Foundation of Quantum Entropy

Masanori Ohya

Department of Information Sciences Science University of Tokyo Noda City, Chiba 278, Japan

§ 1 Mathematical Description of CDS and QDS

Let fix the notations used throughout this paper. Let μ be a probability measure on a measureble space (Ω, \mathfrak{F}) , $P(\Omega)$ be the set of all probability measures on Ω and $M(\Omega)$ be the set of all measurable functions on Ω . We denote the set of all bounded linear operators on a Hilbert space \mathcal{H} by $B(\mathcal{H})$, and the set of all density operators on \mathcal{H} by $\mathfrak{S}(\mathcal{H})$. Moreover, let $\mathfrak{S}(\mathcal{A})$ be the set of all states on \mathcal{A} (C*-algebra or von Neumann algebra). Therefore the descriptions of classical dynamical systems, quantum dynamical systems and general quantum dynamical systems are given in the following Table:

	CDS	QDS	GQDS
obs.	real r.v.f n $M(\Omega)$	Hermitian op. A on \mathcal{H} (s.a. op. in $B(\mathcal{H})$)	self-adjoint A in C^* -algebra ${\cal A}$
state	prob. meas. $\mu \in P(\Omega)$	density op. $ ho$ on ${\cal H}$	p.l.fnal $\varphi \in \mathfrak{S}$ with $\varphi(I) = 1$
expec -tation	$\int\limits_{\Omega}fd\omega$	trρA	arphi(A)

Table. 1.1 Description of CDS, QDS and GQDS

§ 2 Classical Entropy

2.1 Discrete Case (Shannon's Theory)

A state in a discrete classical system is given by a probability distribution such that

$$\Delta_n = \left\{ p = \left\{ p_i \right\}_{i=1}^n; \sum_i p_i = 1, p_i \ge 0 \right\}$$

The entropy of a state $p = \{p_i\} \in \Delta_n$ is

$$S(\rho) = -\sum p_i \log p_i$$

The relative uncertainty (relative entropy) is defined by Kullback-Leibler as

$$S(p,q) = \begin{cases} \sum_{i} p_{i} \log \frac{p_{i}}{q_{i}} & (p << q) \\ \infty & (p << q) \end{cases}$$

for any $p,q \in \Delta_n$. Onece a state p is changed through a channel Λ^* , the information transmitted from a initial state p to a final state $q \equiv \Lambda^* p$ is described by the mutual entropy defined by

$$I(p; \Lambda^*) = S(r, p \otimes q) = \sum_{ij} r_{ij} \log \frac{r_{ij}}{p_i q_j}$$

where $\Lambda^*: \Delta_n \to \Delta_m$; $q = \Lambda^* p$ is a channel (e.g., $\Lambda = (p(j \mid i))$ transition matrix), $r_{ij} = p(j \mid i)p_i$ and $p \otimes q = \{p_i q_j\}$. The fundamental inequality of Shannon is

$$0 \le I(p; \Lambda^*) \le \min\{S(p), S(q)\}$$

According to this inequality, the ratio

$$r(p; \Lambda^*) = \frac{I(p; \Lambda^*)}{S(p)}$$

represents the efficiency of the channel transmission

2.2 Continuous Case

In classical continuous systems, a state is described by a probability measure μ . Let $(\Omega, \mathfrak{F}, P(\Omega))$ be an input probability space and $(\overline{\Omega}, \overline{\mathfrak{F}}, P(\overline{\Omega}))$ be an output probability space. A channel is a map Λ^* from $P(\Omega)$ to $P(\overline{\Omega})$, in particular, Λ^* is a Markov type if it is given by

$$\Lambda^{\bullet}\varphi(Q) = \int_{\Omega} \lambda(x, Q)\varphi(dx), \, \varphi \in P(\Omega), \, Q \in \overline{\mathfrak{F}}$$

where $\lambda: \Omega \times \overline{\mathfrak{F}} \to R^+$ with (i) $\lambda(x, \bullet) \in P(\overline{\Omega})$, (ii) $\lambda(\bullet, Q) \in M(\Omega)$. In continuous case, the

entropies are defined as follows: Let $F(\Omega)$ be the set of all finite partitions $\{A_k\}$ of Ω . For any $\varphi \in P(\Omega)$, the entropy is defined by

$$S(\varphi) = \sup \left\{ -\sum_{k} \varphi(A_k) \log \varphi(A_k); \left\{ A_k \right\} \in F(\Omega) \right\},$$

which is often infinite. For any $\varphi, \psi \in P(\Omega)$, the relative entropy is given by

$$S(\varphi, \psi) = \sup \left\{ \sum_{k} \varphi(A_{k}) \log \frac{\varphi(A_{k})}{\psi(A_{k})}; \left\{ A_{k} \right\} \in F(\Omega) \right\}$$

$$= \left\{ \int_{\Omega} \log \left(\frac{d\varphi}{d\psi} \right) d\psi \quad (\varphi << \psi) \right.$$

$$+\infty \qquad (\varphi > \psi)$$

Let Φ,Φ_0 be two compound states (measures) defined as follows :

$$\Phi(Q_1, Q_2) = \int_{\Omega} \lambda(x, Q_2) \varphi(dx), Q_1 \in \mathfrak{F}, Q_2 \in \overline{\mathfrak{F}}$$

$$\Phi_0(Q_1, Q_2) = (\varphi \otimes \Lambda^* \varphi)(Q_1, Q_2) = \varphi(Q_1) \Lambda^* \varphi(Q_2)$$

For $\varphi \in P(\Omega)$ and a channel Λ^* , the mutual entropy is given by

$$I(\varphi; \Lambda^*) = S(\Phi, \Phi_0).$$

§3 Quantum Entropy

3.1 Entropies for density operators

A state in quantum systems is described by a density operator on a Hilbert space \mathcal{H} . The entropies are defined as follows: For a state $\rho \in \mathfrak{S}(\mathcal{H})$, the entropy [N.1] is given by

$$S(\rho) = -tr\rho\log\rho$$
.

If $\rho = \sum_{k} p_{k} E_{k}$ (Schatten decomposition, dim $E_{n} = 1$), then

$$S(\rho) = -\sum_{k} p_{k} \log p_{k}.$$

Let us summarize the properties of the entropy $S(\rho)$.

Theorem 3.3 For any density operator $\rho \in \mathfrak{S}(\mathcal{H})$, the followings hold:

- (1) Positivity : $S(\rho) \ge 0$.
- (2) Symmetry: Let $\rho' = U^{-1}\rho U$ for an invertible operator U. Then

$$S(\rho') = S(\rho)$$

- (3) Concavity: $S(\lambda \rho_1 + (1 \lambda)\rho_2) \ge \lambda S(\rho_1) + (1 \lambda)S(\rho_2)$ for any $\rho_1, \rho_2 \in \mathfrak{S}(\mathcal{H})$.
- (4) Additivity: $S(\rho_1 \otimes \rho_2) = S(\rho_1) + S(\rho_2)$ for any $\rho_k \in \mathfrak{S}(\mathcal{H})$.
- (5) Subadditivity: For the reduced states ρ_1, ρ_2 of $\rho \in \mathfrak{S}(\mathcal{H}_1 \otimes \mathcal{H}_2)$,

$$S(\rho) \le S(\rho_1) + S(\rho_2).$$

- (6) Lower Semicontinuity: If $\|\rho_n \rho\|_1 (\equiv tr |\rho_n \rho|) \to 0$, then $S(\rho) \le \liminf S(\rho_n)$.
- (7) Continuity: Let ρ_n , ρ be elements in $\mathfrak{S}(\mathcal{H})$ which satisfy the following conditions:
 - (i) $\rho_n \to \rho$ weak as $n \to \infty$, (ii) $\rho_n \le A$ $(\forall n)$ for some compact operator A, and
 - (iii) $-\sum a_k \log a_k < +\infty$ for the eigenvalues $\{a_k\}$ of A, Then $S(\rho_n) \to S(\rho)$.
- (8) Strong Subadditivity: Let $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$ and denote the reduced states $tr_{\mathcal{H}_i \otimes \mathcal{H}_j} \rho$ by ρ_{ii} and ρ_k , respectively. Then

$$S(\rho) + S(\rho_2) \le S(\rho_{12}) + S(\rho_{23})$$
 and $S(\rho_1) + S(\rho_2) \le S(\rho_{13}) + S(\rho_{23})$.

For two states $\rho, \sigma \in \mathfrak{S}(\mathcal{H})$, the relative entropy [U.2, L.1] is given by

$$S(\rho, \sigma) = \begin{cases} tr\rho(\log \rho - \log \sigma) & (\rho << \sigma) \\ +\infty & (\rho << \sigma) \end{cases}$$

where $\rho \ll \sigma \Leftrightarrow$ for any $A \ge 0$, $tr \sigma A = 0 \Rightarrow tr \rho A = 0$.

Let $\Lambda^*:\mathfrak{S}(\mathcal{H})\to\mathfrak{S}(\overline{\mathcal{H}})$ be a channel and set

$$\sigma = \Lambda^* \rho, \ \theta_E = \sum_k p_k E_k \otimes \Lambda^* E_k, \theta_0 = \rho \otimes \Lambda^* \rho.$$

The mutual entropy [O.1] is given by

$$I(\rho; \Lambda^*) = \sup \left\{ S(\theta_E, \theta_0); E = \left\{ E_k \right\} \right\}$$
$$= \sup \left\{ \sum_k p_k S(\Lambda^* E_k, \Lambda^* \rho); E = \left\{ E_k \right\} \right\}$$

for any state $\rho \in \mathfrak{S}(\mathcal{H})$ and any channel Λ^* . When the decomposition of ρ is fixed such that

$$\rho = \sum_{k} \lambda_{k} \rho_{k}, \text{ then}$$

$$I(\rho; \Lambda^*) = \sum_{k} \lambda_k S(\Lambda^* \rho_k, \Lambda^* \rho).$$

where $\theta_{\lambda} = \sum_{k} \lambda_{k} \rho_{k} \otimes \Lambda^{*} \rho_{k}$. The fundamental inequality of Shannon type is obtained:

$$0 \le I(\rho; \Lambda^*) \le \min \{S(\rho), S(\Lambda^*\rho)\}.$$

3.2 Channeling Transformations

A general quantum system containing continuous cases is described by a C*-algebra or a von Neumann algebra. Let \mathcal{A} be a C*-algebra (complex normed algebra with involution * such that $||A|| = ||A^*||$, $||A^*A|| = ||A||^2$ and complete w.r.t. $||\cdot||$) and $\mathfrak{S}(\mathcal{A})$ be the set of all states on \mathcal{A} (positive continuous linear functionals φ on \mathcal{A} s.t. $\varphi(I) = 1$ if $I \in \mathcal{A}$)

A cannul $\Lambda^{\bullet}:\mathfrak{S}(\mathcal{A})\to\mathfrak{S}(\overline{\mathcal{A}})$ contains several physical transformations as special cases. First give the mathematical definitions of channels.

Definition

Let $(\mathcal{A}, \mathfrak{S}(\mathcal{A}), \alpha)$ be an input system and $(\overline{\mathcal{A}}, \mathfrak{S}(\overline{\mathcal{A}}), \overline{\alpha})$ be an output system. Take any $\varphi, \phi \in \mathfrak{S}(\mathcal{A})$.

- (1) Λ^* is linear if $\Lambda^*(\lambda \varphi + (1 \lambda)\phi) = \lambda \Lambda^* \varphi + (1 \lambda)\Lambda^* \phi$ for any $\lambda \in [0, 1]$.
- (2) Λ^* is completely positive (C.P.) if Λ^* is linear and its dual $\Lambda: \overline{\mathcal{A}} \to \mathcal{A}$ satisfies

$$\sum_{i,j=1}^{n} A_i^* \Lambda \left(\overline{A}_i^* \overline{A}_j \right) A_j \ge 0$$

for any $n \in N$ and any $\overline{A}_i \in \overline{\mathcal{A}}$, $A_i \in \mathcal{A}$.

- (3) Λ^* is Schwarz type if $\Lambda(\overline{A}^*) = \Lambda(\overline{A})^*$ and $\Lambda(\overline{A})^*\Lambda(\overline{A}) \leq \Lambda(\overline{A}^*\overline{A})$.
- (4) Λ^* is stationary if $\Lambda \circ \alpha_t = \overline{\alpha}_t \circ \Lambda$ for any $t \in R$.
- (5) Λ^* is ergodic if Λ^* is stationary and $\Lambda^*(exI(\alpha)) \subset exI(\overline{\alpha})$.
- (6) Λ^* is orthogonal if any two orthogonal states $\varphi_1, \varphi_2 \in \mathfrak{S}(\mathcal{A})$ (denoted by $\varphi_1 \perp \varphi_2$) implies $\Lambda^* \varphi_1 \perp \Lambda^* \varphi_2$.
- (7) Λ^{\bullet} is deterministic if Λ is orthogonal and bijection.
- (8) For a subset S of $\mathfrak{S}(\mathcal{A})$, Λ^* is chaotic for S if $\Lambda^* \varphi_1 = \Lambda^* \varphi_2$ for any $\varphi_1, \varphi_2 \in S$.
- (9) Λ^* is chaotic if Λ^* is chaotic for $\mathfrak{S}(\mathcal{A})$.

Most of channels appeared in physical processes are C.P. channels. Examples of channels are the followings [O.2, D.1]:

(1) Unitary evolution:

For any density operator $\rho \in \mathfrak{S}(\mathcal{H})$

$$\rho \to \Lambda_t^* \rho = AdU_t(\rho) \equiv U_t^* \rho U_t, t \in R, U_t = \exp(itH)$$

(2) Semigroup evolution:

$$\rho \to \Lambda_i^* \rho = V_i^* \rho V_i, t \in \mathbb{R}^+$$
, where $(V_i; t \in \mathbb{R}^+)$ is a one parameter semigroup on \mathcal{H}

(3) Measurement:

When we measure an obserbable $A = \sum_{n} a_{n} P_{n}$ (spectral decomposition) in a state ρ , the state ρ changes to a state $\Lambda^{*}\rho$ by this measurement such as

$$\rho \to \Lambda^* \rho = \sum_{n} P_n \rho P_n$$

(4) Reduction:

If a system Σ_1 interacts with an external system Σ_2 described by another Hilbert space K and the initial states of Σ_1 and Σ_2 are ρ and σ , respectively, then the combined state θ_i of Σ_1 and Σ_2 at time t after the interaction between two systems is given by

$$\theta_{\iota} = U_{\iota}^{\bullet}(\rho \otimes \sigma)U_{\iota},$$

where $U_t = \exp(itH)$ with the total Hamiltonian H of Σ_1 and Σ_2 . A channel is obtained by taking the partial trace w.r.t. K such as

$$\rho \to \Lambda_{\iota}^{\bullet} \rho = tr_{\mathcal{K}} \theta_{\iota}.$$

3.3 Entropies in GQDS

The entropy (uncertainty) of a state $\varphi \in \mathcal{S}$ seen from the reference system \mathcal{S} , a weak *-compact convex subset of \mathfrak{S} , is given by [0.2,0.3].

Every state $\varphi \in \mathcal{S}$ has a maximal measure μ pseudosupported on $ex\mathcal{S}$ such that

$$\varphi = \int_{\alpha} \omega d\mu$$

The measure μ giving the above decomposition is not unique unless \mathcal{S} is a Choquet simplex, so that we denote the set of all such measures by $M_{\omega}(\mathcal{S})$. Put

$$D_{\varphi}(\mathcal{S}) = \left\{ M_{\varphi}(\mathcal{S}) ; \exists \left\{ \mu_{k} \right\} \subset R^{+} \text{ and } \left\{ \varphi_{k} \right\} \subset ex\mathcal{S} \text{ s.t. } \sum_{k} \mu_{k} = 1, \mu = \sum_{k} \mu_{k} \delta(\varphi_{k}) \right\},$$

where $\delta(\varphi)$ is the Dirac measure concentrated on $\{\varphi\}$, and put

$$H(\mu) = -\sum_{k} \mu_{k} \log \mu_{k}$$

for a measure $\mu \in D_{\varphi}(\mathcal{S})$. Then the entropy of a state $\varphi \in \mathcal{S}$ w.r.t. \mathcal{S} is defined by

$$S^{\mathcal{S}}(\varphi) = \begin{cases} \inf \left\{ H(\mu) ; \mu \in D_{\varphi}(\mathcal{S}) \right\} \\ +\infty \quad \text{if } D_{\varphi}(\mathcal{S}) = \varphi \end{cases}$$

The entropy (mixing entropy) of a general state φ satisfies the following properties [O.2,O.3].

Theorem When $\mathcal{A} = B(\mathcal{H})$ and $\alpha_t = Ad(U_t)$ with an unitary operator U_t , for any state φ given by $\varphi(\cdot) = tr \rho$ with a density operator ρ , the followings hold:

- (1) $S(\varphi) = -tr\rho \log \rho$.
- (2) If φ is an α -invariant state and every eigenvalue of ρ is non-degenerate, then $S'(\varphi) = S(\varphi)$.
- (3) If $\varphi \in K(\alpha)$, then $S^{K}(\varphi) = 0$.

Theorem For any $\varphi \in K(\alpha)$,

- (1) $S^{\kappa}(\varphi) \leq S'(\varphi)$.
- (2) $S^{\kappa}(\varphi) \leq S(\varphi)$.

This \mathcal{S} (or mixing) entropy gives a measure of the uncertainty observed from the reference system \mathcal{S} . Similar properties as $S(\rho)$ hold (see [O.3]).

The relative entropy for two general states φ and ψ has been introduced by Araki [A.1,A.2] and Uhlmann [U.1] and their relation is considered in [H.1,H.2].

<Araki's definition>

Let $\mathfrak N$ be σ -finite von Neumann algebra acting on a Hilbert space $\mathcal H$ and φ,ψ be normal states on $\mathfrak N$ given by $\varphi(\cdot) = \langle x, \cdot x \rangle$ and $\psi(\cdot) = \langle y, \cdot y \rangle$ with $x,y \in \mathcal H$. The operator S_{xy} is defined by

$$S_{xy}(Ay+z) = s^{\mathfrak{N}}(y)A^{\dagger}x, A \in \mathfrak{N}, s^{\mathfrak{N}}(y)z = 0.$$

on the domain $\mathfrak{N}y + (I - s^{\mathfrak{N}}(y))\mathcal{H}$, where $s^{\mathfrak{N}}(y)$ is the projection from \mathcal{H} to $\{\mathfrak{N}'y\}^-$, the

 $\{\mathfrak{N}'y\}^-$ -support of y. Using this S_{xy} , the relative modular operator Δ_{xy} is defined as $\Delta_{xy} = \left(S_{x,y}\right) S_{x,y}^{-}$, with spectral decomposition denoted by $\int_{\mathbb{R}} \lambda de_{x,y}(\lambda)$. Then the relative entropy is given by

$$S(\psi \mid \varphi) = \begin{cases} \int_{0}^{\infty} \log \lambda d \langle y, e_{x,y}(\lambda) y \rangle & \text{if } \psi << \varphi \\ +\infty & \text{otherwise,} \end{cases}$$

where $\psi \ll \varphi$ means that $\varphi(A^*A) = 0$ implies $\psi(A^*A) = 0$ for $A \in \mathfrak{N}$.

< Uhlmann's definition>

Let \mathcal{L} be a linear space and p,q be seminorms on \mathcal{L} , α a positive Hermitian form on \mathcal{L} . Put $\mathcal{G} = \{\alpha; |\alpha(x,y)| \le p(x)q(y), x, y \in \mathcal{L}\}$ and $QM(p,q) = \sup\{\alpha(x,x)^{1/2}; \alpha \in \mathcal{G}\}$. There exists a quadratical interpolation $t \in [0,1] \to p_t$ from p to q $(p_t \equiv QI_t(p,q))$ such that

(1) p_i cont.

(2)
$$t = \frac{1}{2}(t_1 + t_2) \Rightarrow p_t = QM(p_{t_1}, p_{t_2})$$

(3)
$$p_{1/2} = QM(p,q)$$

(4)
$$p_{t/2} = QM(p, p_t)$$

(5)
$$p_{\frac{t+1}{2}} = QM(p_t, q)$$

Let $\mathcal{L} = \mathcal{A}$ and for any states $\varphi, \psi \in \mathfrak{S}(\mathcal{A})$

$$p(A) = \varphi(AA^*)^{1/2}$$

$$q(A) = \psi(A^*A)^{1/2}$$

Then the relative entropy for φ and ψ is given by

$$S(\varphi|\psi) = -\liminf_{t \to \infty} \frac{1}{t} \left\{ QI_t(p,q)^2(I) - p^2(I) \right\}$$

For $\varphi \in \mathcal{S}(\mathcal{A}) \subset \mathfrak{S}(\mathcal{A})$, $\Lambda^* : \mathfrak{S}(\mathcal{A}) \to \mathfrak{S}(\overline{\mathcal{A}})$, let us define the compound states by

$$\Phi_{\mu}^{\mathcal{S}} = \int_{\mathcal{S}} \omega \otimes \Lambda^* \omega \, d\mu$$
 and

$$\Phi_0 = \varphi \otimes \Lambda^* \varphi$$

The mutual entropy w.r.t. \mathcal{S} and μ is

$$I_{\mu}^{\mathcal{S}}(\varphi; \Lambda^{\star}) = S(\Phi_{\mu}^{\mathcal{S}} \mid \Phi_{0})$$

and the mutual entropy w.r.t. & is defined as [O.3]

$$\begin{split} I^{\mathcal{S}}\left(\varphi;\Lambda^{\star}\right) &= \liminf_{\varepsilon \to 0} \left\{ I_{\mu}^{\mathcal{S}}\left(\varphi;\Lambda^{\star}\right); \, \mu \in F_{\varphi}^{\varepsilon}(S) \right\} \\ &= \sup \left\{ \sum_{k} \mu_{k} S\left(\Lambda^{\star} \omega_{k} \mid \Lambda^{\star} \varphi\right); \, \varphi = \sum_{k} \mu_{k} \varphi_{k} \right\} \end{split}$$

where

$$F_{\varphi}^{\varepsilon}(S) = \begin{cases} \left\{ \mu \in D_{\varphi}(S); S^{\mathscr{S}}(\varphi) \leq H(\mu) \leq S^{\mathscr{S}}(\varphi) + \varepsilon < +\infty \right\} \\ M_{\varphi}(S) & \text{if} \quad S^{\mathscr{S}}(\varphi) = +\infty \end{cases}$$

$$D_{\varphi}(S) = \left\{ \mu \in M_{\varphi}(S); \exists \left\{ \mu_{k} \right\} \subset R^{+} \text{ s.t. } \mu = \sum_{k} \mu_{k} \delta(\varphi_{k}), \varphi_{k} \in exS, \sum_{k} \mu_{k} = 1 \right\}$$

when a state φ is expressed as $\varphi = \sum_{k} \mu_{k} \omega_{k}$ (fixed), the mutual entropy is given by

$$I^{\mathcal{S}}(\varphi; \Lambda^*) = \sum_{k} \mu_k S(\Lambda^* \omega_k, \Lambda^* \varphi)$$

This entropy and &-entropy contains Connes-Thiring-Narnhofer entropy as a special case [M.1].

The inequality is satisfied for almost all physical cases.

$$0 \le I^{\mathscr{S}}(\varphi; \Lambda^{\bullet}) \le S^{\mathscr{S}}(\varphi)$$

The fundamental properties of the relatie entropy and the mutual entropy are the followings [A.1,A.2, U.1, H.1, O.3, O.4].

Theorem

- (1) Positivity: $S(\varphi \mid \psi) \ge 0$.
- (2) Joint Convexity: $S(\lambda \psi_1 + (1 \lambda)\psi_2 \mid \lambda \varphi_1 + (1 \lambda)\varphi_2) \le \lambda S(\psi_1 \mid \varphi_1) + (1 \lambda)S(\psi_2 \mid \varphi_2)$.
- (3) Additivity: $S(\psi_1 \otimes \psi_2 | \varphi_1 \otimes \varphi_2) = S(\psi_1 | \varphi_1) + S(\psi_2 | \varphi_2).$
- (4) Lower Semicontinuity: If $\lim_{n\to\infty} \|\psi_n \psi\| = 0$ and $\lim_{n\to\infty} \|\varphi_n \varphi\| = 0$, then $S(\psi \mid \varphi) \le \liminf_{n\to\infty} S(\psi_n \mid \varphi_n)$. Moreover, if there exists a positive number λ satisfying $\psi_n \le \lambda \varphi_n$, then $\lim_{n\to\infty} S(\psi_n \mid \varphi_n) = S(\psi \mid \varphi)$.
- (5) Monotonicity: For a channel Λ^* from \mathfrak{S} to $\overline{\mathfrak{S}}$, $S(\Lambda^*\psi \mid \Lambda^*\varphi) \leq S(\psi \mid \varphi).$
- (6) Lower Bound: $|\psi \varphi|^2 \le 2S(\psi \mid \varphi)$.

Theorem [O.3]

- (1) If Λ^* is deterministic, then $I(\varphi; \Lambda^*) = S(\varphi)$.
- (2) If Λ^* is chaotic, then $I(\varphi; \Lambda^*) = 0$
- (3) For a state $\varphi = tr\rho \bullet$, if Λ^{\bullet} is ergodic and the state is stationary for a time evolution $\alpha_{\iota} = AdU_{\iota}$, and if every eigenvalue of ρ is nonzero and nondegenerate, then $I(\rho; \Lambda^{\bullet}) = S(\Lambda^{\bullet}\rho)$.

This mutual entropy is extensively used for analysing optical communication processes [B.1].

The CNT entropy $H_{\varphi}(\mathfrak{N})$ of C*-subalgebra $\mathfrak{N} \subset \mathcal{A}$ is defined by [C.1].

$$H_{\varphi}(\mathfrak{N}) \equiv \sup_{\varphi = \sum_{j} \mu_{j} \varphi_{j}} \sum_{j} \mu_{j} S(\varphi_{j} \mathfrak{N} | \varphi \mathfrak{N})$$

where the supremum is taken over all finite decomposition $\varphi = \sum_j \mu_j \varphi_j$ of φ . This entropy is a mutual entropy when a channel is the restriction to subalgebra. There are some relations between the mixing entropy $S^{\mathcal{S}}(\varphi)$ and the CNT entropy.

Theorem [M.1]

(1) For any state φ on a unital C*-algebra \mathcal{A} ,

$$S^{\mathfrak{S}}(\varphi) = H_{\varphi}(\mathcal{A})$$

(2) Let $(\mathfrak{M},G\alpha)$ be a G-finite W*-dynamical system, φ be a G-invariant normal state of \mathfrak{M} , then

$$S^{I(\alpha)}(\varphi) = H_{\omega}(\mathfrak{M}^{\alpha})$$

(3) Let \mathcal{A} be the C*-algebra $C(\mathcal{H})$ of all compact operators on a Hilbert space \mathcal{H} , and G be a group, α be a *-automorphic action of G-invariant density operator. Then

$$S^{I(\alpha)}(\rho) = H_{\rho}(\mathcal{A}^{\alpha})$$

The pseudo-mutual \mathscr{S} -entropy $J^{\mathscr{S}}(\varphi;\Lambda^*)$ is given by

$$J^{\mathscr{S}}(\varphi; \Lambda^*) = \sup \left\{ \sum_{j} \mu_{j} S(\Lambda^* \varphi_{j} \mid \Lambda^* \varphi); \varphi = \sum_{j} \mu_{j} \varphi_{j}, \varphi_{j} \in \mathscr{S} \right\}.$$

Theorem [M.1]

- $(1) \qquad 0 \leq I^{\mathscr{S}}\!\left(\varphi;\Lambda^{\star}\right) \leq J^{\mathscr{S}}\!\left(\varphi;\Lambda^{\star}\right) \leq \min\left\{H^{\mathscr{S}}\!\left(\varphi\right),\!H^{\Lambda^{\star}\mathscr{S}}\!\left(\Lambda^{\!\star}\!\varphi\right)\right\}.$
- (2) Let Λ^* be a G-stationary channel from \mathcal{A} to $\overline{\mathcal{A}}$ and G be compact. Then

$$0 \leq I^{I(\alpha)} \big(\varphi; \Lambda^{\star} \big) \leq \min \left\{ S^{I(\alpha)} \big(\varphi \big), S^{I(\overline{\alpha})} \big(\Lambda^{\star} \varphi \big) \right\}.$$

References

- [A.1] Araki, H. (1976): Relative entropy of states of von Neumann algebras, Publ. RIMS, Kyoto Univ. 11, pp. 809-833.
- [A.2] Araki, H. (1977): Relative entropy for states of von Neumann algebras II, Publ. RIMS, Kyoto Univ., 13, pp. 173-192.
- [B.1] Bendjaballah, C., Hirota, O. and Ohya, M: *Quantum Optical Communication*, to be published in Springer-Verlag.
- [C.1] Connes, A. Narnhofer, H., Thirring, W. (1987): Dynamical entropy of C*-algebras and von Neumann algebras, Commun. Math. Phys., 112, pp. 691.
- [D.1] Davies, E.B. (1976): Quantum theory of open systems, Academic Press.
- [H.1] Hiai, F., Ohya, M. Tsukada, M. (1981): Sufficiency, KMS condition and relative entropy in von Neumann algebras, Pacific J. Math., 96, pp. 99-109.
- [H.2] Hiai, F., Ohya, M. Tsukada, M. (1983): Sufficiency and relative entropy in *-algebras with applications to quantum systems, Pacific J. Math. 107, pp. 117--140
- [L.1] Lindblad, G. (1975): Completely positive maps and entropy inequalities, Commun. Math. Phys., 40, pp. 147-151.
- [M.1] Muraki, N., Ohya, M., Petz, D. (1992): Note on entropy of general quantum systems, to be published
- [N.1] Neumann, J. von (1932): Die Mathematischen Grundlagen der Quantenmechanik, Springer-Berlin
- [O.1] Ohya, M (1983): On compound state and mutual information in quantum information theory, IEEE Trans. Information Theory, 29, pp. 770-777.
- [O.2] Ohya, M. (1984): Entropy transmission in C*-dynamical systems, J. Math. Anal. Appl., 100, pp. 222-235.
- [O.3] Ohya, M. (1989): Some aspects of quantum information theory and their applications to irreversible processes, Rep. Math. Phys., 27, pp. 19-47.

- [O.4] Ohya, M., Petz, D. (1993): Quantum Entropy and its Use, Springer-Verlag.
- [U.1] Uhlmann, A. (1977): Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in interpolation theory, Commun. Math. Phys., 54, pp. 21-32.
- [U.2] Umegaki, H. (1962): Conditional expectation in an operator algebra, IV, (entropy and information), Kodai Math. Sem. Rep., 14, pp. 59-85.