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0. Introduction

One of the most important things in research activities are among efforts in
infinite dimensional analysis. From this point of view, in this note, we shall
construct an infinite dimensional homogeneous space embedding in a formal
loop group, which represents a kind of infinite dimensional symmetry.

We discussed in [HS2] that there is an elegant relation between the confor-
mal factor in the stationary axisymmetric (SAS) Einstein-Maxwell field equa-
tions and a central extension of a formal loop group which is described by a
group 2-cocycle on the formal loop group. This relation was first found by [BM]
in the vacuum case. Also it is very important that the corresponding 2-cocyle
on the Lie algebra of the formal loop group is the one which describes an affine
Lie algebra [K], and that the space of formal solutions with conformal factors is
a homogeneous space of a central extension of the Hauser group.

The crucial points of our discussions are as follows (see [HS2][HS1}[S] for
more details). The equations, which are derived from the stationary axisym-
metric (SAS) Einstein-Maxwell field equations, become a o-model. Then the
theory of the o-model is formulated in the category of formal power series by
using Takasaki’s formal loop group technique [T] and the linearization procedure
investigated by Breitenlohner and Maison {BM]. The action of the centrally ex-
tended Hauser group (G(°))” or (FH)™ on the potential space (SP)” with the
conformal factor is defined with a decomposition of the formal loop group. It is

~

expressed as the following commutative diagram for g € (FH)

(FKI\(FKY(SPY —— (FKY\(FKY(SP)

! !

(SP)” — (SP)".



In the present note, from the simplicity of our discussions, we restrict our-
selves to the case in the Einstein vacuum field equations in the stationary ax-
isymmetric space-time for couplings of the gravitational fields without any other
field.

Now we derive the equations, which are our starting point, from the sta-
tionary axisymmetric Einstein field equations.

Let ds? = g,,dz* ® dz” be a metric on R'*3,

Then the Einstein field equations
Ru =0 (uv=0,1,2,3),

where R,, is the Ricci curvature.

We adopt the coordinates (z°, 2!, 22, 23) = (¢, 4, z, p) with ¢ being time and

(¢, z, p) the cylindrical coordinates of R®. Stationary axisymmetric space-times
amount to the assumption that a metric is of the form

hOO hOl
— th hll
- 0
0 -
det h = —p?,

where A > 0, ho1 = h1o and h = (h;j). The field A is called the conformal factor.

Since we assume that the fields are stationary and axisymmetric, the func-
tions h;;’s and A depend only on z and p. Furthermore, we fix the gauge as

follows :
1 0
=0 = (5 ) (01)

Introducing the (complex) Ernst potential u constructed from h by the standard
method (cf. [DO][E]), we obtain

Proposition 0.1. The stationary azisymmelric Einstein-Mazwell field equa-
tions are equivalent to the following equation :

F(d* du+ p=tdp A *du) = du A *du (0.2)
22— H 4 50,000 - SO - 00w 0.0) (03)
%2~ 2l L@ - @0

+ (=00 = 0= 0,0, (04)

where f = Re u and * s the Hodge operator given by xdz = dp,*dp = —dz.
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The first equation s called the Ernst equation.

Corresponding to the gauge fixing (0.1), we shall consider the solutions under
the condition

u[(zyp):(gyo) =1. (05)

It is essential to introdice the function 7 = f}/2) and we shall consider 7, in
stead of A, throughout the paper.

1. Formal Loop Groups and Central Extension

In this section we shall discuss and describe those concepts and results from the
theory of finite dimensional Lie group, formal loop groups and central extension
which are needed for our mathematical formulation and to fix our notations in
this paper.

Let 6 be Cartan involution of G = SL(2, R) defined by g — t¢g”" and K be
the subgroup of GG such that each element of K is fixed by 6.
Then K 1s a maximal subgroup of G.

We fix subgroups A and N of G as follows :

{5 g} e {(2 D) o)

Then we have G = K AN (Iwasawa decomposition).

Let R be a ring of formal power series in z and p over R i.e. R = R[]z, p]],
and Gg be a subgroup of GL(2, R) defined by {g € gl(2,R);det g = 1}. Then,
corresponding to G = KAN, Gg decomposes as Gg = KrArNg, where Kg,
Apg and Npg denote subgroups of Gg consisting of matrices with values in K, A
and N respectively, each of whose components is an element of R.

Put Fy = R = R[[z, p]] and F, = pl*|R for a nonzero integer n. We intro-
duce a topology in R by declaring that { F}, },>0 forms a fundamental neighbor-
hoods system of 0. Note that F,, F,, C F,,4, for m,n > 0.

We define a formal loop group FG,, following [T], by

7—‘90={g=zgnt” € Fgl; detg=1go(0,0)=1}, (1.1)
nelZ
and its subgroups by

flCz{ksznt” € FGo; e<°°>k:k} (1.2)

neZ



77’={p=2pnt"efgo;poeARNR,pn=0ifn<0}, (1.3)
nel ‘

where Fgl is defined below, ¢ is a spectral parameter and a Cartan involution
() of FGyg is defined by 6(>)(g) = 8(g(—1/t)) for g € FGq.

Then, using the Birkhoff decomposition ((3.17), [T]), we can decompose
uniquely an element g € F§G as

g=kp (keFK, peFP). (1.4)

The formal loop algebra Fgl, which is defined by

]—'g[={X=ZXnt";Xn Eg[(Q,Fn)}, (1.5)

neZ
becomes a Lie algebra with Lie bracket [X,Y] = XY — Y X. The map

Xn
exp: Fgl — FGL (expX =¢eX = Z?l_) (1.6)

n>0

is called the formal exponential map.

For X,Y in Fgl, let ¢,(X,Y) (n=1,2,---) be the elements in Fgl which
are determined by

expvX expvY = exp Ecn(X,Y)v”,
n>0

where v 1s an indeterminate and ¢,’s are uniquely determined by a recursion
formulas (see [V]). Weset C(X,Y) =3 5, ¢a(X,Y). Then C(X,Y) is a well-
defined element of Fgl for X,Y such that Xo,Yy € gl(2, m), where m is the
maximal ideal of R. Furthermore, there exists a Fgl-valued function L(-,-) such
that

CX,Y)=X+Y +[X,L(X, )]+ [V, L(-Y,—-X)].

Now we introduce a group 2-cocycle on FGy, following [BM], by use of the
above defined L and a R-valued 2-cocycle w on Fgl given by

w(X,Y) = Res; Retr X8,

for X, Y € Fgl where Res; indicates a formal residue with respect to t.

Note that any element g € FGy can be uniquely written as g = eX for
X € Fglwith X € gl(2, m).
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Definition. Let = be a R-valued function on FGg x FGo defined by
Z(eX,e¥) = w(X, L(X,Y)) + w(Y, L(-Y, - X)).
Then Z defines a 2-cocycle on FGy, 1.e. satisfies the cocycle condition :
Z(eX,e¥) + E(eX e, e?) = E(e¥, e?) + (¥, eV e?) (L.7)

for X,Y,Z € Fgl.

Thus we define a central extension of FGg in terms of the cocycle =.

Definition. Let (FGg)™ be the set given by
(FGo)” ={(g,€"); g € FGo,p € R}
with a product of any two elements of (FGo)™ by

(g1,€"1) - (ga, ") = (g1g2,6“1+“2+3(g"92)) (1.8)

for (g1,€"'),(g2,€"?) € (FGp) . Since Z satisfies the cocycle condition (1.7),
(FGo) forms a group with group multiplication given by (1.8). Namely, (FGo)~
1s a central exlension of FGq.

Let 8(°) be an involution of (FGo)™ given by (=) (g, e#) = (6(=)(g), e~#).
If we denote by (FK)~ the subgroup of (¥Go)™ consisting of elements which are
fixed by () then we have

(FKY = {(k,1) € (FGo)™; k € FK} .
Let (FP)™ be a subgroup of (FGy)™ given by
(FPY ={(p,e") € (FGo) ;p€ FP,u € R}.

It follows immediately from the decomposition (1.4) of FG that (F¥Gy)™ has a
unique decomposition :

(FGo)™ = (FKY - (FPY. (1.9)

2. Linearization and Potential Spaces

In this section we shall discuss a linearization of the Ernst equation and define
potential spaces realized in formal loop groups.

First we parametrize an element of Ag Ny as follows :
Vi o0
P=(v 11, (2.1)
viivii

where f is the same ones as in (0.2), and ¢ = Im u.



The following fact is well known.

Proposition 2.1. Under the parametrization of (2.1), we put M = (P~ 1)P.
Then the Ernst equation (0.2) is equivalent to the following equation:

d(p*dMM™') = 0. (2.2)

Moreover the function 7 is a solution of (0.3) and (0.4) if and only if it is a
solution of the following equations :

f*@r:%ﬁ@ﬂWM‘WﬂWM‘U (2.3)
r19,r =§tr((apMM-1)2 — (8, MM~1)?). (2.4)

The integrability of 7 follows easily from (2.3) and (2.4).

It is also known that the equation (2.2) can be rewritten as the integrability
condition of a 1-form with values in g each of whose component is an element
of R(z, p) @ R[[t]], where R(z, p) is the quotient field of R = R[[z, p]] and ¢
an indeterminate called “spectral parameter”. Namely, let A and Z be 1-forms

defined by
1 .
A= S(dPP™ 4 6p(dPP™)), T=(dPP™" —6n(dPP™Y))

for any P € AgNg, and put

1-12 2
QP_“4+<1+t2 T 112 *)I’

where x is the Hodge operator given by *dz = dp, *dp = —dz. We extend the
canonical exterior derivative d on C(z, p) to that on R(z, p) ®g R[[t]] by defining

t

dt = ————
(L+12%)p

(1 —t*)dp + 2tdz) . (2.5)

Note then that d?t = 0. Now we have
Proposition 2.2. Qp satisfies the integrability condition, t.e.,
dQp — Qp AQp =0 ‘ (2.6)

if and only if P is a solution of (2.2).

In the view of Proposition 2.2, we can define SP with the gauge fixing
condition (0.6), which is called the space of potentials.

101



102

Definition. Let FP be as in (1.3). We define SP to be a subset of 7P con-
sisting of elements p = )", p,t" which satisfy the following conditions :

dp = QPU P and pOI(z,p):(0,0) =1 (27)

Note that the compatibility condition of (2.7) is just (2.2). Hence pg is a solution
of the Ernst equation (2.2) for p =3 ., pat™ € SP.

Finally, we define (SP)”, which is called the space of potentials with con-
formal factor.

Definition. (SP)” being the subset of (FP) is defined by

577 = {(n.e*) € (P p= Y put" € 5P,

n>0

T = e~ * satisfies (1.8) and (1.9) with P = po}. (2.8)

3. Hauser Group and its Central Extension
In this section we define the Hauser group and its central extension, which is

the trivial extension.
’

Define an infinite dimensional group G(>), which we call Hauser group, by

G =qg=> gns" € gl(2,R[s]]); detg=1,90=1,
n>0

where s is an indeterminate and R[[s]] is a ring of formal power series in s over

R.
- Let j be a homomorphism of G(*) into FG, given by
Pig= 2 g i) = S (s =0+ 22)
n>0 n>0

Then it is easy to see that j is injective and that the image of G(>) by j is
in FGo. We denote by FH the image of G() by j. The following equations
characterize the elements of FH in FG,.

Lemma 3.1. An element g € FGo belongs 1o FH if and only if g satisfies the
following equations :

1
oo =—r(0:+70,) 0 (3.1)

6tg=—

SR I

(1 + -t-l.;) 0.9. (3.2)
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This characterization will play an important role in the proof of our main theo-
rem.

Now we define another infinite dimensional group (G(°))~, which is the
(trivial) central extension of the Hauser group, by

(G =G x {7 7 € R)
with a direct product of groups. Furthermore, put
(FH) ={(g,€") € (FGo)"; g € FH, v € R},

which is the image of (G(>)}" by the homomorphism j x . It follows from
Lemma 3.2 in [HS2] that FH can be regarded as a subgroup of (FH) by

FH — (FH)", g+ (g,1).

4. Infinite Dimensional Homogeneous spaces

So far we have discussed and defined the potential spaces and the Hauser group
with relation to the central extension of formal loop groups. In this section
we prove that the potential spaces have the structure of an infinite dimensional
homogeneous space.

First we define an action of the Hauser group G(*) or FH on the potential
space SP.

Theorem 4.1. Let p be an element of FP. Then p belongs to SP if and only
if () (p~V)p € FH.

Let p € SP and g € G(*). By (1.4) there exist k € FK and p, € FP such
that

p-jlg)=k""-p,. (4.1)

Then, it follows immediately from Theorem 4.1 that p, is in SP. Thus we can
define an action of the Hauser group G(>) on S_P to the right by

SPx G — 8P (p,g) — p,, (4.2)

where p, is given by (4.1).

From the fact that an element g = 3 . got" € FH such that gl=)(g=1) =
g and gg is positive definite decomposes as g = h*h for some h € G(®) we have
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Corollary 4.2. The action of G{™) on SP given by (4.2) is transitive.

Remark. As we mentioned in [S], our group G(*) is too small to obtain all
solutions of the Ernst equation (2.2) through the action (4.2).

Now we proceed to the discussions of an action of the centrally extended
Hauser group (G(™)Y or (FH)™ on the potential space (SP)".
For any p € SP, we can find an element ¢ € FH which sends the identity
element 1 € SP to p by Corollary 4.2. Then we have p = kg for some k € FK.

Proposition 4.3. Forp= anopnt” €SP, let ge FH and k € FK be such
that p = kg. Let 7 be a solution of (2.3) and (2.4) corresponding {0 P = pg.
Then we have the following relations:
79,7 =0,Z(kg, g7 1) (4.3)
719,71 =0,2(kg, g7 ").

Proposition 4.4. Forp € SP, let k € FK and g € FH be as above, i.e.
p=kg. Then we have

=00 (p~1), p) = 25(kg, 9" (4.5)

)
Therefore, any element of (SP)” can be writlen as (p,e_%s((’(w)(”_l)’p)"'"’) for
p €SP,y eR.

Define an action of (FH)™ on the space of potentials with conformal factor
(SP) to the right through the decomposition (1.9) :
(SPY" x (FH)” — (SP)", ((p, "), (g,€")) — (pg, €%). (4.6)
Namely, we can find a unique element (k,1) € (FK)™ and (p,, e*) € (FP) such
that

(5, )(9,€7) = (b, 1) (py, e%),
where k and p, are the elements given in (4.1). Since we have

6 ((p, e*)(g,¢")) ™" - (p,e*)(g, €7) = (g"p"pg, > W+ HEE"P))
and

g(m)(p!” ea)_l (pg, %) = (P;pg, €2a+5(p;’pg))a

we obtain -

1 —_ % —_ %
a=p+y+ 5(5(19 ,p) — E(py,pg))

1_ *
=y~ §=(pg,pg)
for some 4" € R, where we used Proposition 4.4. Thus (pg, e*) belongs to (SP)",
l.e. the action (4.6) of (FH) is well-defined.

Now we state our main theorem :

Theorem 4.5. The group (FH) acts transitively on the space of potentials
with conformal factor (SP)Y™ by (4.6).
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