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A group generated by the Lévy Laplacian
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1. INTRODUCTION

The Lévy Laplacian Ay is one of infinite dimensional Laplacians introduced by P.
Lévy in his book [Lé 22]. In his book, he mentioned that Ay comes from the singular
part fI of the second derivative f”, i.e.,

ALf(@) = [ fi(aswydu.

This Laplacian has been studied by many authors. In 1975, T.Hida introduced Ay into
the theory of generalized white noise functionals in [Hi 75]. H.-H. Kuo [Ku 83,89,92a,92b]
defined the Fourier-Mehler transform on the space (S)* of generalized white noise func-
tionals and gave a relation between its transform and Ay. An interesting characteriza-
tion of Ay in terms of rotation groups was obtained by N. Obata [Ob 90]. Recently,
T. Hida [Hi 92b] applied Ay to S. Tomonaga’s many time theory in quantum physics.

The purpose of this paper is to construct a group generated by Ay.

In §2, we will explain a construction of the space of generalized white noise functionals
and define the Lévy Laplacian A{ for a finite interval T in R in that space. Moreover,
we introduce an operator A and prove that A coincides with ZAf on a domain Df
in (S)*. In §3, we will construct a (Cy)-group {G:}icr generated by AZ. In the last
section, we will give a relation between the adjoint operator of Kuo’s Fourier-Mehler
transform and a group {Git}ier.-

2. THE LEVY LAPLACIAN IN THE WHITE NOISE CALCULUS

In this section, we introduce a space of Hida distributions following [Hi 80], [K'T 80-
82] and [PS 91] (See also, [HKPS 93], [HOS 92] and [Ob 92]) and the Lévy Laplacian
defined on a domain in this space.

1) Let L%(R) be the Hilbert space of real square-integrable functions on R with norm
| - 0. Consider a Gel’fand triple

S =8(R)c L}R) c §* =S*(R),
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where S(R) is the Schwartz space consisting of rapidly decreasing functions on R and
S*(R) is the dual space of S(R).
Let A be the following operator

A=—(d/dz)* + 22 +1.

For each p € Z, we define |f|, = |A? f|o and let S, be the completion of S with respect
to the norm |- |,. Then the dual space of S, of S, is the same as S_,.

2) Let p be a probability measure on S* with the characteristic functional given by

C(8) = [ expli < 2,6 >} du(2) = exp{~3 e}, € € 5.

Let (L?) = L*(S*, 1) be the space of complex-valued square-integrable functionals de-
fined on S$* and define the S-transform by

Sp(€) = C(€) [ exp{< 7,6 >}p(a) du(z), ¢ € (L.
The Hilbert space admits the well-known Wiener-Ité6 decomposition:
(L2) = EB?:OHTU

where H, is the space of multiple Wiener integrals of order n € N and Hy = C. From
this decomposition theorem, each ¢ € (L?) is uniquely represented as

o= S L(fa), fo € IHR)P",

n=0

where I, € H, and L%(R)@‘ denotes the n-th symmetric tensor product of the com-
plexification of L2(R).
For each p € Z,p > 0, we define the norm |¢||p of ¢ = Y020 In(fr), by

0 1/2

ol = (£ lflyn)
n=0

where | - |p» is the norm of Sééj;,( the n-th symmetric tensor product of the complexifi-

cation of S,). The norm || - || is nothing but the (L?)-norm. We put

(8) = {v € (L) llvllp < 0}
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for p € Z,p > 0. Let (S), be the dual space of (S),. Then (S), and (S), are Hilbert
spaces with the norm || - ||, and the dual norm of || - ||, respectively.

Denote the projective limit space of the (S),,p € Z,p > 0, and the inductive limit
space of the (S);,p € Z,p > 0, by (S) and (S)*, respectively. Then (S) is a nuclear
space and (S)* is nothing but the dual space of (S). The space (S)* is called the space
of Hida distributions ( or generalized white noise functionals ).

Since exp < -, >€ (§), the S-transform is extended to an operator U defined on
(8)*:

Ud(€) =C(€) < D,exp < € >> €€ S,
where < -,- > is the canonical pairing of (S) and (S)*. We call U® the U-functional
of ®.

3) We next introduce the definition of the Lévy Laplacian following Kuo [Ku 92] (see
also [HKPS 93] ). Let U be a Fréchet differentiable function defined on S, i.e. we assume
that there exists a map U’ from S to S* such that

U§+n)=UE)+U'(€)n) +o(n),n €S,

where o(n) means that there exists p € Z,p > 0, depending on € such that o(n)/|n|, — 0
as |nlp — 0. Then the first variation

6U (&) = dU(E + An)/dA|r=o

is expressed in the form
§U(&n) = [ V(& wn(w) du

for every n € S by using the generalized function U'(¢; -). We define the Hida derivative
0;® of ® to be the generalized white noise functional whose U-functional is given by

U'(§:¢).
Definition. (I) A Hida distribution ® is called an L-functional if fo r each £ € S, there
exist (U (&) € L},o(R), (U®)!(& ) € LL,o(R) and (U®)!(&; ,-) € L}, (R?) such that

loc loc
the first and second variations are uniquely expressed in the forms:

VRO = [(U2)(Ewn) du,

and
U, = [ UD)i(&wn(u)(u) du
+ [ U u 0w (v) dudv, (2.)

for each n,{ € S, respectively and for any finite interval T, [p(U®))(-;u) du is a U-
functional.
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(IT) Let Dy denote the set of all L-functionals. For ® € D; and any finite interval T
in R, the Lévy Laplacian A7 is defined by

a1 "
ATg = p-1 [‘—T—I/T(Ué)s(-,u) du} .

Remark. Explicit conditions for the uniqueness of the above decomposition (2.1) is
given in [ HKPS 93, chapter 6].

Let T be a finite interval in R. Take a smooth function e defined on R satisfying
0<e(u)<lforallu e R, e(u) =1 for |u| <1/2 and e(u) = 0 for Ju| > 1. Let pp* be
the Friedrichs mollifier. Put e,(u) = e(u/n) and 6L = /2|p. |5 T|71/%, n=1,2,....
We define an operator A for a Hida distribution ® by

UAD)E) = lim [ US"(E)Fen(pn* ), 6% ealpn * ) du(a),

if the limit exists in U[(S)*]. From now on, we denote e,(pn * ) by ju(z). Let DI
denote the set of all L-functionals ® satisfying U®(n) = 0 for  with supp(n) C T¢. In
[Sa 94], we obtained the following result. (For the proof, see [Sa 94].)

THEOREM 1. Let T be a finite interval in R and @ an L—funvc‘tional in DT. Then, we
have A® = 2AT®.

3. THE LEVY LAPLACIAN AS THE INFINITESIMAL GENERATOR

A generalized functional ® is called a normal functional if its U- functional U® is
given by a finite linear combination of

o S u)E ()P E(u)™ duy - - dug, (3.1)

where f € LY(A*),p1,... ,pr € NU{0},k € N, and A : a finite interval in R. This
functional @ is in Dj. Let N denote the set of all normal functionals in DI. For p > 1
and ® € DI, we define a —p-norm §- g by

19 R, = ki 1(ATY8]2, (€ [0, 00])
=0

and denote the completion of N7 with respect to the norm 1§ - i, by D(L"p ). Then
D(L"p ) is the Hilbert space with the norm §- 1, and A7 is a bounded linear operator
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on Dg_p ). Hence a (Co)-group {Gi,t € R} is given by

n 4k
Gi = lim zt (A1), (3.2)

in the sence of the operator norm. It is easily checked that 1G 1 < elYl for any t € R.
Define an operator g; on N7 for ¢t > 0 by

Ulge)(€) = Jim, [ U®(¢ + VILja(2)) du(z), @ € M.

For a normal functional ® which U® is given as in (3.1) with the domain A% C T*, it
is easily checked that

(p1/21  [p/2]

pi!---pi!
Ulg:®](¢) = EO sz_zo @) (p1 = 200 ) - 2R ok — 2vg)!

vit+-tvg
(ITI) / f Ui, .. ,uk)f(ul)”l‘2”1---§(uk)7’k—2"k dul"'duk.

Therefore, g, is a linear operator from N7 to itself. By Theorem 1, it can be checked
that Gy = g; on N7. Since N is dense in DS:_" ), we have the following

THEOREM 2. For any t > 0, g; is extended to the operator Gi.

4. THE FOURIER-MEHLER TRANSFORM AND THE LEVY LAPLACIAN
An characterization of Hida distributions was obtained by J. Potthoff and L. Streit
[PS 91]. From [PS 91], we see that for any U-functional F, and £,  in S, the function

F(Aé+ 1), X € R, extends to an entire function F(z2£ +7), 2z € C. Then we can define
an operator g;;, t € R, by

Ulgu@)(6) = Jim, [ UR(E + VAT ja(2))du(2)

if the limit exists. Since p is symmetric, the integral is defined independent of choices
of the branch of v/2f. As in (3.2), we can naturally define Gy, t € R, by

Gi = lim Z (zt)k L (ATHE

on Dg_” ).
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An infinite dimensional Fourier-Mehler transform Fy, § € R, on (S)* was defined by
H.-H. Kuo [Ku 91] as follows. The transform F¢®, § € R of & € (S)* is defined by the
unique generalized white noise functional with the U-functional

UIFe](6) = UB(e*6) exp [ e sindlel] , ¢ € 5.

Moreover, the adjoint operator Fj of Fy is given by
F§® = 3020 In(ha(®; 8)) for @ = 3520 In(fa) € (S),

where (n+2m) i
. — — (n +2m) 1 . m_ t(m+n)d_Qm .
hn(q)y 0) = mz=g _—W—(§ sin 9) € ( ) T * fn+2m,

T®m = /R.'" 5t1 ®(5t1 ®--- ®(5tm ®6tmdt1 : "dtm-

This operator F} is a continuous linear operator on (§). (For details, see [Ku 91] and
also [HKO 90]) On (S), the Gross Laplacian Ag ( See [Gr 65, 67] ) and the number
operator N is given by '

Agd = /R 82®dt

and
N&é = /R 8;0,8dt,

respectively (see [Ku 86]). The operator eV is called the Fourier- Wiener transform

(see [HKO 90]). Now, we introduce an operator 2946 from (S) into itself given by

. o
P86 = 3 1,(4,(®;6)); (4.1)
n=0
) X (n+2m)! i e
€n(®;0) = mZ::O —ﬁ!—m!—(§6) 7™ * fotom,
for ® = Y22 I.(fz) € (S). Then we have the followings.

LEMMA 1. o
F) = RN e;(e"’ sin6)Ag (4.2)

PROOF: Take & = 02 ( I.(fn) € (S). From (4.1), we see that

e3(e’sind)Ac g _ 3 Lu(£n(3; € sin9)).

n=0

Hence,
eil)N(e:‘z(e‘o sin 8)Ag (I)) — E In(emgen(@; ew sin 9))

n=0
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Since £, (®; ' sin ) = h,(®P;6), we obtain (4.2). 1
LEMMA 2. For any ® € (S), we have
Uled2oa)(¢) = [ US(E+ viBy) du(y) (43)

Remark. For any ® € (S), £ € S and 21, 22 € C, the functional U®(z1€ + 22n), n € S,
can be extended to a functional U®(z1£ + 22y), same symbol U®(z1£ + 229).

PROOF: For & = 32 ,1,(fn) € (S), the right-hand side of (4.3) has the following
‘expansion:

ni::o /Rn fa(n) /5. {€(u1) + Vibz(u1)} - {‘f(un) + Vi0z(uy) }du(z)du

oo [n/2] n! 00
: ' 0\V ®(n-2v) _v — ®m .
=2 X Goymn a0 < T H S >= 3, <€ n(250) >

From (4.1), we see that the last series is equal to U[eégAG ®](€). 1

Define an operator J, by
UlJa®)(€) = UB 0 ju(€), 3 D{P, €€,

For all n € N and @ € D( P we can easily check J.® € (S). Then we have the
following.

THEOREM 3. Let & € D(L—p ) be a generalized white noise functional with the U-
functional given by Y(F,...,F,), where ¢ is an entire function on C and Fy,... ,F, €
U[NT]. We assume the condition

s 1

kly vkﬂ—o

sup/ \((Fl o gkt (Fn o jn ) )(ie N e 4 \fietan (D) sinaN(t)x)l du(z) < oo

holds for allt > 0 and £ € S, where ay(t) = t(8%)%. Then
Jim U[F*N(t)JNQ](g) UGi®(€), € € S. (4.4)

PROOF: From Lemma 2, we have

Ulete ™ O sinan080 7y 8)(6) = [ ULINSI(E + ViewN D sinan Dy)du(y)-
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This functional is expressed in the form given by

i(ém,m),

£=0

where fy ¢ € Sge. Hence, from Lemma 1, we get

U, v In®I(E) = i e N e iy g).
£=0

From the condition of this theorem and the Lebesgue convergence theorem, we can
calculate as follows:

I}i—r.noo U[F:;N(t) IN®J(§) = 1\}1—13100 U[eéei&N(i) sinay (t)Ag JN (I)](eiaN(t)é)

= lim S‘U[JNfb](ieiaN(t)ﬁ+\/ieiaN(t) sin ay (t)y)du(y)

N—oo
o0 1 ‘
= Z _——'akl-atlizw((l) ’O).
kly---,knzo kll et kn! U] |
Jim [ (Frojm)M e (B0 )Y (ie ¥ O¢ + ien @ sin o
—00 *

By the direct calculations, it is easily checked that

Jim [ (B ) (B0 i) )i g + Vi n @ sin an(t)z)du(z)

=UlguU™ (F* - F))(€) = UlgaU T R)()" -+ UlgaU ™ Fa)(€)™.
Consequently, we obtain (4.4). 8
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