A direct approach to the planar graph presentations of the braid group

(Singularities of Holomorphic Vector Fields and Related Topics)

SERGIESCU, Vlad

数理解析研究所講究録 1994, 878: 103-107

Kyoto University
A direct approach to the planar graph presentations of the braid group

by Vlad SERGIESCU

0. Introduction

Recall that the classical braid group on n strings B_n can be considered as the fundamental group of the configuration space of unordered n points in the plane.

Given a planar finite graph whose vertices are n given points, one can define for each edge σ a braid, also denoted σ like in figure 1:

One just turns half around σ in a neighbourhood, the other strings being vertical.

If the graph is

one obtains the Artin generators of the braid group B_n, see [B].

Let us now suppose that the graph Γ is connected and without loops. In [S] we noted that the braids $\{\sigma\}$ corresponding to the edges verify the following relations:

(i) disjointness: if $\sigma_1 \cap \sigma_2 = \emptyset$ then $\sigma_1 \sigma_2 = \sigma_2 \sigma_1$.

(ii) adjacency: if $\sigma_1 \cap \sigma_2 = \text{one vertex}$ then $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$.
(iii) nodal: if $\sigma_1, \sigma_2, \sigma_3$ have one common vertex like in figure 3; then $\sigma_1\sigma_2\sigma_3\sigma_1 = \sigma_2\sigma_3\sigma_1\sigma_2 = \sigma_3\sigma_1\sigma_2\sigma_3$

(fig. 3)

(iv) cyclic: if $\sigma_1 \cdots \sigma_n$ is a cycle such that $\sigma_1 \cdots \sigma_n$ bounds a disc without interior vertices, then $\sigma_1\sigma_2 \cdots \sigma_{n-1} = \sigma_2 \cdots \sigma_n = \sigma_n \sigma_1 \cdots \sigma_{n-2}$

(fig. 4)

Moreover, we proved in [S] the

0.1. Theorem. — The braid group B_Γ on the vertex set $v(\Gamma)$ has a presentation (X_Γ, R_Γ) where X_Γ is the set of edges $\{\sigma\}$ and R_Γ the set of relations (i) – (iv).

0.2. Remark. — The above statement, which appears in [S] in a slightly more general context, was chosen here in order to keep notations simpler.

This theorem was presented at the Kyoto meeting together with some corollaries. The proof given in [S] used a recursive device using Artin’s presentation as the starting point. Here I shall sketch a direct argument suggested by Fadell-Van Buskirt’s proof, see [B], as modified by J. Morita [M].

I am grateful to Professors Suwa and Ito for the opportunity they gave me to participate to the R.I.M.S. meeting and for their warm hospitality.
1. The geometric argument

Let Γ be a finite tree, $v \in \Gamma$ an end vertex and $\Gamma' = \Gamma - \{v\}$ and v' the neighbour of v. Let P_{Γ} the kernel of the natural map $B_{\Gamma} \xrightarrow{\pi} \Sigma_{\Gamma}$, i.e. the pure braid group, where Σ_{Γ} is the permutation group of $v(\Gamma)$.

Forgetting the last string from v to v', one gets a natural map $P_{\Gamma} \rightarrow P_{\Gamma'}$. Think about this map as coming from the natural projection between configuration spaces. One easily sees that its kernel is the free group $\pi_{1}(C - v(\Gamma'))$ with $|v(\Gamma)| - 2$ generators.

Consider the subgroup $B_{\Gamma}^{0} = \pi^{-1}(\Sigma_{\Gamma'})$ of B_{Γ}. Then $P_{\Gamma} \subset B_{\Gamma}^{0}$ and there is a natural map

$$\theta : B_{\Gamma}^{0} \rightarrow B_{\Gamma'}$$

which "forgets" the last string. The diagram

$$\begin{array}{ccc}
P_{\Gamma} & \rightarrow & P_{\Gamma'} \\ \downarrow & & \downarrow \\ B_{\Gamma}^{0} & \rightarrow & B_{\Gamma'}
\end{array}$$

is commutative and the kernel of the horizontal maps is the same. One gets the

1.1. Proposition. — The kernel of the map $\theta : B_{\Gamma}^{0} \rightarrow B_{\Gamma'}$ is a free group of rang $|v(\Gamma)| - 2$.

2. The inductive assertion

In this paragraph we will formulate the statement needed to prove theorem 0.1 for a tree Γ.

Let \tilde{B}_{Γ} be the group given by a presentation (X_{Γ}, R_{Γ}) as in theorem 0.1. Our task is to prove that the natural map $\tilde{B}_{\Gamma} \rightarrow B_{\Gamma}$ is an isomorphism. We use induction on $|v(\Gamma)|$.

For each vertex $\omega \in \Gamma'$ let $\sigma_{1} \cdots \sigma_{\kappa_{\omega}}$ be the simple path from ω to v, $\rho_{\omega} = \sigma_{1} \cdots \sigma_{\kappa_{\omega}}$ the corresponding braid and $\tau_{\omega} = \sigma_{\kappa_{\omega}} \cdots \sigma_{2} \sigma_{1}^{-1} \cdots \sigma_{\omega}^{-1}$ if $\omega \neq v'$.
and \(\tau_\omega = \sigma_1^2 \) if \(\omega = v' \). Note that \(\rho_\omega \) and \(\tau_\omega \) make sense in \(B_\Gamma \) and in \(\tilde{B}_\Gamma \).

Let \(\tilde{B}_\Gamma^0 \) be the subgroup of \(\tilde{B}_\Gamma \) generated by \(\{ \sigma | \sigma \in \Gamma' \} \cup \{ \tau_\omega | \omega \in \Gamma' \} \).

One has a natural diagram:

\[
\begin{array}{ccc}
\tilde{B}_\Gamma^0 & \xrightarrow{\tilde{\theta}} & \tilde{B}_\Gamma' \\
\downarrow & & \downarrow \\
B_\Gamma^0 & \xrightarrow{\theta} & B_{\Gamma'} \\
\end{array}
\]

Note that the map \(\tilde{\theta} \) is well defined because the right map is an isomorphism by the inductive assumption.

In the next paragraph we shall prove that the left side map \(\tilde{B}_\Gamma^0 \rightarrow B_\Gamma^0 \) is an isomorphism and show how this implies that the map \(\tilde{B}_\Gamma \rightarrow B_\Gamma \) is an isomorphism.

3. Proof of the inductive step

The map \(\tilde{\theta} : \tilde{B}_\Gamma^0 \rightarrow \tilde{B}_\Gamma' \) has an obvious section. The kernel of \(\tilde{\theta} \) is the subgroup generated by the \(\{ \tau_\omega \} \) : this follows using the section and the fact that the \(\tau_\omega \)‘s generate a normal subgroup.

Direct checking shows that the \(\tau_\omega \)‘s, when considered in \(B_\Gamma^0 \) freely generate the kernel of \(\theta \) (see 1.1). This implies that the map from \(\text{ker} \tilde{\theta} \) to \(\text{ker} \theta \) is an isomorphism and by the five lemma and the inductive assumption the same is true for the map from \(\tilde{B}_\Gamma^0 \) to \(B_\Gamma^0 \).

In order to deduce that the map from \(\tilde{B}_\Gamma \) to \(B_\Gamma \) is an isomorphism we first note that it is surjective : it’s image contains \(P_\Gamma \subset B_\Gamma^0 \) and it obviously surjects onto \(\Sigma_\Gamma \).

\[
\begin{array}{ccc}
\tilde{B}_\Gamma & \rightarrow & B_\Gamma \\
\downarrow & & \downarrow \\
P_\Gamma & \rightarrow & \Sigma_\Gamma \\
\end{array}
\]
As B^0_r is a subgroup of index $|v(\Gamma)|$ of B_Γ by its very definition, it will be sufficient to show the same thing about the index of \tilde{B}_Γ^0 in \tilde{B}_Γ.

Consider the set $\tilde{X} = \bigcup_{\omega \in v(\Gamma)} \rho_\omega \tilde{B}_r^0$ (where we put $\rho_v = e$). We leave to the reader to prove that \tilde{X} is a subgroup of \tilde{B}_Γ. One then deduces that the index of \tilde{B}_Γ^0 in \tilde{X} is $|v(\Gamma)|$ as $\rho_{\omega_1}^{-1}\rho_{\omega_2} \notin \tilde{B}_\Gamma^0$ if $\omega_1 \neq \omega_2$. Finally, as \tilde{B}_Γ is generated by \tilde{B}_Γ^0 together with any ρ_ω, $\omega \neq v$, one has $\tilde{B}_\Gamma = \tilde{X}$ and so the index of \tilde{B}_Γ^0 in \tilde{B}_Γ is $|v(\Gamma)|$. This completes the argument when Γ is a tree.

4. End of the proof

We now take Γ to be any graph like in theorem 0.1 and $b(\Gamma)$ it's first Betti number. If $b(\Gamma) = 0$, Γ is a tree on the result is true.

Let us suppose that the theorem is true for all graphs whose first Betti number is less than $b(\Gamma)$. We chose an edge α on a cycle of Γ which does not bound a second cycle on the other side. The theorem is then true for the graph $\Gamma - \alpha$ and it is easily seen that this implies it is true for Γ: any cyclic relation is true in $B_{\Gamma-\{\alpha\}} = B_{\Gamma}$ and it defines implicitly the element $\alpha \in B_{\Gamma}$ (see [S] for more details).

References

Université de Grenoble I
Institut Fourier
Laboratoire de Mathématiques
associé au CNRS (URA 188)
B.P. 74
38402 ST MARTIN D'HÈRES Cedex (France)

(28 mars 1994)