On some periodic modules for group algebras of finite groups

Akihiko Hida

千葉大学自然科学研究科 飛田明彦

1.Introduction

Let G be a finite group and let k be a field of characteristic p > 0. Let M be a finitely generated kG-module. Let $\phi: P \longrightarrow M$ be the projective cover of M and let $\Omega(M)$ be the kernel of ϕ . We define inductively as $\Omega^{n+1}(M) = \Omega(\Omega^n(M))$ for any positive integer n. Similarly we define $\Omega^n(M)$ for a negative integer n using the injective hull. We say that M is periodic if $\Omega^n(M) \cong M$ for some $n \geq 1$. If n is the smallest such integer then n is called the period of M.

Let

$$G = G(m, n) = \langle s, t | s^{p^n} = t^{p^m} = 1, s^{-1}ts = t^{p^{m-n}+1} \rangle$$

be a metacyclic p-group of order p^{m+n} where p is an odd prime and m-n>0, n>0. The cohomology ring $H^*(G, k)$ was determined by Diethelm [7]. We shall follow the notation in [7]. By [7,Theorem 2],

(1.1)
$$H^*(G, k) = k[a_1, \dots, a_{p-1}, b, y, v, w]$$

$$a_i a_j = a_i y = a_i v = b^2 = v^2 = 0,$$

$$deg \ a_i = 2i - 1, deg \ b = 1, deg \ y = 2,$$

$$deg \ v = 2p - 1, deg \ w = 2p,$$

$$b, y \in Im(inf : H^*(G/\langle t \rangle, k) \longrightarrow H^*(G, k)),$$

$$res_{\langle t \rangle}^G(a_1) \neq 0.$$

(We omit all relations which are consequences of the skew commutative relation.)

Let $\hat{y^i}: \Omega^{2i}(k) \longrightarrow k$ be the cocycle which represents y^i and let L_i be the kernel of $\hat{y^i}$ for $i \ge 1$. Then w generates the periodicity of L_i since $H^*(G, k)$ is finitely generated over k[y, w] as a module(cf.[1,5.10]). Moreover, by [2,Lemma 4.4] and [4,Lemma 4.1], we have the following.

(1.2) For every $i \geq 1$, L_i is an indecomposable periodic kG-module with period 2 or 2p.

In [8], Okuyama and Sasaki showed that the period of L_p is exactly 2p. The following is our main result.

THEOREM. The period of L_i is 2p if $i \geq 2$ and 2 if i = 1.

Let G be an arbitrary finite group. For a kG-module M, we set

$$\hat{H}^{i}(G, M) = \underline{Hom}_{kG}(\Omega^{i}(k), M)$$

$$= Hom_{kG}(\Omega^{i}(k), M) / PHom_{kG}(\Omega^{i}(k), M)$$

where $PHom_{kG}(\Omega^{i}(k), M)$ is a subspace of $Hom_{kG}(\Omega^{i}(k), M)$ generated by projective homomorphisms. If N is a kG-module, there exists a product

$$\hat{H}^{i}(G, M) \otimes \hat{H}^{j}(G, N) \longrightarrow \hat{H}^{i+j}(G, M \otimes N).$$

In particular we have the Tate duality, namely,

$$\hat{H}^i(G,k)\otimes \hat{H}^{-(i+1)}(G,k)\longrightarrow \hat{H}^{-1}(G,k)=k$$

is non-degenerate for any i (cf.[6,XII]).

Let $\zeta(\neq 0) \in H^i(G,k)(i>0)$. Then ζ is represented by $\hat{\zeta}: \Omega^i(k) \longrightarrow k$. We set $L_{\zeta} = Ker \hat{\zeta}$. By definition of L_{ζ} there exists an exact sequence

$$0 \longrightarrow L_{\zeta} \longrightarrow \Omega^{i}(k) \stackrel{\hat{\zeta}}{\longrightarrow} k \longrightarrow 0.$$

Hence we have a long exact sequence

$$(1.3) \longrightarrow \hat{H}^{j-1}(G,k) \stackrel{\delta}{\longrightarrow} \hat{H}^{j}(G,L_{\zeta}) \longrightarrow \\ \hat{H}^{j}(G,\Omega^{i}(k)) \cong \hat{H}^{j-i}(G,k) \stackrel{\zeta}{\longrightarrow} \hat{H}^{j}(G,k) \longrightarrow .$$

Remark 1.4. If H is a subgroup of G and if p||H|, then the transfer map

$$t_H^G: \hat{H}^{-1}(H,k) \longrightarrow \hat{H}^{-1}(G,k)$$

is not zero. Indeed, consider the exact sequence

$$0 \longrightarrow \Omega(k) \stackrel{\iota}{\longrightarrow} P_0 \stackrel{\epsilon}{\longrightarrow} k \longrightarrow 0$$

where $P_0 \xrightarrow{\epsilon} k$ is the projective cover of k as a kG-module. Let $f(\neq 0) \in \hat{H}^{-1}(G, k)$ = $Hom_{kG}(k, \Omega(k))$. Since P_0 is projective there exists $g \in Hom_{kH}(k, P_0)$ such that $\iota \circ f = Tr_H^G(g)$. Since $\epsilon \circ g = 0$, $g = \iota \circ g'$ for some $g' \in Hom_{kH}(k, \Omega(k))$. Then $\iota \circ Tr_H^G(g') = Tr(g) = \iota \circ f$ and so $Tr_H^G(g') = f$.

2.Proof of Theorem

In this section, we assume that G = G(m, n) where p is odd and m - n > 0, n > 0. We take the following k-basis of $\hat{H}^i(G, k)(i = 1, 2))$ (cf.(1.1))

$${\hat H}^1(G,k) : a_1, b \ {\hat H}^2(G,k) : a_1b, y$$

and the dual basis with respect to the Tate duality,

$$\hat{H}^{-2}(G,k) : (a_1)^*, b^*$$

 $\hat{H}^{-3}(G,k) : (a_1b)^*, y^*.$

First we consider the period of L_1 . We set $H = \langle s, z = [s, t] \rangle \triangleleft G$. Then by [7,Theorem 1],

(2.1)
$$H^{*}(H, k) = k[a', b', x', y']$$
$$deg \ a' = deg \ b' = 1, deg \ x' = deg \ y' = 2,$$
$$res_{\langle z \rangle}^{H}(a') \neq 0, b' = res_{H}^{G}(b), y' = res_{H}^{G}(y).$$

LEMMA 2.2. $res_H^G(a_1^*) \neq 0$. In particular, $res_H^G((a_1b)^*) \neq 0$.

PROOF: Since $res_{< t>}^G(a_1) \neq 0$, $a_1^* = t_{< t>}^G(c)$ for some $c \in \hat{H}^{-2}(< t>, k)$ where $t_{< t>}^G$ is the transfer map (cf.Remark 1.4). Hence $res_H^G(a_1^*) = t_{< z>}^H(res_{< z>}^{< t>}(c)) \neq 0$. Since $b(a_1b)^* = a_1^*$, it follows that $res_H^G((a_1b)^*) \neq 0$.

LEMMA 2.3. There exists $\zeta \in H^2(H, k)$ such that $\zeta res_H^G((a_1b)^*) = 0$ and $L_1 \otimes L_{\zeta}$ is a projective kH-module.

PROOF: Since $y(a_1b)^* = 0$ and $res_H^G(b(a_1b)^*) \neq 0$, some k-linear combination of a'b' and x' satisfies the condition of Lemma.

Now consider the following commutative diagram (cf.(1.3))

$$\hat{H}^{-1}(G, L_1) \longrightarrow \hat{H}^{-1}(G, \Omega^2(k)) \stackrel{y}{\longrightarrow} \hat{H}^{-1}(G, k)$$

$$\uparrow^{es} \downarrow \qquad \qquad \downarrow^{res}$$

$$\hat{H}^{-1}(H, L_1) \longrightarrow \hat{H}^{-1}(H, \Omega^2(k))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\hat{H}^{0}(H, k) \stackrel{\delta}{\longrightarrow} \hat{H}^{1}(H, L_1) \longrightarrow \hat{H}^{1}(H, \Omega^2(k)).$$

Then there exists $e \in \hat{H}^{-1}(G, L_1)$ such that $\zeta res_H^G(e) = \delta(1)$. Note that $\zeta : \hat{H}^{-1}(H, L_1) \longrightarrow \hat{H}^1(H, L_1)$ is an isomorphism. Let $\theta = \delta(1) \in \hat{H}^1(G, L_1) \cong Hom_{kG}(k, \Omega^{-1}(L_1))$.

Then we have the following commutative diagram,

Since y annihilates $Ext_{kG}(L_1, L_1)$ by [5,Theorem 4.1] (or [1,Propostion 5.9.6]) θ^* is onto. Hence $e = \theta^*(f)$ for some $f \in Hom_{kG}(\Omega^{-1}(L_1), \Omega(L_1))$ and $\zeta res_H^G(f)$ is an isomorphism (modulo projective). Hence f is an isomorphism.

Next we consider the case $i \geq 2$. We shall show that

(2.4)
$$res_H^G(y^{i-1}\hat{H}^{-1}(G,L_i)) = 0$$

but

$$res_H^G(y^{i-1}\hat{H}^1(G,L_i)) \neq 0.$$

LEMMA 2.5. Suppose that $i \ge 2$. If $c \in \hat{H}^{-(2i+1)}(G, k)$ and $y^i c = 0$ then $y^{i-1}c = 0$.

Hence in the following commutative diagram

$$\hat{H}^{-1}(G, L_i) \longrightarrow \hat{H}^{-(2i+1)}(G, k) \longrightarrow$$

$$\downarrow^{i-1} \downarrow \qquad \qquad \downarrow^{i-1} \downarrow$$

$$\stackrel{\delta}{\longrightarrow} \hat{H}^{2i-3}(G, L_i) \longrightarrow \hat{H}^{-3}(G, k)$$

we have $y^{i-1}\hat{H}^{-1}(G, L_i) \subseteq Im \delta$. Now consider the commutative diagram,

$$\hat{H}^{2i-4}(G,k) \xrightarrow{\delta} H^{2i-3}(G,L_i)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\hat{H}^{-2}(G,k) \xrightarrow{y^i} \hat{H}^{2i-2}(G,k) \xrightarrow{\delta'} H^{2i-1}(G,L_i).$$

Since $y^i \hat{H}^{-2}(G, k) = 0$ (cf.[3,Lemma 2.2]) δ' is monomorphism. If $c = \delta(h) \in y^{i-1} \hat{H}^{-1}(G, L_i)(h \in \hat{H}^{2i-4}(G, k))$ then yc = 0 since y^i annihilates $Ext_{kG}^*(L_i, L_i)$ ([5,Theorem 4.1] or [2,Proposition 5.9.6]). Hence we have yh = 0. Since $res_H^G(y)$ is not a zero divisor in $H^*(H, k)$ (cf.(2.1)) we have that $res_H^G(h) = 0$ and $res_H^G(c) = 0$.

Next consider the following commutative diagram,

$$H^{0}(G, k) \xrightarrow{\delta} H^{1}(G, L_{i})$$

$$res \downarrow \qquad \qquad res \downarrow$$

$$H^{0}(H, k) \xrightarrow{\qquad \qquad } H^{1}(H, L_{i})$$

$$y'^{i-1} \downarrow \qquad \qquad y'^{i-1} \downarrow$$

$$\xrightarrow{\qquad \qquad } H^{2(i-1)}(H, k) \xrightarrow{\delta''} H^{2i-1}(H, L_{i})$$

Since δ'' is monomorphism we have $res(y^{i-1}\delta(1)) \neq 0$.

Actually, to prove that $\Omega^2(L_i) \not\cong L_i$ for $i \geq 2$, it suffices to consider only the case i = 2 by the following Proposition.

PROPOSITION 2.7. Let M be a non-projective indecomposable kG-module. Suppose that y^i annihilates $Ext_{kG}^*(M,M)$. If $\Omega^2(L_i) \cong L_i$ then $\Omega^2(M) \cong M$.

PROOF: By[5,Lemma 4.4] (or[1,Proposition 5.9.5]), $L_i \otimes M \cong \Omega(M) \oplus \Omega^{2i}(M) \oplus (proj)$. So the result follows.

REFERENCES

- 1. D. J. Benson, "Representations and cohomology II," Cambridge studies in advanced mathematics 31, Cambridge University Press, 1991.
- 2. D. J. Benson and J. F. Carlson, Nilpotent elements in the Green ring, J.Algebra 104 (1986), 329-350.
- 3. D. J. Benson and J. F. Carlson, *Products in negative cohomology*, J.Pure Appl.Algebra 82 (1992), 107-129.
- 4. J. F. Carlson, The variety of an indecomposable module is connected, Invent. math. 77 (1984), 291-299
- 5. J. F. Carlson, Products and projective resolutions, Proc. Symp. in Pure Math. 47 (1987), 399-408.
- 6. H. Cartan and S. Eilenberg, "Homological algebra," Princeton University Press, Princeton.
- 7. T. Diethelm, The mod p cohomology rings of the nonabelian split metacyclic p-groups, Arch. Math 44 (1985), 29-38.
- 8. T. Okuyama and H. Sasaki, Periodic modules of large periods for metacyclic p-groups, J. Algebra 144 (1991), 8-23.