A problem on the singulalities of a real algebraic vector field

KATSUNORI IWASAKI* 岩崎 克則

Acknowledgement.

I would like to thank the organizers for giving me time for this problem session. I have a problem on the singularities of a real algebraic vector field. I am not at all a specialist of this field. My problem might be familiar or easy for specialists.

1. A vector fields.

Let M(n) be the algebra of all $n \times n$ complex matrices, χ a monic complex polynomial of degree n, $M(\chi)$ the subset of all $X \in M(n)$ such that the characteristic polynomial of X is given by χ . $M(\chi)$ is a complex algebraic subvariety of M(n). Moreover, let N(n) be the set of all $n \times n$ normal matrices, $N(\chi) := N(n) \cap M(\chi)$.

Consider a real algebraic vector field V on M(n) defined by

$$V(X) := [[X^*, X], X]$$
 at $X \in M(n)$,

where X^* is the Hermitian adjoint of X. We provide M(n) with the Hermitian inner product and the Hermitian norm defined by

$$(X,Y):=\operatorname{Trace}(XY^*), \qquad \|X\|:=\sqrt{(X,X)}.$$

The vector field V arises as the gradient flow of the functional φ : $M(n) \to \mathbb{R}$ defined by

$$\varphi(X) := \frac{1}{4} \|[X^*, X]\|^2.$$

LEMMA 1.1. The fixed point set of V is N(n).

The vector field V preserves each conjugacy class of M(n), where a conjugacy class means a GL(n)-orbit of the group action

$$M(n) \times GL(n) \to M(n), \qquad (X,g) \mapsto g^{-1}Xg.$$

^{*}Department of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153 Japan.

In particular, for any χ , V preserves $M(\chi)$, and hence one can consider the restriction V_{χ} of V into $M(\chi)$:

$$V_{\chi}=V|_{\boldsymbol{M}(\chi)}.$$

The vector field V arises as the gradient flow of another variational problem. To state it, let C be any conjugacy class and consider the functional $\psi: C \to \mathbb{R}$ defined by

$$\psi(X) := \frac{1}{2} ||X||^2.$$

C is a locally closed complex submanifold of M(n) and its tangent space at $X \in C$ is given by

$$T_X C = \text{Image of } Ad(X) : M(n) \to M(n), Y \mapsto [X, Y].$$

If T(X) is the orthogonal complement of Ker $\operatorname{Ad}(X)$, then we have an isomorphism $\operatorname{Ad}(X):T(X)\to T_XC$. We provide T_XC with a Hermitian inner product so as to make $\operatorname{Ad}(X):T(X)\to T_XC$ an isometry. Thus we have obtained a Hermitian metric on C. The gradient flow of the functional $\psi:C\to \mathbb{R}$ with respect to this Hermitian metric gives the vector field $V_C:=V|_C$ on C.

2. Stratification.

 $M(\chi)$ consists of a finite number of GL(n)-orbits. Let $\mathcal{O}(\chi)$ be the set of all orbits in $M(\chi)$. $\mathcal{O}(\chi)$ gives a stratification of $M(\chi)$ by locally closed complex submanifolds. We introduce a partial order < in $\mathcal{O}(\chi)$: For $C_1, C_2 \in \mathcal{O}(\chi)$, we put $C_1 < C_2$ if and only if $C_1 \subset \overline{C_2}$. Let $E(\chi)$ be the set of all $e = (e_1, e_2, \ldots, e_n)$ such that

- (1) e_i is a monic polynomial, (i = 1, 2, ..., n),
- (2) e_i divides e_{i+1} , (i = 1, 2, ..., n-1), and
- $(3) e_1 e_2 \cdots e_n = \chi.$

For any $C \in \mathcal{O}(\chi)$, we denote by $e_i(C)$ be the *i*-th elementary divisor of C and put $e(C) := (e_1(C), e_2(C), \dots, e_n(C))$.

LEMMA 2.1. There is a one-to-one correspondence:

$$\mathcal{O}(\chi) \to E(\chi), \quad C \mapsto e(C).$$

For any $C_1, C_2 \in O$, we have $C_1 < C_2$ if and only if

$$\prod_{j=1}^{i} e_{j}(C_{2})$$
 divides $\prod_{j=1}^{i} e_{j}(C_{1})$, $(i = 1, 2, ..., n)$.

REMARK 2.2: There are a unique maximal orbit $C_{max}(\chi)$ and a unique minimal orbit $C_{min}(\chi)$ in $\mathcal{O}(\chi)$ with respect to the partial order <.

LEMMA 2.3. Let $C \in \mathcal{O}(\chi)$.

- (i) The following three assertions are equivalent:
 - (1) $C = C_{min}(\chi)$.
 - (2) C is closed in $M(\chi)$.
 - (3) C is semisimple.
- (ii) $C = C_{max}(\chi)$ if and only if C is open in $M(\chi)$.
- (iii) $C_{min}(\chi) = C_{max}(\chi)$ if and only if χ has distinct n roots,
- (iv) $X \in M(n)$ is smooth in M(n) if and only if $X \in C_{max}(\chi)$, and
- (v) $N(\chi) = N(n) \cap C_{min}(\chi)$.

Lemma 2.3 implies that, if χ has a multiple root, then $N(\chi)$ lies in the singularities of $M(\chi)$. If χ has distinct n roots, then $M(\chi)$ is smooth everywhere.

Consider the vector field V_{χ} on $M(\chi)$ This is a real algebraic stratified vector field on M(n). In this symposium, Prof. Brasselet talked about complex analytic stratified vector fields.

LEMMA 2.4. The fixed point set of V_{χ} is $N(\chi)$. Moreover, the ω -limit set of V_{χ} is $N(\chi)$.

3. Semisimple trajectries.

Consider the trajectry $\{X(t)\}_{t\geq 0}$ of V_{χ} starting from $X_0\in M(\chi)$. X(t) exists for all $t\geq 0$. If $X_0\in C_{min}(\chi)$, then X(t) is called a semisimple trajectry and, if $X_0\notin C_{min}(\chi)$, then X(t) is called a non-semisimple trajectry, respectively.

NOTATION 3.1: Let $\{z_1, z_2, \ldots, z_k\}$ be the set of mutually distinct roots of χ . We put

$$a(\chi) := \begin{cases} 0 & (k=1), \\ \min_{i \neq j} |z_i - z_j|^2, & (k > 1). \end{cases}$$

REMARK 3.2: (i) If $a(\chi) = 0$, then $C_{min}(\chi)$ consists of a single point which is a scalar matrix. So the trajectry X(t) is a single point. Everything is trivial in this case.

(ii) If $a(\chi) > 0$, then $N(\chi)$ is a compact real analytic manifold of positive dimension. $N(\chi)$ is a U(n)-orbit.

THEOREM 3.3. There exists a continuous function $K: C_{min}(\chi) \to \mathbb{R}$ such that the following condition holds: For any $X_0 \in C_{min}(\chi)$ there exists a normal matrix $X_\infty \in N(\chi)$ such that the trajectry X(t) starting from X_0 satisfies

$$||X(t) - X_{\infty}|| \le K(X_0)||[X_0^{\bullet}, X_0]||e^{-2a(\chi)} \qquad (t \ge 0).$$

REMARK 3.4: (i) The function K can be given more explicitly (see [Iw]). (ii) Theorem 3.3 implies that each semisimple trajectry in $M(\chi)$ converges exponentially to a normal matrix in $N(\chi)$ as $t \to \infty$.

4. Non-semisimple trajectries.

What can we say about the non-semisimple trajectries? We have at least the following:

THEOREM 4.1. For any non-semisimple trajectry X(t),

$$t||[X^*(t),X(t)]||^2 \to 0$$
 as $t \to \infty$,

but

$$\int_0^\infty t \|[X^{\bullet}(t),X(t)]\|^2 dt = \infty.$$

Now we propose the following:

PROBLEM 4.2. Does any non-semisimple trajectry converge as $t \to \infty$? If a non-semisimple trajectry does not converge, how does it behave?

REFERENCES

[Ar] V.I. Arnold, On matrices depending on parameters, Russian Math. Surveys 26 (1971), 29-43.

[Iw] K. Iwasaki, On a dynamical system on the matrix algebra, preprint.

[Ku] T. Kusaba, "Special topics on matrix theory," in Japanese, Shôkabô, Tokyo, 1979.

[Ne] P.E. Newstead, "Introduction to moduli problems and orbit spaces," TaTa Institute of Fundamental Research, Springer-Verlag, Berlin, Heidelberg, New York, 1978.