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On some periodic modules for group algebras

of finite groups

Akihiko Hida
TERFHABFEFRAH RHEHE

L.Introduction

Let G be a finite group and let k be a ﬁeld of characteristic p > 0. Let Mbea finitely
generated kG-module. Let ¢ : P — M be the projective cover of M and let Q(M)
be the kernel of ¢. We define inductively as Q*+1(M) = Q(Q”(M )) for any positive
integer n. Similarly we define Q™(M) for a negative integer n using the injective hull.
We say that M is periodic if Q*(M) = M for some n > 1. If n is the smallest such
integer then n is called the period of M. :

Let

G= G(m n) =< s,t|s? =17 =15 s=1" !>

be a metacychc p-group of order p’"’"‘” where p is an odd prime and m —n > O,n > 0.
The cohomology ring H*(G, k) was determined by Diethelm [7]. We shall follow the
notation in [7]. By [7,Theorem 2],

(1.1) H*(G, k) =kla1,...,ap—1,b,y,v,w]
a;a; =a,-y=a,;v=b2 = p? =0,
deg a; =2i— 1,deg b =1,deg y = 2,
deg v =2p—1,deg w = 2p,
by € Im(inf : H*(G/ <t >, k) — H*(G,k)),
resS,s (a1) #0.

(We omit all relations which are consequences of the skew commutative relation.)
Let y* : Q% (k) — k be the cocycle which represents y* and let L; be the kernel of

y' for i > 1. Then w generates the periodicity of L; since H*(G, k) is finitely generated
over kly, w] as a module(cf.[1,5.10]). Moreover, by [2,Lemma 4.4] and [4,Lemma 4.1],
we have the following,.

(1.2) For everyi > 1, L; is an indecomposable periodic kG-module with period 2 or 2p.

In [8], Okuyama and Sasaki showed that the perlod of L, is exactly 2p. The following
is our main result.
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THEOREM. The period of L; is2p ifi > 2 and 2 1if i = 1. ;
Let G be an arbitrary finite group. For a kG-module M, we set

H'(G, M) = Homy(®¥ (K), M)
= Homyg(Q'(k), M)/ PHomyc(9 (k), M)

where P Homyg(2(k), M) is a subspace of Homkg(ﬂ’(k) M) generated by prOJectlve
homomorphisms. If N is a kG-module, there exists a product

F(G M) e B (G,N)— B (G, Mo N).

In particular we have the Tate duality, namely,

(1+1)

H(G k) ® (G, k) — H (G, k) =k

is non-degenerate for any i (cf.[6,XII]).

Let C(# 0) € H(G,k)(i > 0). Then ¢ is represented by ( : (k) — k. We set
L, = Ker (. By definition of L, there exists an exact sequence

0 —> L — (k) = k — 0.
Hence we have a long exact sequence
(1.3) — NG,k S (G, L) —

B (G,Qk) ~ (G, k) -5 B (G k) —

Remark 1.4. If H is a subgroup of G and if p||H| then the transfer map
¢ H (H k)——+H (G k)
1s not zero. Indeed, consider the exact sequence
0 —Qk)— Py ——k—0
where Py — k is the projective cover of k as a kG-module. Let f(# 0) € ﬁl—l(G, k)
= Homyg(k,Q(k)). Since Py is projective there exists g € Homgg(k, Po) such that
tof =Tr§(g). Since eog =0, g=cog for some g¢ € Homgg(k,Qk)). Then

LOTT'G gl)=T:,-g —._-I,Of a,IldSOT"'G g,):f
T H

2.Proof of Theorem
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In this section, we assume that G = G(m, n) where p is odd and m —n > 0,n > 0.
We take the following k-basis of H (G, k)(i = 1,2)) (cf.(1.1))

H(G,k) : ar,b
ffz(G,k) D arh,y

and the dual basis with respect to the Tate duality,

A =2

H (G,k) : (a)*,b"

, —3
H (G,k) : (a1b)*,y".

First we consider the period of L;. Weset H =< 8,z = [s,t] > <G. Then by [7,Theorem
1],
(21) H*(H,k) = o', ¥, 2/,

deg o' =deg b =1,deg &' = deg y' =2,

resS (a') # 0,8 = resG(b),y = resH(y).
LEMMA 2.2. res$(a}) # 0. In particular, res$((a16)*) # 0.

PRrROOF: Since resgt}(al) # 0, af = t%,,(c) for some ¢ € fI_2(< t >, k) where t&,,
is the transfer map (cf.Remark 1.4). Hence res§(a}) = t2,, (res$i3(c)) # 0. Since
b(a1b)* = af, it follows that res$((a1b)*) # 0.

LEMMA 2.3. There exists ( € H*(H, k) such that {res$((a1b)*) =0 and L, ® L¢ is a
projective k H-module.

PROOF: Since y(a1b)* = 0 and res§(b(a1b)*) # 0, some k-linear combination of a'b’
and z' satisfies the condition of Lemma. ‘

Now consider the following commutative diagram (cf.(1.3))

H(G L) —— H '(G,Q%(k) —— H ' (G,k)

real lre.s

H (B, L) —— H(H,Q(k))

| |

A%H k) —— H'(H,L,) —— H(H k).

Then there exists e € fI—l(G, L,) such that (resG(e) = §(1). Note that ( : ff—l(H, L)
— I;TI(H, L) is an isomorphism. Let § = §(1) € ﬁl(G, L1) & Homyg(k, Q71 (Ly)).
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Then we have the following commutative diagram,

*

Hompa(Q-Y(L1), UD1) —— Homia(k,Q(L1)) = (G, L)

Hom g (Q°(L1), (L)) —— Homyp(k,Q(L1)) = H  (H,Ly)
| |
Homy i (2 1(L1), Q7Y (L1)) —— Homyy(k, Q" (Ll))_ (H Ly).

Since y annihilates Extrg(Lq1,L1) by [5,Theorem 4.1] (or [1,Propostion 5.9.6]) 6* is
onto. Hence e = 8*(f) for some f € Homya(Q (L), Q(L1)) and (res(f) is an
isomorphism (modulo projective). Hence f is an isomorphism.

Next we consider the case i > 2. We shall show that

(2.4) resg(y‘_lf[_l(G, L;)=0
but

resS (v~ H (G, L;)) # 0.

—(2i4+1)

LEMMA 2.5. Suppose thati>2. Ifce H (G, k) and y";: =0 then y*"lc = 0.

Hence in the following commutative diagram

-1(G L) (2t+1)

H
y‘;ll y"ll

16, L) —— HOR)

(G, k) ——

' a1 . .
we have y*"'H (G, L;) C Im 8. Now consider the commutative diagram,

H G k) —— HY3(G, L)
v |
v’ Fr2i—2 K 2i-1
(G k) —— H"7'(G,k) —— H*"'(G, L).

Since y'ff—z(G k) = 0 (cf [3,Lemma 2.2]) & is monomorphlsm I c = 6(h)

€y lH (G L)(h € jig (G k)) then yc = 0 since y' annihilates Ext}s(L;, L;)
([5,Theorem 4.1] or [2,Proposition 5.9.6]). Hence we have yh = 0. Since res H( ) is not
a zero divisor in H*(H, k) (cf.(2.1)) we have that res&(h) = 0 and res$(c) = 0.
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Next consider the following commutative diagram,

H°(G,k) —— HYG, L)

HO(H,k) —— HY(H, L)

yli—ll yu‘—ll

1 . 5" .
2 H¥-U(H, k) —— H¥-1(H, L;)

Since 8" is monomorphism we have res(y*~18(1)) # 0.

Actually, to prove that Q2(L;) ¢ L; for i > 2, it suffices to consider only the case
i = 2 by the following Proposition. '

PrOPOSITION 2.7. Let M be a non-projective indecomposable kG-module. Suppose
that y* annihilates Ext} (M, M). If Q*(L;) & L; then Q*(M) = M.

ProOF: By[5,Lemma 4.4] (or[1,Proposition 5.9.5]), L; ® M & Q(M) &% (M) & (proj).
So the result follows.
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