence theorem, we can calculate as follows:

$$\lim_{N \to \infty} U[\mathbf{F}_{\alpha_N(t)}^* J_N \Phi](\xi) = \lim_{N \to \infty} U[e^{\frac{i}{2}e^{i\alpha_N(t)}\sin\alpha_N(t)\Delta_G} J_N \Phi](e^{i\alpha_N(t)}\xi)$$

$$= \lim_{N \to \infty} \int_{\mathcal{S}^*} U[J_N \Phi](ie^{i\alpha_N(t)}\xi + \sqrt{ie^{i\alpha_N(t)}\sin\alpha_N(t)}y)d\mu(y)$$

$$= \sum_{k_1, \dots, k_n = 0}^{\infty} \frac{1}{k_1! \cdots k_n!} \partial_{u_1}^{k_1} \cdots \partial_{u_n}^{k_n} \psi(0, \dots, 0).$$

$$\lim_{N \to \infty} \int_{\mathcal{S}^*} ((F_1 \circ j_N)^{k_1} \cdots (F_n \circ j_N)^{k_n})(ie^{i\alpha_N(t)}\xi + \sqrt{ie^{i\alpha_N(t)}\sin\alpha_N(t)}x)d\mu(x).$$

By the direct calculations, it is easily checked that

$$\lim_{N\to\infty}\int_{\mathcal{S}^*}((F_1\circ j_N)^{k_1}\cdots(F_n\circ j_N)^{k_n})(ie^{i\alpha_N(t)}\xi+\sqrt{ie^{i\alpha_N(t)}\sin\alpha_N(t)}x)d\mu(x)$$

$$= U[g_{it}U^{-1}(F_1^{k_1}\cdots F_n^{k_n})](\xi) = U[g_{it}U^{-1}F_1](\xi)^{k_1}\cdots U[g_{it}U^{-1}F_n](\xi)^{k_n}.$$

Consequently, we obtain (4.4).

REFERENCES

- [Gr 65] Gross, L.: Abstract Wiener spaces; in: Proc. 5th Berkeley Symp. Math. Stat. Probab. 2, 31-42. Berkeley: Univ. Berkeley (1965).
- [Gr 67] Gross, L.: Potential theory on Hilbert space; J. Func. Anal.1 (1967) 123-181.
- [Hi 75] Hida, T.: "Analysis of Brownian Functionals", Carleton Math. Lecture Notes, No.13, Carleton University, Ottawa, 1975.
- [Hi 80] Hida, T.: "Brownian motion", Application of Math., 11, Springer- Verlag, 1980.
- [Hi 92a] Hida, T.: A role of the Lévy Laplacian in the causal calculus of generalized white noise functionals, to appear in *Kallianpur Festschrift* (1992).

- [Hi 92b] Hida, T.: Random Fields as Generalized White Noise Functionals, *Proc. IFIP Enschede* (1992).
- [HKO 90] Hida, T., Kuo, H.-H. and Obata, N.: Transformations for white noise functionals, to appear in J. Funct. Anal. (1990).
- [HKPS 93] Hida, T., Kuo, H.-H., Potthoff, J. and Streit, L.: "White Noise: An Infinite Dimensional Calculus", Kluwer Academic (1993).
 - [HS 88] Hida, T. and Saitô, K.: White noise analysis and the Lévy Laplacian, in: "Stochastic Processes in Physics and Engineering" (S. Albeverio et al. Eds.) (1988) 177-184.
 - [HOS 92] Hida, T., Obata, N. and Saitô, K.: Infinite dimensional rotations and Laplacian in terms of white noise calculus, Nagoya Math. J. 128 (1992) 65-93.
 - [It 78] Itô, K.: Stochastic analysis in infinite dimensions, *Proc. International conference on stochastic analysis*, Evanston, Academic Press (1978) 187-197.
- [KT 80-82] Kubo, I. and Takenaka, S.: Calculus on Gaussian white noise I, II, III and IV, Proc. Japan Acad. 56A (1980) 376-380; 56A (1980) 411-416; 57A (1981) 433-436; 58A (1982) 186-189.
 - [Ku 75] Kuo, H.-H.: "Gaussian measures in Banach spaces", Lecture Notes in Math. 463, Springer-Verlag, 1975.
 - [Ku 83] Kuo, H.-H.: Fourier-Mehler transforms of generalized Brownian functionals; *Proc. Japan. Acad.* **59** A (1983) 312-314.
 - [Ku 86] Kuo, H.-H.: On Laplacian operators of generalized Brownian functionals, *Lecture Notes in Math.* 1203, Springer-Verlag (1986) 119-128.
 - [Ku 89] Kuo, H.-H.: The Fourier transform in white noise calculus, J. Multi. Anal. 31 (1989) 311-327.
 - [Ku 91] Kuo, H.-H.: Fourier-Mehler Transforms in white noise analysis, in: Gaussian Random Fields, the Third Nagoya Lévy Seminar (K. Itô & T. Hida Eds.), World Scientific (1991) 257-271.
 - [Ku 92a] Kuo, H.-H.: Convolution and Fourier transform of Hida distributions, Lecture Notes in Control and Information Sciences 176 (1992) 165-176, Springer-Verlag.
 - [Ku 92b] Kuo, H.-H.; An infinite dimensional Fourier transform, Aportaciones Matemáticas Notas de Investigación 7 (1992) 1-12.
 - [KOS 90] Kuo, H.-H., Obata, N. and Saitô, K.: Lévy Laplacian of generalized functions on a nuclear space, J. Funct. Anal. 94(1990) 74-92.
 - [Lé 22] Lévy, P.: "Lecons d'analyse fonctionnelle", Gauthier-Villars, Paris (1922).
 - [Lé 51] Lévy, P.: "Problèmes concrets d'analyse fonctionnelle", Gauthier-Villars, Paris (1951).
 - [Ob 90] Obata, N.: A characterization of the Lévy Laplacian in terms of infinite dimensional rotation groups, Nagoya Math. J. 118(1990) 111-132.
 - [Ob 92] Obata, N.: "Elements of white noise calculus", Lecture Notes, Tübingen 1992.
 - [PS 91] Potthoff, J. and Streit, L.: A characterization of Hida distributions, J. Funct. Anal. 101(1991) 212-229.

- [Sa 87, 91a] Saitô, K.: Itô's formula and Lévy's Laplacian I and II, *Nagoya Math. J.* **108**(1987) 67-76, **123**(1991) 153-169.
 - [Sa 91b] Saitô, K.: On a construction of a space of generalized functionals, *Proc. Preseminar for Int. Conf. on Gaussian Random Fields* (1991) Part 2, 20-26.
 - [Sa 92] Saitô, K.: The Lévy Laplacian in white noise analysis, Preprint (1992).
 - [Sa 94] Saitô, K.: A group generated by the Lévy Laplacian and the Fourier-Mehler transform, *Proc. U.S.-JAPAN Bilateral Seminar* (1994).
 - [Yo 71] Yosida, K.: "Functional Analysis 3rd Edition", Springer-Verlag, 1971.