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§ 1 Mathematical Description of CDS and QDS

Let fix the notations used throughout this paper. Let u be a probability measure on a
measureble space (Q,5), P(2) be the set of all probability measures on € and M(Q) be the set of
all measurable functions on Q. We denote the set of all bounded linear operators on a Hilbert
space H by B(?H), and the set of all density operators on H by G(H). Moreover, let G(.A) be

the set of all states on 4 (C*-algebra or von Neumann algebra). Therefore the descriptions of

classical dynamical systems, quantum dynamical systems and general quantum dynamical systems

are given in the following Table:

CDS QDS GQDS
real r.v.f Hermitian op. self-adjoint
obs. in A on 'H A in
M(Q) (s.a. op. in B(H)) C*-algebra A4
state prob. meas. density op. p.lfnal pe S
UeP(Q) p on 'H with (/) =1
© expec J fdw trpA ©(A)
Q
-tation

§2 Classical Entropy

2.1 Discrete Case (Shannon's Theory)

Table. 1.1 Description of CDS, QDS and GQDS

A state in a discrete classical system is given by a probability distribution such that
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A, = {p ={p) ;2p=lp2 0}

The entropy of astate p={p,} €A, is

S(p)=-2 p.logp,
The relative uncertainty (relative entropy) is defined by Kullback-Leibler as

¥ piogh (p<< q)&'
S(p.q) =<4 g
oo (rXq)

forany p,g € A,. Onece astate p is changed through a channel A", the information transmitted

from a initial state p to a final state ¢ = A'p is described by the mutual entropy defined by

I(p;A) S(r.p®q)= Zrlog v
sty

where A":A, = A,; g=A'p is achannel (e.g., A =(p(jli)) transition matrix) , 7, = p(jli)p,
and p®@gq= { D4 j}. The fundamental inequality of Shannon is

0< I(p; A') < min{S(p),S(Q)}

According to this inequality, the ratio

r( D;A ) =
represents the efficiency of the channel transmission

2.2 Continuous Case

In classical continuous systems, a state is described by a probability measure u. Let
(Q,3,P(Q)) be an input probability space and (?2',@—, P(ﬁ)) be an output probability space. A
channel is amap A” from P(Q) to P(?i), in particular, A" is a Markov type if it is given by

N@(Q) = [Ax.0W(dx), p e P(Q), Q€T

Q

where A:QXF — R* with () A(x,e) € P(Q), (i) A(s,Q)€ M(Q). In continuous case, the
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entropies are defined as follows: Let F(Q) be the set of all finite partitions {4, } of Q. For any
¢ € P(Q), the entropy is defined by

—sup{ S o(A,)logep(A {A}GFQ)}

which is often infinite. For any @,y € P(Q), the relative entropy is given by

Sto)=p| SolaJor 22 fa ) ro}

_ ngog(g%)dw (p<<w)

oo (P X )

Let ®,®, be two compound states (measures) defined as follows :

®(0,0,) = [Ax.Q,)0(dx), 0, €3, 0, €T
©4(0,,0,) = (9 ® N9)(0.,0;) = 9(Q )N 0(Q;)

For ¢ € P(Q) and a channel A”, the mutual entropy is given by
(g A') = S(D,D,).

§ 3 Quantum Entropy

3.1 Entropies for density operators
A state in quantum systems is described by a density operator on a Hilbert space H. The

entropies are defined as follows: For a state p € G(H), the entropy [N.1] is given by
S(p)=-trplogp.
If p= ' p,E, (Schatten decomposition,dim E, =1), then
k

= —Zpk logp,.
k

Let us summarize the properties of the entropy S(p).



Theorem 3.3 For any density operator p € S(H), the followings hold:
(1) Positivity : S(p)=0.
(2) Symmetry : Let p'=U"'pU for an invertible operator U. Then
5(p)=5(p)
(3) Concavity : S(Ap, + (1= 2)p,) 2 AS(p,) +(1-1)S(p,) for any p,,p, € S(H).
(4) Additivity : S(p, ® p,)=S(p,)+ S(p,) for any p, € S(H).
(5) Subadditivity : For the reduced states p,,p, of pe S(H, ® H,).
S(p)<S(p,)+S(py)-
p, - pl, (=trlp, - pl) = 0, then

S(p) <liminf S(p, ).
(7) Continuity : Let p,, p be elements in S(H) which satisfy the following conditions :

(6) Lower Semicontinuity : If

(i) p, > p weakas n— oo, (ii) p, <A (Vn) for some compact operator A, and
(iii) - a,loga, <+ for the eigenvalues {a, } of A, Then S(p,) = S(p).

(8) Strong §ubadditivity : Let H ="H, ® H, ® H, and denote the reduced states 13 g3, P by
p; and p,, respectively. Then

S5(p)+5(p,) < S(p1,) +S(py) and S(p)+S(p,) < S(P13)+S(P23)‘

For two states p,0 € G(’H), the relative entropy [U.2, L.1] is given by

trp(logp—logo) (p<<o)
S(”"’)z{ o (pNo0)

where p<<o & forany A20, roA=0=wpA=0.
Let A:G(H)- G(’F(-) be a channel and set

o=Ap, 6;=) pE,®NE,0,=p®Ap.
k
The mutual entropy [O.1] is given by

I(psA") = sup{S(6;.6, ) E = {E, }}

= sup{; pS(NE,Ap)E= {Ek}}

for any state p € 6('}-{) and any channel A". When the decomposition of p is fixed such that
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p= Z).,‘p,‘ , then
‘ 1{p )= Y A,S(A"peu p).

k

where 0, = 22,,‘ P, ® A'p,. The fundamental inequality of Shannon type is obtained:
: .
0<1(p; A') < min{s(p).5(A"p)}-

3.2 Channeling Transformations

A general quantum system containing continuous cases is described by a C*-algebra or a
von Neumann algebra. Let 4 be a C*-algebra (complex normed algebra with involution * such
that ||A]| = “A , |A'A | =||A]* and complete w.r.t. |- [|) and S(A) be the set of all states on 4
(positive continuous linear functionals ¢ on A4 s.t. p(/)=1if I € 4)

A cahnnel A" : S(A) » G(Z) contains several physical transformations as special cases.

First give the mathematical definitions of channels.

Definition
Let (A, S(A). a) be an input system and (:Z G(Z) (7) be an output system. Take
any0, 0 G(A)
(1) A islinearif A" (Ap+(1-A)p)=AA"@+(1-A)A'¢ for any A [0,1].
(2) A’ is completely positive (C.P.) if A" is linear and its dual A: 4 — A satisfies

S AA(AE)4,20
ij=1
forany ne N andany A € A, A € A.
(3) A is Schwarz type if A(A")=A(A) and A(A) A(A) < A(A"A).
(4) A is stationary if Ao, =@, oA for any r€ R.
(5) A isergodicif A" is stationary and A’(exI(o)) < exI(@).
(6) A’ is orthogonal if any two orthogonal states ¢,,¢, € S(A) (denoted by ¢, L¢@,) implies
No LN o,.
(7) A is deterministic if A is orthogonal and bijection.
(8) For asubset S of S(A), A is chaotic for S if A'p, = A'p, for any ¢,,p, € S.
(9) Ais chaotic if A" is chaotic for G(.A).

Most of channels appeared in physical processes are C.P. channels. Examples of channels are the
followings [0.2, D.1]:
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(1) Unitary evolution :

For any density operator p € S(H)
p— AN,p=AdU,(p)=U,pU,teR,U,=exp(itH)

(2) Semigroup evolution :

p—=Np=V'pV,te R, where (V, e R*) is a one parameter semigroup on H

(3) Measurement ;

When we measure an obserbable A = zanPn (spectral decomposition) in a state p, the state p

changes to a state A’p by this measurement such as
p— Np=Y PpP,

(4) Reduction :
If a system Z, interacts with an external system Z, described by another Hilbert space K and
the initial states of £, and Z, are p and o, respectively, then the combined state 6, of Z, and Z,

at time ¢ after the interaction between two systems is given by
6,=U (p®o),,

where U, = exp(itH) with the total Hamiltonian H of X, and Z,. A channel is obtained by
taking the partial trace w.r.t. K such as

p—oANp=1trb,.

3.3 Entropies in GQDS
The entropy (uncertainty) of a state ¢ € .8 seen from the reference system 8, a weak *-
compact convex subset of 3, is given by [0.2,0.3].

Every state ¢ €.8 has a maximal measure 1 pseudosupported on ex.8 such that
9=, wdu

The measure p giving the above decomposition is not unique unless .8 is a Choquet simplex, so

that we denote the set of all such measures by M, (8). Put

D,(:8)= {Mc,(,g) ;N R and{p}cex8 sty p =1, = Zu,ﬁ((ok)},
k k
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where §(¢) is the Dirac measure concentrated on {¢}, and put

Hu) == plog i,
k

for a measure i € D,(:8). Then the entropy of a state ¢ € 8 w.r.t. & is defined by

5% (p)= | MT{HUD: pe D))
oo if D(8)=¢

The entropy (mixing entropy) of a general state ¢ satisfies the following properties
[0.2,0.3].

Theorem When A4 = B(H) and @, = Ad(U,) with an unitary operator U,, for any state ¢ given
by ¢()=trp - with a density operator p, the followings hold:
(1) S(p)=-trplogp.
(2) If @ is an o -invariant state and every eigenvalue of p is non-degenerate, then
§'(0) = S(e)-
(3) If p e K(cx), then S*(p)=0.

Theorem For any ¢ € K(a),
) $*(p)<S'(9)-
2) $*(¢)<S(p).

This .8 (or mixing) entropy gives a measure of the uncertainty observed from the reference system

»8 . Similar properties as S(p) hold (see [0.3)).

The relative entropy for two general states ¢ and y has been introduced by Araki
[A.1,A.2] and Uhlmann {U.1] and their relation is considered in [H.1,H.2].

<Araki's definition>

Let 9T be o-finite von Neumann algebra acting on a Hilbert space H and ¢,y be normal
states on 97 given by ¢(-) =(x, -x) and y(-) =<y, ~ y> with x,y € H . The operator S, is defined
by
‘ S”(Ay+ 2)=s™y)A'x, Ae N, T(y)z=0.

on the domain ly+ (I ——sm(y))')-(, where sm(y) is the projection from H to {1y}, the
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{‘)I'y}_~sup120rt of y. Using this S, , the relative modular gperator A is defined
asa, =(s,,)s;

x,y?

with spectral decomposition denoted by jlde,,y(i{). Then the relative entropy
is given by ’

0
+o0 otherwise,

S(q/ ](p) ={Ilogﬁd(y,e,,,(l)y) if v <<@

where ¥ <<¢ means that gu(A'A) =0 implies I//(A'A) =0 for Ae 1.

< Uhlmann's definition>

Let [ be a linear space and p,q be seminorms on [, « a positive Hermitian form on [.
Put G = {a;]a(x,y)| < p(x)q(y), x,y € L} and QM (p,q) = sup{oc(,x’,x)”2 o€ g} There exists a
quadratical interpolation ¢ €[0,1] — p, from p to g (p, = Ql,(p,q)) such that

(1) p, cont.
) t= %(z1 +1,)=p,=0M(p,.p,)
(3) pj, =0M(p,q)
4 p,,=0CM(p.p,)
() pu =OM(p,.q)
Let £ = A and for any states ¢, v € S(A)

p(A)=p(AA")'"?
g(A)=y(A"A)"?

Then the relative entropy for ¢ and y is given by

S(oly) = - liminf {01, (p.0Y"(1) - p*(1)}
For pe L(A)cS(A), A :S(A)-> G(X) let us define the compound states by

@f = [0®Nwdy and
8

D, =p®Ap
The mutual entropy w.r.t. .8 and u is

1 (o:1) = 5(@F 10,
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and the mutual entropy w.r.t. .8 is defined as [0.3]

1% (p:A) = timinf {17 (9:A') p F‘(S)}

= sup{Zka(A w, A (P); o= Zﬂk(pk}
k k

where

F;(S)={{”GD¢(S)'SX() H(p) < 5% () + £ < +oo}
(5) if $%(p)=

+o0
Dw(S)={ueMw(S);3{uk}cR*st =Y 1,5(¢,), ¢, € exS, Zuk—l}
k

when a state ¢ is expressed as @ = 2 1,0, (fixed), the mutual entropy is given by
k

I#(p;A) =Y uS(Nw,, Ap)
k
This entropy and .8 -entropy contains Connes-Thiring-Narnhofer entropy as a special case [M.1].

The inequality is satisfied for almost all physical cases.

0<% (p; A)<S(p)

The fundamental properties of the relatie entropy and the mutual entropy are the followings
[A.1,A2,U.1,H.1,0.3, 04].

Theorem

(1) Positivity : S{p 1y ) 20.
(2) Joint Convexity : S(Ay, +(1-A)y, 1 Ao, +(1-A)p,) <AS(w, 10,)+ 1 -2)S(w, 1 g,).
(3) Additivity : v, ®y, lp, ®p,)= Sy, 19,)+ S(v, 19,).
(4) Lower Semicontinuity : If }Hﬂlh'n —-l//“= 0 and ll_)rgntp,‘ —(p“z 0, then

.S(l;/ I(p) < lirrl) iﬁr}f S(u/,, lo, ) Moreover, if there exists a positive number 2 satisfying

v, <29, then lim Sy, 19,)=5(v 1¢).
(5) Monotonicity : E)rachannel A from S to g ,

Ky 1 Kp) <S{y 19).

(6) Lower Bound: |y —o| <25(y 19).



Theorem [0.3]
(1) If A" is deterministic, then I(¢; A") = S(¢).
(2) If A" is chaotic, then I(@; A)=0
(3) Forastate ¢ =trpe,if A’ is ergodic and the state is stationary for a time evolution

o, = AdU,, and if every eigenvalue of p is nonzero and nondegenerate, then
I(p;A") = S(A'p).

This mutual entropy is extensively used for analysing optical communication processes [B.1].

The CNT entropy H,(1) of C*-subalgebra I < A is defined by [C.1].

H,(M)= sup > u8(p; Mo N)

“’=Z,~“i<"i i

where the supremum is taken over all finite decompositiong = 3, 1o, of ¢. This entropy is a
mutual entropy when a channel is the restriction to subalgebra. There are some relations between

the mixing entropy § ’g((p) and the CNT entropy.

Theorem [M.1]
(1) For any state ¢ on a unital C*-algebra 4,

5(p)=H,(A)

(2) Let (Em ,G,a) be a G-finite W*-dynamical system, ¢ be a G-invariant normal state of JJ} ,
then

s Np)=H,(M ")

(3) Let A be the C*-algebra ((7H ) of all compact operators on a Hilbert space H, and G be

a group, & be a *-automorphic action of G-invariant density operator. Then

5 (p)=1,(4"

The pseudo-mutual & -entropy J ‘9((;); A') is given by

J'g((P;A‘): Sup{z#ﬁ(/\‘(l’j' A'(p);(p = zf‘u/ ¥ € ’8}
j

177
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Theorem [M.1]
(1) 0<1%{pA )T % (A7) <min{H (o)1 " #(No)}.
(2) Let A’ be a G-stationary channel from A4 to Z and G be compact. Then

0<1"(g;A') < min{s"® (), '@ (A'p)} .
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