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Introduction

A simple set of physically meaningful axioms, unifying classical and quantum probability,
is proposed. A classification theorem exhibits all the models for these axioms. These
include the usual classical and quantum models, but new interesting models arise.

Bayes’ definition of conditional probability plays in probability theory the same role
played by the parallel axiom in Euclidean geometry. As the geometric invariants (e.g.,
curvature) distinguish Euclidean and non-Euclidean models, the statistical invariants dis-
tinguish Kolmogorovian and non-Kolmogorovian models. The statistical invariants show
the non-Kolmogorovianity of the quantum models. They distinguish real and complex
numbers. They show that, even in the simplest situation, there are new unexplored
possibilities.

For several years the physicists have applied some Kolmogorovian rules to some non-
Kolmogorovian (quantum) data: this has lead to the famous ”paradoxes of quantum
theory”. This story is reviewed.

The interpretative problems of quantum mechanics have led to a new analysis of the
axioms of classical probability theory. The main result of this analysis is that some basic
probabilistic notions, considered for centuries intrinsic to the very notion of probability, are
in fact model dependent statements, like Euclid’s parallel postulate. The implicit axiom,
which played for probability theory the role of the parallel postulate in geometry, is Bayes’
elementary definition of conditional probability. We can now prove experimentally, using
data arising in quantum mechanical experiments, that this postulate is not adequate to
describe several simple quantum phenomena. A mathematical analysis of Bayes’ formula
defining conditional probability shows that it is equivalent to several properties which
are by far not self-evident: several examples of violation of these axioms in the quantum
probabilistic model are considered and their experimental evidence is discussed.

The program of classifying probabilistic models in terms of “statistical invariants” is
outlined and the results obtained up to now in this direction are surveyed. This prob-
abilistic analysis suggests a natural solution to the interpretative problems of quantum
theory as well as a new approach to the problem of its mathematical foundations.



1 The quantum probabilistic approach to the
foundations of quantum theory

The main conclusions of the quantum probabilistic approach to the foundations of quan-
tum theory, developed in the last fifteen years, can be summarized (necessarily in a very
schematic way) as follows:

(1) All the paradoxes of quantum theory (reality, locality, separability, - --) have their
roots in the statement that if a system is in a superposition state with respect to a given
observable A, then this observable cannot actually assume any of its values and only the
act of measurement collapses the physical state of the system so that one and only one of
the values A is assumed.

(2) There exists, in the literature, only one proof (up to minor variations) of the the-
oretical and experimental necessity of accepting the statement of item (1). This proof is
based on the implicit assumption of the applicability of an important elementary formula
of classical probability theory. Quantum probability proves that the application of this
formula in the context of the above mentioned proofs is mathematically unwarranted. In
other words, quantum probability shows that the apparent contradictions met in quan-
tum physics arise when one mixes the rules of the new quantum probability calculus with
those of the old classical one.

(3) As a corollary of the result of item (2) it follows that there is no need to assert that the
collapse of the wave packet corresponds to a real physical phenomenon. In particular, the
so called paradoxes of quantum theory, which are all constructed by means of variations
on the theme of the collapse of the wave packet, are cut at their roots.

(4) A simple set of physically meaningful axioms, unifying classical and quantum prob-
ability, is proposed. A classification theorem exhibits all the models for these axioms.
These include the usual classical and quantum models, but new interesting models arise.

(5) A consistent physical interpretation of the new probability calculus can be developed
entirely within the conceptual framework of classical physics. Some trends, open for the
philosophical and epistemological meditations by these results are outlined.

2 Algebraic probability theory

Some fundamental results of classical probability theory have a universal validity, being
based on purely combinatorial properties. This statement is illustrated with the quantum
probabilistic generalization of three basic probabilistic results: the law of large numbers;
the central limit; theorem and De Finetti’s theorem.

In paricular, the quasi-free states of quantum field theory are shown to arise from
quantum central limit theorems just as the usual Gaussian measures arise from classical
central limit theorems. Also the Heisenberg commutation relations are shown to be a
quantum central limit effect. Finally a quantum invariance principle is proved from which
one deduces the quantum Brownian motions, introduced in the sixties in laser theory.

The general quantum central limit theorems, applied to the quantum Bernoulli process,
lead to the quantum harmonic oscillator.

A theory of quantum Markov chains is developed. Several results of the classical theory



are extended to a quantum environment. Several examples are produced and they are
used to construct some nontrivial (i.e., with a nontrivial interaction) models of signal
transmission in a quantum environment.

An axiomatic theory of quantum noise is proposed. From the axioms one deduces a
quantum stochastic differential equation which generalizes the usual Schrodinger equation
in interaction representation. A consequence of this equation is the quantum generaliza-
tion of the Einstein fluctuation-dissipation relation.

From this generalized Schrddinger equation the general form of the quantum Langevin
equation is deduced. When the abstract theory is particularized to the class of quantum
noises usually considered in laser theory, the quantum Langevin equations are shown to be
in 1-1 correspondence to certain Lie algebras of observables. The position-momentum Lie
algebra produces the equation of the dumped harmonic oscillator proposed by Senitzky
and Lax in 1968. The angular momentum Lie algebra produces a nonlinear generalization
of the equation proposed by Block in 1946 to describe paramagnetic resonance. Numerical
experiments show that this nonlinearity leads to a dynamical phase transition which is
strongly reminiscent of the phenomenon of parametric laser amplification.

A theory of quantum Markov chains is developed. Several results of the classical theory
are extended to a quantum environment. Several examples are produced and they are
used to construct some nontrivial (i.e., with a nontrivial interaction) models of signal
transmission in a quantum environment.

3 Quantum fluctuations

In the past years a new kind of perturbation theory was developed in a long series of
papers dealing with an increasingly complex sequence of quantum models. The theory is
well suited for the study of scaling limits of various kinds of quantum models. At present
the most studied types of scaling limits are the weak coupling (or van Hove) limit and
the low density limit. In the following, in order to simplify the discussion, we shall only
discuss the weak coupling limit case, and the perturbation parameter shall be called the
coupling constant.

The starting point of the new perturbation theory is, like for the usual one, the iterated
series solution of Schrédinger’s equation in interaction representation, which is supposed
to be convergent in some weak topology. The basic features which distinguish the new
approach from the usual one are the following:

(1) One considers limits of matrix elements of the solution of the Schrédinger equation
with respect to states which depend themselves on the coupling constant. The choice of
these vectors is determined by first order (usual) perturbation theory and by theoretical
considerations inspired to the quantum central limit theorems.

(2) In each term of the iterated series expansion of these matrix elements, one distin-
guishes two pieces, one of which is negligible in the limit, the other not.

(3) One shows that the series obtained after the limit can be resummed and the result
satisfies a quantum stochastic differential equation.

Usually the theory, which at the moment is nonrelativistic, is applied to describing
a quantum system (called the small system) interacting with a second quantized system



(called the reservoir). In the limit the reservoir system becomes a quantum stochastic pro-
cess which strongly depends on the form of the interaction between the small system and
the reservoir. Such a process is usually called a quantum noise and the quantum stochas-
tic differential equation is a generalization of the usual Schrédinger equation. From this
point of view, a quantum noise is a scaling approximation to a quantum field. Typically,
i.e. for several models, one finds a quantum Brownian motion in the weak coupling limit;
a quantum Poisson process in the low density limit.

The interactions considered up to now in the weak coupling limit case are known approx-
imations of the standard quantum electrodynamical interaction: dipole approximation,
rotating wave approximation, - -- . The full QED interaction (without dipole approxima-
tion) was first considered one year ago and has led to the introduction of some dramatically
new features into the picture:

(1) The quantum noise arising from the full QED interaction is of a completely new
type. In particular, the vacuum distribution of the noise field operator is not the usual
Gaussian, but a convex combination of Wigner semicircle laws.

(2) The quantum noise does not live on a Hilbert space, but on a Hilbert module over
the momentum algebra of the small system.

(3) From the limiting procedure a new kind of Fock space arises, called the interacting
Fock space because the scalar product in each of the n-particles subspaces is not the usual
one, coming from the tensor product of Hilbert spaces, but a new one, for which the n
particles are no longer independent.

These new features have yet to be fully understood, but the non independent, i.e.
strongly interacting, nature of the quanta in each of the n-particle spaces in the interacting
Fock space, suggests the speculation that this type of space might be a good candidate
to describe the state space of the quarks.

4 The Quantum Brownian motion as approxima-
tions of quantum fields

The free quantum electromagnetic field and the Quantum Brownian motions (QBM) are
both examples of quantum Gaussian fields. The QBM were introduced in the sixties, in the
physical literature on laser theory, as approximations of the free quantum electromagnetic
field. The problem of giving a precise meaning to this statement was recently solved with
quantum probabilistic techniques. The basic result was that in the weak coupling limit
(WCL) of a system interacting with a Gaussian quantum field, the usual Hamiltonian
equations are approximated by a quantum stochastic differential equation driven by a
QBM.

The situation in the low density limit (LDL) is considerably more difficult, due to
the presence in the interaction of a finite intensity term, not tending to zero with the
density. In the probabilistic analogy, the WCL interaction arises from a sum of uniformly
infinitesimal quantum fields - a situation strongly reminding the classical central limit
theorems; while the finite intensity term in the LDL corresponds to rare individual events
(low density), a situation which reminds the classical Poisson limit theorems. On the basis
of this analogy Irigerio and Maassen conjectured that this finite intensity term should



give rise, in some limiting sense to be specified, to a quantum Poisson process (QPP).
However, while in the physical literature there are several arguments which justify at least
at a nonrigorous level the origins of the QBM, nothing similar can be found for the QPP
(a posteriori we now understand why: some basic features of the QBM already appear at
the level of second order perturbation theory — precisely these effects were discovered by
the laser theorists — while any effect related to the QPP receives contributions from the
whole perturbative series). The solution of the problem has gone through 3 basic steps:

(1) One isolates the finite intensity term and shows that in the low density limit this
gives rise to a quantum stochastic equation driven by a pure jump quantum noise.

(2) One identifies the coefficients of the quantum noise in step (1) to the matrix elements
of the scattering operator between the system and the one particle space of the field on
the zero energy shell. ‘

(3) One splits the full interaction into a weak coupling and a low density part (plus
higher order terms) and shows that in the limit, the two parts interact in such a way
to produce exactly the compensation term, between the quantum diffusion (due to the
WCL) and the quantum jump part (due to the LDL) required by the quantum Ito formula
to guarantee unitarity of the evolution.
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