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Graded algebras associated with indecomposable vector bundles

“over an elliptic curve
D. Tambara

Depariment of Mathematics, Hirosaki University

§1. Introduction

Let X be an elliptic curve over an algebraically closed field k with chax(k) # 2. Our object
is to compute the graded algebra ’

P Hom(¢, £ & £L¥)
i>0

for a line bundle £ and a vector bundle £ over X defined as follows. Choose a point P € X
and let £ = L(P) be the line bundle associated to the divisor P. Vector bundles over X
were classified by Atiyah [1]. Among them we choose the following ones. For each positive
integer n there exists uniquely an indecomposable vector bundle £,, of rank n which is a

successive extension of the trivial bundle. That is,

Ox=6CE3C -

00&p12€,20x—0 exact, non split.

Now put
A(n) = PT(X, End(€n) ® £%) = @) Hom(En, £, © £).

i>0 i>0

We aim to give an explicit description of the algebra A(n).

§2. Homogenéous coordinate ring

First of all, we look at the algebra

s = Pr(x, ).

i>0

We know the following presentation of S [2, p. 336).

generators: teS, z€85;, yY€S;s
relation: ¥’ =2(z —t*)(z — At?) with A € k- {0,1}.
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Also we have Sy = k, dim S; = i for i > 0 and a k-basis of S is given by #'27, tiz'y for

1,7 2 0. In addition, X is determined by A as

X = {2325 = 2o(20 — 22)(20 — A23)} C P?
Pe(0:1:0)

We fix ¢, 2, y, A throughout.

§3. First properties of A(n)
We collect here some properties of A(n) which are easily proved.

o The functor

T, : quasi-coherent O x-mod — graded S-mod
F - Prx,Fec)

icz
is fully faithful, because £ is ample. Hence we have an S-algebra isomorphism
A(n) 22 Endg(T.(£,)).

We shall describe the S-module I',(£,) in §6.
e A(n) is a maximal order in A(n) ®s Frac(S) & M, (Frac(S)).

e The degree 0 part A(n)o = End(£,) is generated by a single endomorphism f defined by

f: 8,, —» 5,,,/81 o g,...l — 8,..

We have f* = 0 and dim A(n)o = n. We shall construct f explicitly in §7.

® The degree i part A(n); has dimension n?i for i > 0.

'§4. A as an R-algebra

Write A = A(n). Put R =kl[t,z], a polyhomial subalgebra of S. Then S=R® Ry. A is

an R-free module of rank 2n?. We shall give an R-basis of A.

There exist g € Ay, h € A3, I € A; such that the following diagrams commaute.

£ -2 . ¢cocr
| |
(9—t+ L
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Here the left vertical arrows are the inclusion map and the right ones are induced by the
surjection £ — 0. An explicit form of g will be given in §7. Then the following monomials
form an R-basis of A.
Fofigf  FfREF1 0<i<n—-1, 0<j<n-2.
The quotient A = A/R,A = A/(t,2)A is a symmetric graded k-algebra of dimension
2n2. We have the following isomorphisms of bimodules over Ag = Aq.

AL 2 A; 2Ker(Ao® Ag m Ao)

>l

3

IR
(=] ?,

i>3.

i

§5. A as a k-algebra
Let n > 2. Regard A as a left Ag ® Ag-module by (a ® b) : ¢ = acb.

PROPOSITION. Ay =A, ®A; & is a free A9 ® Ag-module with basis

(0™ Y9, (9> ) (gf* Y gf*>g fori,j>0.
THEOREM. The k-algebra A is generated by f and g. The relations between them are

generated by the following ones.
Case n is even: f™ = 0 and n — 2 quadratic relations of the form

gf*g =An-gf* g+ By -gf* g
with Ay, By € Ao @ Ag for0<k<n—-2,k#n-3

Case n is odd: f* = 0 and n — 2 quadratic relations as above and one cubic relation
of the form

gf* 2gf" g =C-gf*" 2gf* g+ D -gf* gf" g+ E-gf" g g
with C,D,FE € A¢ ® Ay.
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§6. S-module T, (£,)

Put v = z — (A +1)2, u = (2 — t?)(z — M?). Define a graded S-module M as follows. M
is R-free with basis «, 8;,4; for ¢ > 0 with dega = 0, deg 8; = 1, degy; = 2. The action of
y on M is given by

ya = 2P +1iyn .
¥ = —AP0ifis — tefis +v%i1 — P
YYi = zzﬂ;+1 -+ AtaEi‘y:'—l +t2‘ﬁ+1

where Gy = —ta, 0 = za and O; =1 for an odd i, O; = 0 for an even i, E; =1 — 0;.
For n > 1 define a graded S-submodule M(n) of M to be the ﬁee R-submodule
generated by «,G;,7; for 1< i<n—1and 28, +tv,.

ProrosiTiON. T.(£,) & M(n) as graded S-modules.

So we may identify A(n) = Ends(M(n)).
Though the S-module M is not free, the S [}]-module M[} ] = S[}] ®s M is free with
basis «;, 7 > 0, given by

1
= =% .: d
@ = — i: od

= —%(Atsﬂ; —vy;) i even.

§7. Generators

Let us construct f,g € A as endomorphisms of the S-module M(n). Define an S [%]—linea.r
map f: M[7] — M[1] by

Atdy A+1)v+ A2z
flai) = ai_1 — ——a;- (( ): ) a;_3
- ﬂag_.; + :\%?-a,'_s if { i1s even
Atdy

f(at) =aj-1+ ";;"az 2

— )2 '
+(A+1): At .3+12’1a.4 ifiis odd
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where we understand a; = 0 for ¢ < 0. Then

fle)=0

F(Bi) =Bi-a +(A+1)Bi—s i: even
=Pic1+(A+1)Bi—s + AGi_s i: odd

() =9i-1+(A+1)yi—s + Ayi—s — Atfi_s  i: even
=41+ (A +1)yi—s + AtP;_s ' i: odd

So M and M(n) are stable under f. We denote also by f the restrictions of f to M and
M(n). Thus f € A(n)p for all n.
Secondly, define an S [ill—]-linear map g: M [317] - M (n)[;ll—] as follows. When n is even,

glag) =tap_y — %an—z

t((\+ 1)z — X2 At?
+ (A+1)= )an_zJr uym“_3

gloy) = %an—l "

At? Moz
glaz) = ——-u—ya,,_g +

g(a;) =0 fori>2,

Ap-—3

and when 7 is odd,

v
glao) =tan-1 — ~ans
g(ea) = gan—l + (A +1)tan—z

2
glaa) = 2 ¥au st 3 AA- DIty s — Dty i)
i23,0dd

g(a;) =0 fori>2.

Then it turns out that g maps M into M(n). Its restriction M(n) — M(n) is denoted by

g again. g increases degree by 1, so g € A;. These f, g are the desired generators.
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§8. Explicit equations in case n even
When n is even, we can give explicit defining equations for A, using additional generators.

We define e € Ag and g4 € A; by

e(a;) =a;_5 foralli
9+(@o) =tayp_3 — %an—s
g+(01) =tan_1 +(A+1)ton_s
9+(a2) = %an—l + (A + ta,-2
g+(;) =0 fori>2.
THEOREM. Ifn is even and n > 2, the k-algebra A has the following presentation. The
generators are f, e, g, g+. The relations are
ei=0
FP=1+A+1)e)(1+ Ae)(1+e)e
Fe(1+(A+1)e)+(14+(A+1)e)gf
=gy +(A+1)egy + (A +1)gie + Ae?gy + (A +1)% + Aegye + Agye?
+A(A+1)e*gre + A(A+1)eg,e?
ge"T g =Agie T gy
g4e T g =(A+1)gpe T gy
gelg=gelg, =0 for0< ;<238
Finally we give another presentation of A in line with the theorem of §5. Put
c=e®1,d=1Qe,p=Ff0®1,g=10Ff €A @Ay

and

a=(1+(A+1)e)(1+ (A +1)d) — A’ d?
v=A+ 11+ A)1 + )1 + Ad)(1 +d)
+ Ad(1+ Ac)(1 + ¢) + Ac(1 + Ad)(1 + d)
B=(1+Aed)a — (A + 1)cdy
=1+ A+1)(c+d)+ Aed — (A +1)*(c*d + cd?)
— (A +D* +AA+1)? + X%) Pd — M(A + 1)%(cPd + cd®)

= 2A+D)((A+1)? +2)(Ed? + A2d®) — A2((A +1)? + A)cPd®.

Then a,3,v € Ag ® Ay and 3 is invertible.
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THEOREM. Ifn is even and n > 2, the k-algebra A has the following presentation. The
generators are f, e, g. The relations are

e

=0
=1+ A+ 1e)(1+ Ae)(1+e)e
ge™5' g = (Dup + Dag)ge ™ fg + (Osp + Dag)ge ™= fg
Oh = —%(1 + Ad)(1 +d)(1+ (A +1)d + Acd)
Os = %(1 +2d)(1+d)[(A+1)(1 + (A +1)d)
+A+14 +,\2c(1 +c))(1+(z\+1)d+)«cd)]
by interchange ¢ <> d

Uy &0z, s e Oy

n—4 n—4 »—2
ge 3 g=(0O1p+ Oaq)ge 7 fg+ (Osp+DOag)ge ? fg

Oy =— %d(l +(A+ 1)1+ (A+ L) + Acd)

O = %(1 + A+ 1)d)[(A+ 1Dd(1 + (A + L)c + Acd)

(11: S)(ﬁ Bcc) (1+ A+ 1)d + Aed)]

Oy & 0O, O &0

by interchange c « d

geL-ﬂig =0 fork>4,even
ge™% fg = (O + Oapg)ge™™ fg+ (Os + Dapg)ge™ fg
1
O, = E((A +1)8 — Avcd)

0O, = —%A(l + Acd)

Os = %[,\(1 + Acd)(1 4+ (A + 1)c)(1 + (A + 1)d)
—(A+1)*8+ A(A + 1)yed]
1 Ay
O = (g ogasg T AR TN+ Aed)

n=s : n_t a=2
ge 7 fg= (01 +0Oapg)ge 3 fg+(Os+ Oapg)ge ? fg
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O = %(1 +O+1))1+ (A + 1)d)
X (1= (A+1)%cd — A(A +1)(c*d + cd?) — A3c*d?)
Op = - —;—A(,\ +1)ed

Op = — %(,\ + 1)1+ A+ D)+ (A+1)d)
x (1= ((A+1) + Aed — A(A + 1)(c*d + cd?) — A2c*d?))
1 Aa

He= E((l + )1+ )1+ Ad)(1 +d)

+ A(A +1)2cd)

ge# fg=0 fork > 8, even.
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