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Introduction

It has been often said that white noise calculus is founded on an infinite dimensional
analogue of Schwartz type distribution theory on a finite dimensional space. In fact, the
Gelfand triple

(E) C (I?) = IX(E", ) C (B)*

of white noise functionals is similar to
S(RD) C LQ(RD,dx) - S'(RD)

by their construction. Moreover, the formal correspondence between white noise and fi-
nite dimensional calculi (e.g., [11]) have helped us to introduce new concepts into white
noise calculus successfully; for example, Fourier transform [10], infinite dimensional Lapla-
cians [11], infinitesimal generators of infinite dimensional rotations [5], rotation-invariant
operators [15], first order differential operators [18], see also [20].

The construction of white noise functionals which we have adopted as the framework of
white noise calculus is due to Kubo and Takenaka [8]. The essence of their discussion is
now abstracted under the name of standard setup of white noise calculus [5). The axioms
we use (see §2) are arranged for the operator theory on Fock space as well as for analysis of
generalized white noise functionals [19], [20]. The standard setup is recapitulated in §§2-3.

Although a simple trick it is noteworthy that the “time” parameter space T can be
a discrete space or even a finite set under the standard setup. If we take a finite set
T = {1,2,---, D}, the corresponding white noise calculus, which is justifiably called white
noise calculus with finite degree of freedom, yields a finite dimensional calculus based on a
particular Gelfand triple

D C L*(RP,dz) Cc D"

The main purpose of this paper is to study the above Gelfand triple and the resultant oper-
ator theory. In §4 we obtain a characterization of D and prove that D is a proper subspace
of S(RP). In §5 we discuss some important operators, such as differential operators, mul-
tiplication by coordinate functions, Laplacians, infinitesimal generators of rotations and
Fourier transform, by means of our operator theory on Fock space.
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The present discussion would be known to some extent. In fact, Takenaka [21] attempted
to explain white noise calculus by observing its one-dimensional version, namely the case of
D =1 in our terminology. In his quite recent work Kubo [6] discusses a discrete version of
usual white noise calculus and obtains characterization of D in a different way. Seemingly,
his original purpose is to establish an approximation theory for white noise functionals, see
also [7]. What we should like to emphasize in this paper is that the fundamental features
of white noise calculus do not depend on a special choice of 7 and E* such as 7' = R and
E* = §'(R), but are consequences of the axioms of the standard setup.

It seems possible to generalize our discussion further in an algebraic language to make the
essential structure clearer. In this connection reference to Malliavin [14], an axiomatization
of Gaussian space in line with the classical work of Segal, would help us.

1 Preliminaries

We start with general notation. For a real vector space X we denote its complexification
by X¢. Unless otherwise stated the dual space X* of a locally convex space X is assumed to
carry the strong dual topology. The canonical bilinear form on X* x X is denoted by (-, -)
or by similar symbols. When §) is a complex Hilbert space, in order to avoid notational
confusion we do not use the hermitian inner product but the C-bilinear form on £ x §.

For two locally convex spaces X and 9) let X ®, 2 denote the completetion of the
algebraic tensor product X ®a; Q) with respect to the w-topology, i.e., the strongest locally
convex topology such that the canonical bilinear map X x 2 — X ®az 2 is continuous.
For two Hilbert spaces $) and £ their Hilbert space tensor product is denoted by ) ® f.
It is noted that $) ®, & is not isomorphic (as topological vector spaces) to the Hilbert
space tensor product if they are both infinite dimensional. Nevertheless, when there is
no danger of confusion, X ®- 2 is also denoted by X ® ) for simplicity. For n > 1 let
X% C X% = X ® --- ® X (n-times) be the closed subspace spanned by the symmetric
tensors. Let (X®"):,,, be the space of symmetric continuous linear functionals on X®".

Following [19], [20] we introduce a standard countably Hilbert space just for notational
convention. Let ) be a (real or complex) Hilbert space with norm ||, and let A be a
positive selfadjoint operator on § with inf Spec(A4) > 0, namely, with the property that A
admits a dense range and bounded inverse. Then a selfadjoint operator A” is defined for
any p € R with maximal domain in ). Note that Dom (A~?) = $ for p > 0. We put

€], =[AP¢],, £€Dom(A?), peR

For p > 0 the vector space Dom (A?) with the norm |- |, becomes a Hilbert space which
we denote by €,. While, let €_, be the completion of §) with respect to |-|_,. Then these
Hilbert spaces satisfy the natural inclusion relations:

“’C@qC-'-C@pC--'C@0=5§C---C@_pC-”C@_qC-'-, 0<p<yg.

Then,
¢ = projlimé¢, = ﬂ ¢,
pmeo p20
becomes a countably Hilbert space (abbr. CH-space) with norms |-|,, p € R. Since a
general CH-space (see [1] for definition) is not necessarily of this type, we say that @ is the
standard CH-space constructed from a pair (£, 21). '
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It is known (see e.g., [1]) that &* (equipped with the strong dual topology) is isomorphic
to the inductive limit;:
¢ Zindlim€&_, = ] €_,.
p—oo P _pLéJO p
A standard CH-space € constructed from (), A) is nuclear if and only if A" is of Hilbert-
Schmidt type for some r > 0. In that case we obtain a Gelfand triple € C § C €*.

2 Standard setup — Gaussian space

Let T be a topological space with a Borel measure v(dt) = dt and let H = L*(T,v;R)
be the real Hilbert space of all v-square integrable functions on 7. The inner product is
denoted by (-, -) and the norm by |- |,.

Let A be a positive selfadjoint operator on H with Hilbert-Schmidt inverse. Then there
exist an increasing sequence of positive numbers 0 < g < A; < A\ < --- and a complete
orthonormal basis (e;)%2, for H such that Ae; = A;e; and

- 1/2
6= (E /\;2) = || A7l llas < oo.
j=0

Let E be the standard CH-space constructed from (H, A). By definition the norms are
given by ‘
o : 1/2
€, = 1 4%¢ ), = (ZA?”(& eﬁ"’) , €€E, peR
J=0
Since A~! is of Hilbert-Schmidt type by assumption, E becomes a nuclear Fréchet space
and we obtain a Gelfand triple

E C H=IXT,v;R) C E*.

The canonical bilinear form on E* x E is also denoted by (-, -).

By construction each ¢ € FE is a function on T determined up to v-null functions.
This hinders us from introducing a delta-function which is indispensable to our discussion.
Accordingly we are led to the following: _

(H1) For each ¢ € E there exists a unique continuous function £ on T such that £(¢) = &(¢)

for v-ae. teT.

Once this is satisfied, we always assume that every element in F is a continuous function
on T and do not use the symbol £. We further need:-

(H2) For each ¢t € T a linear functional §; : £ — £(t), € € E, is continuous, i.e., §; € E*;

(H3) The map t — 6; € E*, t € T, is continuous.
(Recall that E* carries the strong dual topology.) Under (H1)-(H2) the convergence in
E implies the pointwise convergence as functions on 7. If we have (H3) in addition, the
convergence is uniform on every compact subset of 7. Moreover, it is noted that the
properties (H1)-(H3) are preserved under forming tensor products, see [17].

For another reason (see §3) we need one more assumption:

(S) Ao = inf Spec (A) > 1.
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The constant number
0<p=2"=[A"lop <1

is important as well as § in deriving various inequalities, though we do not use them
explicitly in this paper.

By the Bochner-Minlos theorem there exists a unique probability measure p on E*
(equipped with the Borel o-field) such that

1 .
exp(~51¢13) = [ ¢ Ou(da), ¢ eE.

This u is called the Gaussian measure and the probability space (E*,u) is called the
Gaussian space.

3 Standard setup — White noise functionals

We shall construct test and generalized functions on the Gaussian space (E*, ) by means
of standard CH-spaces. As usual we put (L?) = L2(E*, u; C) for simplicity.

The canonical bilinear form on (E®")* x (E®") is denoted by (-, -) again and its C-
bilinear extension to (E@")* x (EE™) is also denoted by the same symbol. For z € E* let

:x®":€ (E®);, ., be defined uniquely as
o] Rn
w(@)= 3 (0 S0 —en (003 €0), e b (1

The explicit form of : ®": is well known, see e.g., [4], [17], [20]. The function ¢, will be
referred to as an exponential vector.
By virtue of the celebrated Wiener-It6 decomposition theorem, with each ¢ € (L?) we

may associate a unique sequence f, € Hg’", n=20,1,2,---, such that
$(z) =3 (:2®", fo), zEE, (2)
n=0

where the bilinear forms and the convergence of the series are understood in the L2-sense.
Moreover, (2) is an orthogonal direct sum and

1913= [, 16(e)Pu(dz) = £ nt £l

In other words, we have established a unitary isomorphism between (L?) and the Boson
Fock space over Hc.

We then need a second quantized operator I'(A), where A is the same operator as we
used to construct £ C H = L*(T,v;R) C E*. For ¢ € (L?) given as in (2) we put

I'(A)¢(z) = i_o% (:2%":, AB"f,) .

Equipped with the maximal domain, I'( A) becomes a positive selfadjoint operator on (L?),
and thereby the pair ((L?),'(A)) yields a standard CH-space which we shall denote by
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(E). Since I'(A) admits Hilbert-Schmidt inverse by the hypothesis (S), the space (E) is a
nuclear Fréchet space and

(E) C (L*) = L*(E*,15C) C (E)*

becomes a complex Gelfand triple. Elements in (£) and (E)* are called a test (white noise)
Junctional and a generalized (white noise) functional, respectively. We denote by ((-, -)) the
canonical bilinear form on (E)* x (E) and by || - ||, the norm introduced from I'(A), namely,

115 =1 T(AY 5 = o”'l (4 s, | = Z nfa 2, ¢e(B),
where ¢ and (f,)32, are related as in (2).

By construction each ¢ € (E) is defined only up to u-null functions. However, it follows
from Kubo-Yokoi’s continuous version theorem [9] (see also [17]) that for ¢ € (E) the right
hand side of (2) converges absolutely at each z € E* and becomes a unique continuous
function on E* which coincides with ¢(z) for y-a.e. x € E*. Thus, (E) is always assumed
to be a space of continuous functions on E* and for ¢ € (F) the right hand side of (2) is
understood as pointwisely convergent series as well as in the sense of norms || - || ..

It is known that ¢, € (FE) for any ¢ € Ec. The S-transform of & € (E)* is a function on
Ec defined by

58(6) = (@, ¢c) = €O [ @(a)e™Ou(dr), €€ Ee. )
On the ther hand, the T-transform is defined by '
<¢ e'( €)>> /. 1(50 §)u dZL') é‘ = EC- (4)

Of course the integral expressions are valid only when the integrands are integrable func-
tions, in paticular when @ € (E). There is a simple relation:

To(¢) = S8(i€)e 072, $0(¢) = TH(—i€)e™ 9%, ¢ € Ec. ()

4 Reduction to finite degree of freedom

From now on let 7' = {1,2,---,D} be a finite set with discrete topology and counting
measure v. Then H = L*(T,v;R) & RP under the natural identification. The L*-norm
and the Euclidean norm coincide:

D
|§|2=Z|§j|27 éz(glv"WéD) GH‘ (6)
=1

In this context the operator A needed to construct Gaussian space is merely a symmetric
matrix with eigenvalues 1 < Ay < --- < Ap. The corresponding unit eigenvectors are
denoted by e;,---,ep. Then, by definition

D
=D AF (6 e)’, €(€H=RP
7=1



142

Since M\ [€], < [€l,47 < Ap €], for £ € RP, all the norms ||, are equivalent and we
use only the Euclidean norm (6). Note also that |£| = |¢], for ¢ € RP. Moreover, the
corresponding Gelfand triple becomes E = H = E* = RP.

Since T is a discrete space and v is a counting measure on it, the verification of the
hypotheses (H1)-(H3) is very simple. The evaluation map 6; : £ = (&1,--+,€p) — & € Riis
merely a coordinate projection. Hence §; € (RP)* and

j—th

6; =(0,---,0, 1 ,0,---,0), j=12,---,D, (7)

through the canonical bilinear form (-, -) on (RP)* x RP.
The Gaussian measure g on E* = RP is nothing but the product of 1-dimensional
standard Gaussian measures:

p(dz) = (%) ’ "= 2y,

2T

where dz = dz,---dzp, z = (21, --,zp) € RP. Then, by means of I'(A) we obtain the
Gelfand triple of white noise functionals with finite degree of freedom:

(E) C (L*) = LR, 4;;C) C (E)".

By the continuous version theorem (E) is a space of continuous functions on RP. We shall
study (£) in more detail.

Lemma 4.1 Any polynomial belongs to (E).

PROOF. In general, it follows from the definition (1) that

<=w®":,£®">=lzil/zﬂn<(j%|§>l)’ e 0

where H, is the Hermite polynomial of degree n. Putting £ = §;, we obtain

<:z®”:, 6?”> = -2-5/—2.?1,1 (%) =7+

Hence (FE) contains every polynomial in z; and therefore in z,---,zp since (E) is closed
under pointwise multiplication. qed

Lemma 4.2 Let F be a C-valued function on CP. Then there exists some ¢ € (E) such
that F = S¢ if and only if

(i) F is entire holomorphic on CP;

(ii) for any € > 0 there exists C > 0 such that |[F(€£)| < Ceél’, ¢ € CP.
In that case ¢ is unique.

This is a simple consequence of the characterization theorem for white noise test func-
tionals [13], see also [6, Theorem 3.4]. Here is notation for simplicity. For a function ¢ on
RP we put

#*(z) = ¢(ax), a>0, zeRP.

It is known that ¢> € (E) for any a > 0 and ¢ € (E).
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Lemma 4.3 If ¢ € (E), then ¢ - e~ € L}(RP, dz) for any € > 0.
PROOF. In fact,

fowerte = () LJe()

- () Lol <o

since ¢'/V% ¢ (E) c L%(RP, u) C LY(R?, p). qed

e~ =712 g

Lemma 4.4 Let ¢ be a C-valued function on RP. If ¢- e~ € LY(RP,dz) for any e > 0,
the Fourier transform

o
@0 = (z) [, sererreaa,

converges absolutely at any ¢ € CP and becomes an entire holomorphic function on CP.

PROOF. We first prove that the integral
/mD d(z)e=17’ eit=: ) gz (8)

converges absolutely at any ¢ € CP. Suppose ¢ = £ + if; with £,£ € RP and take
€1,€2 > 0 with €; + ¢ = €. In view of the obvious inequality:

&l laP

2
T+ 4+ ____) < e|§212/4€2, = RD,
262

2
e-2lzlP=(=.8&) _ oyp | —¢
p 2 ic,

we see that
/]RD |¢(l‘)e—6|x|23i(a:,f)l dr = /]RD |¢(x)e—c|xl2ei(z,&)e—(z,ﬁ)I dx
— —e1|z]? —erlz|?—(z, &)
- /mp |¢(z)le™ " e 2dz

€212 /4e2 —ele?
< e /mD |o(z)le dz < 00

by asssumption. Hence (8) converges absolutely at any ¢ € CP.
For holomorphy it is sufficient to show that

RD ¢(~T)6_£Izl2i$j6i(x’£)dl‘, 7=12,---,D,

converges absolutely and uniformly on every compact neighborhood of ¢ € CP. We put
£ =&+, &,& € RP and take €1, €2,e3 > 0 with € = €; + €2.+ €3. A similar argument
as above leads us to the following

—e|z)? ; iz, —e1)z]? —elz)?  —es3lz]?—(z,
/mv |¢(:1:)e ol ;e E)Idz = /mv |p(z) e T | |2l gmealel (@ Ca) gy
€21 /4¢3 ‘ _€2|g:[2/ —alzf?
< e max |z;]e o |o(z)]e dz.

Then the desired assertion is straightforward. qed
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Proposition 4.5 A continuous function ¢ : RP? — C belongs to (E) if and only if
(i) ¢ - e=#F € LY(RP,dz) for any € > 0;
(ii) for any € > O there ezxists C > 0 such that

|6(€,€)/2(¢ : e—lr|2/2)'\(§)| < Cekl ¢ eCP.

PROOF. Suppose first that ¢ € (F). Then (i)\ follows from Lemma 4.3. By definition
for £ € RP, _

D
@@ = (=) [, Hae e Ods = [ sa)eteOu(an)

Hence, in view of Lemma 4.4 and the definition of T-transform (4) we obtain

(6P (6)=Te(e), €ecCP.
Therefore, by (5) we see that
S¢(i€) = Te(£)e® /2 = &0/ el'/2y(¢), ¢ e CP.

Then, it is easily seen that (ii) is merely reformulation of the boundedness condition of S¢
in Lemma 4.2 (ii).

Conversely, (i) implies the holomorphy of (¢ - e~1=°/2) by Lemma 4.4, and therefore of
e~(6:0/2(g . e=1e/2) (—i¢). Then (ii) guarantees the existence of ¢ € (E) such that

Sp(e) = =@ (g e (~ig), g e, (9)
by Lemma 4.2. On the other hand, ‘
Sp() = Tp(=ig)e @

= e &2y . el 12) (_¢), ¢ e CP, (10)
In view of (9) and (10) we obtain
(-1 = (- (€), € eRP. (11)

Note that ¢-e~#"/2 belongs to L'(RP, dz) by assumption and so does % -e~=*/2 by Lemma,
4.3. Since the Fourier transform of an L'-function is unique, it follows from (11) that ¢ = ¢
and hence ¢ € (E). qed

There is a natural unitary isomorphism from L?(RP, ) onto L*(RP,dz) given by

1

D/2
U¢(z)=(727?) e P lg(z), ¢ e L}RP,p). (12)

Let D denote the image of (E) under the unitary map U. Then, the Gelfand triple (E) C
L*(RP, u) C (E)* yields a new Gelfand triple

D C [*(RP,dz) c D*.

This is the basis of finite dimensional calculus derived from white noise calculus with finite
degree of freedom. As an immediate consequence of Proposition 4.5 we have
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Theorem 4.6 A continuous function 1 : RP — C belongs toD if and only if
(i) 9 - eli=o)ef ¢ LY(RP,dz) for any e > 0;
(ii) for any € > 0 there exists C > 0 such that

ie<e.e)/2(¢ . e—lxl’/«:)“(é)‘ < Cetkl ¢ eCP.
We next prove the following
Proposition 4.7 If ¢ € (E), then ¢ - e~k € S(RP) for any e > 0.

PROOF. Since S(RP) is invariant under the Fourier transform, it is sufficient to prove
that (¢ - e~") € S(RP). It follows from Lemmas 4.3 and 4.4 that (¢ - e~<=J is an
entire holomorphic function on CP and therefore belongs to C*°(RP). For a polynomial
P(z) = P(z1,---,zp) we write

a 7]
P = (g 2g;)

for simplicity. Then, modelled after the proof of Lemma 4.4, one can easily see that

D D
(7;_;) |, 6@t P@)e9dz = (7%) [ 6(z)e T P(iz)e"=0da

converges absolutely and uniformly on every compact neighborhood of £ € CP. Hence

Pd)(¢- e k) (¢) = (sP(ix)e =) (¢), € e CP. (13)

On the other hand, since P(:iz) belongs to (£) by Lemma 4.1 and (E) is closed under
multiplication, ¢1(z) = ¢(z)P(ix) belongs to (E) as well. Then (13) becomes

P@)(¢-e 1) (¢) = -W)( )

()
- () o)
&

vz
) [, #F @)= u(da).

Hence by (4) and (5) we have

P@)(¢-e ) (€) = ( jz—)Dw}W (%)
_ (_\71_2_6>D5¢}/\/§ (%) o (EVEEVE) 2. (14)

Since ¢/V* € (E), it follows from Lemma 4.2 that there exists C' > 0 such that

1S¢i/ ﬁz(é)l < CelfPt ¢ eCP.
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Hence we have

SL/VEe (\2—)’ < CelPrse ¢ P,
€

Then, in view of (14) we see that for £ € R?,

(2977

D
- 1 2 2 C 2
. e—clel? < | —— €17 /8e e /4e — = —1&)°/8e D
P66 < () cetr O seki cer
Then for another polynomial @ it holds that
QE)P@)(6 - T (6)] < D/2 Q(€)le¥F/8 — 0
as |¢| — oo, £ € RP. Consequently, (¢ - e""’I ) € S(RP). qed

Corollary 4.8 D C S(RP) and D # S(RP).

PROOF. The inclusion is immediate from Proposition 4.7. As for D # S(RP) we need
only to apply Theorem 4.6 to ¥(z) = e~leI’/8, qed

The above result is obtained also by Kubo [6, Theorem 3.5].

5 Corresponding operators

In the theory of operators on white noise functionals a principal role is played by annihila-
tion (Hida’s differential) and creation operators. In our context Hida’s differential operator
is defined by

¢(z + 06;) — ¢()

, — i D
0id(z) = })1_{1(1) 7 , p€(E), zeR”.
Then one sees immediately from (7) that
7} .
aj—%a ]_132""7-0'

A creation operator is its adjoint with respect to the Gaussian measure p.
Lemma 5.1 0} ==z; —0; and [0;,0;] = 6j.

PROOF. Hereis a direct proof though the assertion is entirely clear from general theory.
Let ¢,9 € (F). Then, by definition,

D
@6, 9) = (0,090 = (=) [, 00@) 62 Paz. ()

By partial integration we have
[ (@) s(z)e=F 2dz, =
= W@ - [ 6(a) {89(a) - $@)z;} e s,
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The first term vanishes since ¥(z)¢(z)e*"/2 € S(RP) by Proposition 4.7. Hence (15)
becomes

(05 6, )

i

D
<ﬁ) JLo ¥(2) (=0,6(z) + $(a)a) e 2

= —{8;¢, ¥) + (z;9, ¥)) .
This completes the proof. qed

It follows from the general theory that 9; € L((E),(F)) and 3} € L((E)*,(E)*). In our
case of finite degree of freedom, it is easily verified that 87 € L((E),(E)) as well. This is
because §; € E though é, € E* in a usual case.

Using the unitary operator U : L(RP, u) — L*(RP, dz) introduced in (12), we study a
few interesting operators in £((E), (E)*). Note that if = € L((E),(E)*) then UZU! €
L(D,D*). We begin with the following

Proposition 5.2

7 0 *_l_a:j_a -1
Uo,U™! = 5+ s voUTt =3 o7 Ug,U™" = z;.
In particular,
p =2 Uo,U ' =Ua:UY) = 10 =U,U '+ UBU =
T R

are the Schridinger representation of CCR on L*(RP,dx) with common domain D.

PROOF. For 9 € D we have by definition

2 (9 2 y a
Ud;U~"y(z) = e /451:_]- (e /() = %w(z) + b%(x)

Using an obvious relation Uz;U~! = z;, we come to
U@;U_l =Ul(z; —aj)U_l =Z;— (.’B_] +-§—) =% —a—

The rest is apparent. qed

In our case of finite degree of freedom an integral kernel operator [5] is merely a finite
linear combination of compositions of creation and annihilation operators with normal
ordering:

Sim(K) =D K(t, -yt dn, oy Jm)05 -+ 0505, -+ B, (16)
where ¢3,--+,8,J1, -+, Jm run over T' = {1,2,---, D}. Using Lemma 5.1 one observes that
E1,m(k) is a finite linear combination of differential operators with polynomial coefficients:

Eim(k)= ) C(a,B)z" (%)6,

la|<t
18I<i4m
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with multi-indices @ = (e4,---,ap), 8 = (b1,--+,B8p). On the other hand, it follows
from Proposition 5.2 that UZ;,,(k)U™! is again a finite linear combination of differential
operators with polynomial coeflicients:

USim(k)U"' = ¥ Cla,B)z° (a )ﬂ (17)

lal<i+m
18I<i4m

or in terms of the operators P; and @); introduced in Proposition 5.2:

USin(k)Ul= Y C(a,B)Q°PP. (18)

lal<i4+m

1BISi4m
The theory of Fock expansion ([16], [19], [20]) says that every operator = € L((E), (E)*)
admits an infinite series expansion in terms of integral kernel operators:

[e.o]

=Y Eim(fim). (19)

1,m=0

The meaning of convergence is discussed in detail, see the above quoted papers. Thus,
every operator in £(D,D*) is expressed in an infinite linear combination of operators of
the form (17) or equivalently (18). Inserting (18) into (19) we obtain

oo

UEU'= 5 Y Cim(e,B)Q>PP. (20)
I,m=0 la|<i+m
18l<i4m
Formally we may rearrange the infinite series (20) according to the usual order of multi-
index notation:
USU' =3 C(a,B)Q*P”,
a,8

though the meaning of the convergence becomes unclear. In this sense the Fock expansion
is more complete! Incidentally we note that (20) leads us to a statement of “irreducibility”
of the Schrddinger representation of CCR on L?(RP, dz), where the common domain of P;
and Q); is taken to be D.

The Gross Laplacian and the number operator are defined respectively by

D D
AG = 2612, N - Z@;aj
1=1 j=1

Since
i = (0] + 0;)° = 0;* + 07 + 0;0; + 9;0; = 9;* + 9} + 2070, + 1

by Lemma 5.1, we have
D

> (22 —1) = AL + Ag + 2N.

7=1
The left hand side is “renormalized” Euclidean norm which arises naturally in case of
infinite degree of freedom, see [15].
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Proposition 5.3 It holds that

D (9 a z¥ 1
-1 _ T e -
UAgU™! = ;(az§+zjaxj+ 1 +2),
D (8 o =z 1
*rr—=1  __ . = -
vagu— = ;(Oxf zﬂaxﬁ 4 2)’
-1 _ - J __
oo = 3 (gt -3)

The proof is straightforward from Proposition 5.2. On the other hand, for the usual
Laplacian
>
A=) —
= ox?
on L*(RP, dz) we have

U“AUzi R . =§: oo+ 5 L)
1=1 ! I 4 2 T 4 2

J=1

This expression motivated Umemura [22] to introduce an infinite dimensional Laplacian
2
z; 1
(in our terminology —N) by omitting the divergent terms -ZJ— ~ 3
As is shown in [5], every infinitesimal generator of a regular one-parameter subgroup

{gs}scr of O(E; H) is expressed in the form:
d

do

I(0)= /T k(. 0)(a()2 — a(2)d,)dsdt,

where k € (E ® E)* is a skew-symmetric distribution. Thus,
z(8)0, — z(t)0s = 0;0; — 0; 0,

is regarded as an infinitesimal generator of rotations though it belongs to L((E), (E)*).
In case of finite degree of freedom, the corresponding operator is z;0r — zx0;. Then by a
simple calculation we obtain

Proposition 5.4
0 0

U(a:j(‘)k — xkaj)U‘l = .’lfj-a—x-—k — xk-%f.
J

Thus, as for infinitesimal generators of rotations, the exact form coincides with the formal
analogy. But this is merely by good fortune.

Finally we consider the Fourier transform on white noise functionals introduced by Kuo
(10], [12]. In fact, it is imbedded in a one-parameter group of Fourier-Mehler transforms
which we shall discuss. For @ € (E)* the Fourier-Mehler transform §,®, 6 € R, is defined
by

S3eB(€) = S0(c*E)exp (£e7sin0 (€,)), €€ Fe. (21)
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This implicit definition works well due to the characterization theorem of generalized white
noise functionals, see [12] for details. It is known that § € L((E)*, (E)*). The operator
8§ = §_r/2 is called Kuo’s Fourier transform. :

In order to study UFsU ! we recall the (usual) Fourier-Mehler transform F3, 8 € R.
Following [2, Chap.7], for § # 0 (mod 7) we define

Fof(z) = (—27riei0 sin 0) s /]RD f(y)exp (-—z(|z|2 * Iyl;)s:fsgo 2z, y)) dy. (22)

For 6 =0 (mod =) we put
f(z), 6=0 (mod 2r),
faf(.r) = {
f(=z), =7 (mod 27).

These operators are defined, for example on L!(R?,dz). Moreover, {F;}scr becomes a
one-parameter group of automorphisms of S(RP). It is noted that

}-zfr/% f*:f—lzf—r/%

where F is the (usual) Fourier transform:

Ff(z) = f(z) = —l—D e= v dy.
f@)=1w)=72) L, f@edy

Theorem 5.5 It holds that
USoU-1 = e~ 14 o £, o ekl4

In particular,
Ugu—! = e~/ o F* o elel/4,

PROOF. Let @ € (E)*. Note first that

sa(6) = O [ a(@)eOu(ds)

D
- 1 —|z|? iz, —1
= (602 (_2_7;) /}RD &(z)e~ 7P 12658 gy

where the integrals are understood in the distribution sense, i.e., symbolic notation for
bilinear forms. (This remark remains valid throughout the proof.) Then we have

58(¢) = @O @Ry (—ig),  gec?, (23)
where the Fourier transform is in the distribution sense. In view of (23) we have

SFed(E) = e—(E,E)/2(3945,e—IxIQIQ)A(_ié),

S¢(€w€) = 6-62‘9(§’£)/2(¢'6_‘:6'2/2)’\(—2'6i9€),



Then (21) becomes

e~ (O (F B . eI 2] (_jg) =

= exp (-;.-ew sin @ (¢, {)) 6—62‘9(6,5)/2(¢ ) e—|x|2/2)“(_ieio ),‘
and therefore
(Bo® - e~ /2) (—ig) =
= ex i 9 g _e_%j 1 & . e |12 (_jeit
expf (5e?sind— S+ 2 ) (€, €) (@ e #P12) (—iee)
= exp {— (-;;eia sin 0) (€, §)} (@ - e"’”'g/"’)A(—ie"e ).

For simplity we put

» 1 1 .
a=af) = %e’e sinf = —1t1 et

Note that
Rea<0 and Rea=0<=a=0<0=0 (modn).

Then, (24) becomes
(Fo® - e B1/2) (—it) = 68D . e~ 1oF12) (—iei¥),

and hence R o
(86@ - %) (6) = (@ 1 (), e P

Applying the inverse Fourier transform to (25), we obtain

Fod(z)e /2 =
1 D
1/ T D

D D
L1 b 1 b

= (#)D/mb B(y)e P
x { (#)D /}RD exp (€, &) —i(z, &) +i(y, ¢“¢)) dg} dy.

As is easily seen,

1\ :
(532) fooomm(ate 0 +iu,e%) ~ite, ) dc =

151

(24)
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6, o b
( (=20)~D"2 exp S yﬁ;: i) . 8#0 (mod ),
=1 (2r)0026,(z), §=0 (mod 2r),
| (27)P/26_(2), =7 (mod 27).

Suppose first that § # 0 (mod 7). Then we obtain

§ed(c)e I =

= (_I_)D (—2a)~P72 /mv ®(y)e /2 exp (<:z: nlatikie e“’y>) dy.  (26)

V2 4o
Since
—_ etf — eV 2 0 2i61,,12
(z—eyz—%) o =26 (s, y) + ]y
4a - 2iei sin

e “|z|? + e?|y|> — 2 (z, y)
2:sin

_ izl +1yl)cos +2i(x, y) _ |z* — lyl?

- 2sin 2

(26) becomes
Fod(z)el=F /2 =
D
el (L ) (o \-Dp2
=e N (—2a)
T

—i(|z]* + |y|*) cos 6 + 2i (z, y)
8 /mD () exp ( 25in 0 a

_ i1l2 2 . ,
—_ 6‘|$l2/2 (_27riei0 Sin 0) D/2 AD Q(y) exp ( Z(l.’El + |y| )C080 + 2Z (x’ y)) dy-

2sind
In view of the definition (22) we have
B@(2)e FI 1 = 1127y (),

namely,
So = Fo. (27)

As is easily verified, (27) is valid also for # =0 (mod «). Consequently, for any § € R
U%gU"1 = 6_Ix|2/4 oFgo 6'x|2/4,

as desired. qed
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In fact, Kuo found the white noise version of Fourier-Mehler transform in the above way
though our discussion is reversed. The key idea is the identity (27).
It is known that § = §_,/, is characterized as a unique continuous operator from (E)*
into itself such that
30 = iz(H)3, Fz(t) = 10:5.

(More precisely, the operators d; and z(t) should be replaced with smeared ones because
they are not operators on (E)*. For details see [3] where the intertwining properties of the
Fourier-Mehler transform is discussed as well.) Therefore, the operator

F=U3U01
is charactreized by the following intertwining properties:
= [ Z; 0 .= =~ (T 0 =
2y — | =iz =i 2+ —]F 2
S(2 +ax,-) L z(2 +8xj)8 9

On the other hand, the usual Fourier transform F* on §’(RP) is defined by

1 \? :
F00 = (=) L ey

in the distribution sense and satisfies

a . .0
Péx—j—ll’jp, PZE]—Z%:P

This is compared with (28).

6 Appendix

We summarize the above discussion into the following “translation table.” In the left
column we list general notation of white noise calculus and in the middle the corresponding
expressions derived from white noise calculus with finite degree of freedom via the unitary
map (12). In the right column we list formally expected notions of usual finite dimensional
calculus.

TRANSLATION TABLE

white noise calculus finite degree of freedom conventional
in general (exact translation) formal analogy
(T,v) T ={1,2,---,D} with counting measure
(E*, p) (R?, dz)

(E) C L}E*,u) C(E)* D C L¥RP,dr)c D  S(RP) C L¥(RP,dz) C S'(RP)
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%, 9 K
o > t o, oz,
o 5_ 0 oy __ 2
t 2 6.’1,‘3' 6.'13]' B 612j
E* 3z z(t) RP 5z z;
z(t) = 0, + Of z; (as multiplication operator)
. D & a2t 1 D8\ o
e o ymty)  xlE e
D [ 5 a 2 1 D 52
= 2 —_ R A —_
AG—/;atdt ;(axf+$’6zj+ 4 +2> gazg
D D
(:28%:, 1) = L :x(8)?: dt > (z7-1) > a2
Jj=1 j=
0 0
.’I:(-S)at - :c(t)a, fE]a—xk - :Eké_.’l,‘—j
Fo: (E)* N (E)* e—|xl2/4 oFs0 e|x|2/4 Fp - S' = S
§:(E) = (E) e~leP/4 o Fx o glel'/4 FriS' =8
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