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On some results of the cohomology of extra special p-groups

SUR R HTedPYE
M.Tezuka and N.Yagita
(% s2) & 250% 4 9)

Extra special p-groups are central extrensions of Z/p by elementary abelian
p-groups. These groups occupy a distinctive in the cohomology and
representation theories of finite groups. Quillen decided mod 2 cohomology of
the extra special 2-groups [Q]. However the corresponding calculation for
odd p is still unknown. Tezuka-Yagita studied the varieties defined from its
mod p cohomology[T-Y]. Extending these reults, Benson-Carlson decided the mod
p cohomology modulo Jacobson radical [B-C]. The radical parts seem very

difficult. For the group of the order p®, Lewis decided the integrai
cohomology and Leary wrote down the mod p cohomology completely [Lw], [L2].
Minh computed the mod 3 cohomology of the group with the order 3° and of the
expanent 3% [M].

‘One of main results of this paper, is to give the additive structutre of the
mod p cohomology of the group with the order p® and its exponent p
(Theorem 8.25). The another results are existence of groups and their modules

which period is exactly 2p® for each n.

‘§1. Extra special p-group.

. An extra special p-group G is a group such that its center is Z/p and there
is the central extension
(1.1) 1 —>Z/p —> G _Tl’_/_% V—>1 where V=g"2/p.
Such group is isomorphic to the n-th central product E...E=E. or E.-:M where
E (resp.M) is the non abelian group of the order p® and exponent p (resp.p?).

" Hence we can explicitely write
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(1.2)  Ean = <ai,...azn,cl[azi-1,a2:]=c, ¢ ¢Center
[ai,as]=1 for i<j, (i,J)=(2k-1,2k)
ax®=c’=1 >,
The group E.-:M is written similarly except for aza"=c.
Let us write by x.€H'(V)=Hom(V,Z/p) the dual of 7l(a:) and write y.=px:
Then the cohomology of V is
H* (V) = S2a®ANza  with Sza=Z/plyi,...,¥2a] and Aza= Nxi,...,X2a).
Proposition 1.3. The extension (1.1) represents element in HZ? (V)
£ = 2" Xzi-1Xa: (resp. ¥ "Xai-1Xa:ityza) for G=Ea (resp.Ea-iM).
We consider spectral sequence induced from (1.1)
(1.4) Ez* *=H*(V;H*(Z/p))
Z520® N2n®Z/plul®@A(z) —> H ()
with @ z=u. From Proposition 1.3, we know
(1.5) d.z = f.
By transgression theorem,
(1.86) deu=Bd2z = 2 yzi-1Xz:i-Y2iXzi-1
(1.7) depSey u?t = %7 @ dau =3 Yaior® Xai-yai® Kai-t.
By Kudo's transgression theorem
(1.8)  dapSip-1) o1 (u?’ P V@dapss u®) =@(Pr$dzp5”u’s
= Z-Yzi—x’s+‘ Yzi'y2i’s+!yz;-h
Let us write (1.6)=za(1), (1.7)=za(s+l), (1.8)=wa(stl).Hence E* ° is a
quatient of
(1.9) E = S2.@ N 20/ (£, Zn(l),...,Zn(n),Wn(l),o-.,Wn(n))‘
We also know that u’wuis a permanent cycle because which represents p“*‘-th.
Chern class of induced representation from a maximal elementary abelian
p-group. Write by u' a corresponding element in H*(G). Then’H‘(G) is a
E®Z/p[u'] -module. From Benson-Carlson [B-C].
H*(G)/J = E Zp[u'l/J for the Jacobson radical J.
Note the regularlity of the sequence wi(l),...,wn(n) in Sz. is shown in Tezuka-

Yagita [T-Y].
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§2. E’; the central product of G and S'.

The spectral sequence (1.4) is very complicated even for E (see [K-S-T-Y]
(5.11)) .Hence we consider another arguments which are used by Kropholler, Leary,
Huebshmann and Moselle. Embed <c>= Z/pGS' and cosider the central product

(21) G = GX<c>S‘.

~e lan g
Note that E, & En- M, indeed, take azac™'”® as aza ,if azn"=c. Then we have the

exact sequence

(2.2) 1 — 5t — T >V >1
and induced spectral sequence
(2.3) Ez*  * 2 H* (V;H* (BS'))
2 S:0®N2a®@Z/pu] =— Re (6)
Then diffentials (1.6)-(1.8) also hold but d.=0 by the dimensional reason.
Given H'(ﬁi, to see H*(G) we use the following fibration induced from (2.1)
(2.4) S'z G/6 —> BG —> BG.
The induced spectral sequence is
(2.5) E2**~ H* (GH* (SY))
2 H @@ () = B (6)
and d.z=f (1.5). Therefore

Proposition 2.6. H*(G) & (Ker (f) |H*(G)) {z}®H* (G) /(£).
$3. 2p-terms for En for n<p.
In sections 3-5, we consider spectral sequnce (2.3) for E. for p<n. Given
graded algebra A and z A°°°,‘we define homology H(A,z) with the differential d.

(a) =za. The first non zero differential in (2.3) is dsu=za.(1).Hence

E* % [ Sza0hza/ (za (1) =0 mod p
(3-1) H(SZn@/\Zn,Zn(l)) lé\jQ'z
Kerza (1) j=p-1



We can prove

(3.7) Ezp* 252§ S2a®@MNon/(za (1), wa (1), za (2) £ 1) j=0 mod p
Z/p{f"} 1< j< p-1
0 J=p-1.

3 4. Ezwz-term.

The next differential is (1.7)
(41) dzp-n-l(up):(?Zn(l) = Zn(z)-

Let E=S2:®N:0/(za(1),wa(1)). Then we get from (3.7)

(4.2)  Ezp.2* 29" = E/(za(2)) for j=0 mod p
H(E/za (2) £27*, za (2)) 0<i<p-2
Ker (za (2) |E/za (2) £2°1) j=p-1-
Eape2® 2'*%47 = Z/p{f"} 0<igp-2

$5. Hohology of H(E:/Ei+1).

Proposition 5.18. H(E,z.(2))°%* <= H(E,z2.(2))°*Ve"-2/p{f"}
and  H(E,z2(2))°%* 2 Se{x:',..,Xea'}/ (¥isXs' ¥ iXu' =yuXs')
where we express x;'=x:f*"!, x;'=y.f"7', 4y = 3;.9"'5;—“56'
From (4.2)' we get |
Corollary 5.19. H(E/za(2)f""',za(2)) is generated by f*~' as
S2a® N zn-module and
HUE/2a (2) 827,20 (2)) °%% =H(E, 20 (2))°%¢

H(E/z2 (2) £, za (2))°¥°"= S2n/(yiysi) {£°7'}@Z/p{£"}.

i M
J€5~ Ezp (p-1)+1 ~-term for G.

~1 4 Z k3
Let yu=ys"~y45\."'yc and Yis! =y ¥imyuys®)

/¥i¥ii

Therefore we can prove

125
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Proposition 6.14. For n=2 case

CBapeiypag tEe o S4®/\4/(Zz(l).23(2).Wz(1).Wz(2),(hx'*ﬁa')&(x;xﬂ)
Jj=0 mod p
S«@A L/ (yiyii yixs-yixi, t, xnX« ((h, k) =(1,2), (3,4)))
0¢j<p~1 mod p
Ezpouypaa® 29 o 2/p{x:1...x4} 0¢j<p-1 mod p
0 J=p-1 mod p

In the next section, we wjll prove also

Theorem 6.15. Ea(p-1)pea® * 2 Eoo""

—

(4
S8 Ker f in H*(Ea).

Theorem 8.25. There is an additive isomorphism

H(Ea) & (A/(f) @ (Ker(f)|A){z} ®1c,cps (H'{/.} ® H'{f,2})
@1<1<p?-3 and t#=1, #0 mod p or r-p(p—x)(Z/P{zc,} & Z/p{z'z;}))
®Z/p[w’]

wh
e(rs A S5,QA/(23(1), 23(2), wa(1)wa(2), (v +¥43)B(2123), 2;(3?_)
with S(®@4A( = z/P[yll T lyd@A(zh c ,24), 32(1) = Bf, 22(‘) =
PBf, 23(3) = PPPBf and wy(1) = Bz3(2), wa(2) = zgsgi)
(6:5) yiy = yFP) 4 PN 07D,
g:z)f{;ro{:ol;:i:nz;.?)}l’(er (f)|A is generated as an Sy-module by

YVilsi Y50 — YiZ5, Y5024,
franaa((k, h) # (1,2), # (3,4)),

TT;Tk,T12223L4,

-1
where y;i =y} = y;97 7, 1.
(1v) z cor;spond.s non zero element in H(S') = B! in (2’;’4‘1)‘,1 N
(v) (Proposition 5.18) H0dd H'®VeN/(Z [p{1}) and H o

Se{z1y o 2}/ (vii5, yizk = yazi),
4{(1;1) fi= {fu”z} in the spectral sequence (2.2),

(vii) z; = {f*u'} = {z,232324u'} in (2.2).
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éZf/ Hochschild-Serre spectral sequence.

We consider the spectral sequence with E:-term

(2.1)  Ea** = H*( Q"Z/D;H‘(BS‘)).
In this paper cohomology H®(-) always means the Z/p-coefficient H*(-;Z/p). Let
us write

H(+*°Z/p) =S2a® N 2a, H*(BS') & Z/p(u]
with S2a=Z/plyi,...¥2a), Aza = AlXy,...X2a), BXizy: .
We assume first non zero differential

(2.2) dsu . Bf with f= X ie1®Xsi-1Xa4-
Then by Cartan-Serre and Kudo- transgression theorems, we know

(2.3)  dapimt i (02T )m2(0),  das il ener (z(D)ou e 1 2T ay (i)

- ey -

09" ... P'Bt= Z Yzs-1® Xz;‘)’u" X24-1,

I t i
1 z(i) = Zy”-t’ Y2a-Yas® Yey-1.

with z (i)

w(i)
Let us write S(i)=Saa/(w(1l),...,w(i)). Recall (w(1),...,w(n)) is'regular in Sza
(7] |
Lemma 2.4. For ig n-1 , we get
(i) 1 is S(i)-free in  Eapt.,* °,
(ii) z(i+1) is S(i)-free in  Espis* °,
(iii)  if x¢Eapi.s* ° is higher w(i+l)-torsion,then x is higher w(j)-torsion
for all jgn (i.e., w(j)*x=0 for some s and all jgn).
(iv) Eapi.2* %® is higher w(j)-torsion for all jgn.
For the proof of this lemma, we recall the base wise reduced powers defined
by Araki.
Theorem 2.5. (Araki [2]) There are cohomology operations
5?l : Er.'b—') Ep“__z)‘:tf(tl-B) (p-1), p®
B“P. . Er.'b—'—’ Ep(r-z)oa.’(a'-b) (p=-1) +1, pd

which satisfy the naturality and Cartan formula.
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Proof of Lemma 2.4. We use induction on i. Suppose (i)-(iv) for i-1. First
we will prove (iv) i.e.,
(1) H*(Espisi* °,z(i+1)) is higher w(j) torsion.
Here H(A,z) means the homology with the differential da=za for a€¢A. Let us
write by TCEap*~'4s* ° the higher w(j)-torsion parts and F=Es,(-\..* °/T. By the
inductive assumption, H(Eze'~1.,* °,z(i)) & Espi=La® ! is higher w(j) -torsion.
Hence for 2p'~'+2¢grg 2(p-1)p'~', we see imd:C T. Therefore
(2) Erer® °/( higher w(J);torsion) & F.
Next we consider the Kudo transgression da,""\(.-u +1. Let us write simply
q=2(p-1k)p"‘. Recall that Ezp'~'.3* ¢ contains z(i) and is a submodule of
Ker (z(i)) &= H(Ezpi~ls,* °,z(i))@lmz (i).
Since Imz (i) in Eqs1*' % is S(i-1)-free from (ii), if Ker(de.:) O Imz(i)§0, then
it is a contradiction because Eq.3*' * is w(i)-torsion since so is 1. Therefore
Ker(de+1)NImz (i)=0. Since H(Espi~'si,2(i)) is higher w(j)-torsion, given
a€Eq¢1*' % we get w(itl)*ae&Imz(i) for some large s. Hence Eq+:° ® is higher
w(j) -torsion. Then we also show, for 2(p-1)p'~'+1Srg2p',
(3') Eeve1® °/( higher w(i)-torsion) & F/(w(i))/(higher w(j)-torsion ).
Let xGEsp +1° ° and xeKerz(i+l). From (3) we can write in Eapi-lss*®
(4) z(i+l)x =w(i)a+t with t ; higher w(j)-torsion mod (w(i)).
Therefore for large s, we have
(5) z(i+l)w(i+l)*x = w(i)a'
. We consider Araki's reduced powers
sBP', sP" ¢ Eaply® O —> Egpieg™ ®
Act :W':‘ to (5). Since w(i)=z(i+1)=0 in Espt.s* ° and "’:z-(i+1)=w(i+l). ve get
in Baplea®® |
(6) w(itl)**'x = w(itl)pa’'.
Multiply z(i+l) to (5), we know w(i)z(i+l)a'=0. Act .lP"; to this, and we have
W(i+1)%a'=0 in Eap'vs® ° . From (6)

(1) w(i+1)**%x=0 in  Eazptes®®
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From (3), this means
w(itl)**2x = w(i)a'"+t' in Ezp*7..* °.
as (4). Multiply w(i+2)*  to this for large s', we get w(i+l)® 'x=w(i)a''’.
Operate aP’“l"' on this. Thus we prer

(8) w(i+2)* 'x =0 in Ezpl o2® © .

Continue‘this argument and we show (1),i.e., (iv). The arguments (7) to (8)
implies (iii).

We already know ,for q=2(p-1)p‘'~}, das: : S(i-1){z(i)}z=Ideal(w(i)) in
§(i-1), by the arguments before (3).  Suppose dq+:(au®/?)=w}0 mod (w(i)) in
S(i-1) ( or %0 mod (w(i)z(i)) in  S(i-1){z(i)}). Then w(i+l)*w$0 for all s in
S(i-1)/(w(i))=S(i) since w(i+l) is non zero divizer in S(i). On the other hand
H(Ezp'='41,2z(i)) is higher w(j)-torsion, we get w(i+l)*ae Imz(i) for large s.
This means w(i+l)*w=0 mod (w(i)) and this is a contradiction. Hence 1 and z(i+l)
are S(i)-free in Eq+:* °. From (3), so are in Ez,i.;f'°. Therefore we show(i
) and (ii). q.e.d.

From (3) in the above proof, we also get;

Corollary 2.6. With modulo higher w(j)-torsion , there is the isomorphism

Ezapts1® ° 2= Sea®Azn/(z(1),...,2(i),w(l),...,w(i)).

. '
§3. Extra special p-groups

let En be the extra special p-group of the order 2p®*' and the exponent p

(3.1) E. = <a,,...,82a,cla:%=cP=1, ¢ ECehter
lai,as]= (¢ i=2k-1, j=2k
{ 1 other i<{j >

. ad
Consider central products En=E X<c>S' and g%S)n=Enx<c>Z/p.- Then there are

central extensipons

(3.2) 1 — S! > Ea >92°I/p —1

(a5

(3.3) 1 — Z/p* — E(s)s > 02/p —1
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and induced spectral sequence E.* * and E(s).* * from (3.2) and (3.3)

respectively. The spectral sequence E.* * satisfies (2.2) and hence Lemma-2.4.
Let H*(Z/p*) & Z2/pluleh(z). If s22,then d.z=0 by @z=0 and the symmetry of

~

"E(s)n. Thus

(3.4) , E(s)c®*

e

E.* '9Mz) for s2 2.
Therefore (i), (ii) in Lemma 2.4 satisfies for (3.3).

Corollary 3.5.([7)) 1In H*(Ea) or H‘(EQs)n),sgz , the Szn.-submodule
generated by 1 is Sza/(w(1),...,w(n)).

Moreover for n=2, the spectral sequemce E.* * is given completely in (8].

/
§4. Periodic modules with large period.

Let k be an algebraic closure of F,. Let Nae" (M) be the r-th kernel in the
minimal resolution of k(G)-module M, i.e., if
(4.1) 02>M:—2Q-1 —=....=> Qo 2> 4 —0
is exact and if each Q. is projective, then M:&$la" (M)@Q for some projecive
module Q. A G-module M is said to be periodic if fs™(M)x M for some m20. The
smallest of such m is called the period of M.
We denote by Vo (k), the variety defined by commutative ring H*(G;k)/[0. For
a G-module M, let Is(M) be the annihilator in H*(G;k) of Extus (o *(M,M) 2
H* (G,Homy (M,M)). Let Va(M) be the subvariety of Va(k) associated to Iq(M).
Remark that if V is a closed homogeneous subvariety of Ve(k), then there is a
K(G) -module M with Vq(M)=V (Proposition 2.1 (vii) in (3]).
We recall arguments of Andrews and Benson-Carlson {3 ]. Consider a central

extension of a finite group

(4.2) 1 — 2/p —> 6 > E > 1.
Let iyp denote the sum 7 ¢¢z,»g as an element of the group ring k(Z/p). Then
for 0, Z/p8bs?7 (k) is a k(G)-module with Z/p-acting trivially, so we may

regard it as a k(E)-module. We set
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(4.3) Ve = VelZ/ple®T (k) C Velk).

Theorem 4.4. (Andrews) Let M be an indecomposable k(E)-module regard as a
k (G) -module by inflation. Then M is a periodic k(G)=module of periodic dividing

2r if and only if V(M) O V.={0}.

Theorem 4.4 ( Benson-Carlson [3] ) Let‘Er"“be the spectral sequence‘
induced from (4.2). Let I,2CH'(E) be the Kernel of the induced map
Ez* ©— Ezp%.1*" °. Then V,2=Vg(I,2).

Lemma 4.5. ([3]Proposition 2.2. ) If M is a periodic k(G)-module, then
the peiod of M devides 2[G;E] where E is a maximal elementaryrabelian p-groups
of G.

Theorem 4.6. Let G be the p-group EYS)n ;522. Then there are periodic
K(G) -modules of period 2* for agn, and no higher period.

Proof. (See the proof of Corollary 6.2 in [3].) From above lemma, the only
possible periods are 2p* for agn. By Lemma 2.4 in section 2 and Theorem 4.4,
for agn we may find a closed homogeneous subvariet V of Ve(k) with VaVye~! §{0}
and V(\V,a={0}. By the remark after the definition of Ve (M), we may find a
k (E) -module M with Ve (M)=V. Then by the Andrews theorem .ﬂgz’qqﬂﬂ#u but

Q" (M)¥M, so M has period exactly 2p*. q.e.d.
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