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$SL(2;R)$-Actions on Surfaces

Yoshihiko MITSUMATSU (三松佳彦)
Department of Mathematics, Chuo University (中央大学理工学部)

The aim of this talk was to give a fairly elementary method to classify the
differential structures of non-transitive $SL(2;R)$-actions on 2-dimensional
manifolds, as well as to give an account on how Lie groups act on manifolds,
especially on very low dimensional ones, beginning with a Lie’s theorem of
more than one hundred years ago. Most of the arguments here are on Lie
algebra level.

1 Lie Groups Acting on l-Manifolds
Standard examples of the actions of finite dimensional Lie groups on 1-

manifolds are coming from the projective action of $PSL(2;R)$ on $RP^{1}$ by
taking its covering or the restrictions to its subgroups.
Theorem (Lie, [4], [5], [3]) Essentially those are all.

The author would not like to clarify what word essentially could imply. How-
ever, one can consider that it is true on an orbit, in the local Lie algebra sense.

The proof roughly goes as follows. $\cdot$ Take an element $X\in g$ and a point
and its neighbourhood with local coordinate on the manifold so that $X$ looks
just like $\partial/\partial x$ . Any element $Y\in g$ can be expressed as $f(x)\partial/\partial x$ on that
neighbourhood. Then it is quite easy to see that [X, $Y$] $=f’(x)\partial/\partial x$ . Thus,
$(ad(X))^{n}(Y)=f^{(n)}(x)\partial/\partial x$ .
Our assumption that the Lie algebra $G$ is finite dimensional implies that the
function $f$ must $satis\mathfrak{h}^{\gamma}$ some linear ODE’s with constant coefficients. As
we know all of their solutions, $i.e.$ , they are in the form $\Sigma$ polynomial $\cross$

exponential in the complexified sense, we can easily classify them to gener-
ate finite dimensional Lie algebras. Actually, we have only three possibilities
below when $g$ is 3-dimensional, and in the lower dimensional case are realized
as their subalgebras;
,-Type 1. $g=\{[\rho olynimialsofdegree\leq 2]\cross\partial/\partial x\}$

Type 2. $g=\{(\exp(ax),\exp(-ax), 1)x\partial/\partial x\}$

Type 3. $g=\{\langle\sin(ax),\cos(-ax), 1\rangle\cross\partial/\partial x\}$
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Sophus Lie obtained a similar result on the complex plane C.

2 Lie Groups Acting on 2-Manifolds
In the 2-dimensional case (and also in higher dimensional case) such clas-

sification problems become those of PDE’s.
Analytic 2-dimensional orbits are listed and classified in [6] and in [2] in

terms of Lie algebra of vector fields. There we can see easily that for any
integer $n>1$ there exists a nilpotent Lie group of dimension $n$ which acts
effectively and transitively on $R^{2}$ . Therefore we can not bind the dimension
of Lie groups. However;

Theorem (Epstein-Thurston, [1]) If $g$ is a solvable Lie algeba acting tran-
sitively on m-dimensional manifold, then $d$( $=the$ demved length) $\leq m+1$

holds. In the case that $g$ is nilpotent, we have $d\leq m$ .
As to simple Lie groups, thanks to the list we know every homogeneous 2-
spaces.

3 Non-transitive Actions on 2-Manifolds
The next problem is to classify non-transtive actions of (semi-)simple Lie

algebras on surfaces. Modifying Thurston’s argument of the generalized Reeb
stability [10] into the Lie algebra version, Plante proved the following.
Theorem (Plante, [7]) If such an action has a fixed point, the Lie algebra
is isomorphic to $sl(2;R)$ .
The essential idea is to modify the generalized Reeb stability of Thurston
[10] into the Lie algebra version, $i.e.$ , if the tangential representation of the
Lie algebra $g$ on $T_{x}M$ at a fixed point $x\in M$ vanishes, Thurston’s argu-
ment implies that $g$ has a non-trivial abelian homomorphism. Therefor the
simplicity implies that $g$ is isomorphic to a simple subalgebra of $gl(2;R)$ .
Combining this with Lie’s theorm, it turns out that among simple Lie alge-
bras only $sl(2;R)$ can act on surfaces non-transitively. Furthermore, such
actions around fixed points are diffeomorphic to the standard linear action.

Remark Durling this meeting, Etienne Ghys gave a comment to the au-
thor that simple Lie group actions around a fixed point can be linearized
smoothly and this $is$ a classical result.
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Therefore the actions of $g=sl(2;R)$ on surfaces with a l-dimensional orbit $\mathcal{L}$

and two 2-dimensional orbits $o_{+}$ and $\mathcal{O}_{-}$ on each side of $\mathcal{L}$ are of interest.
Up to coverings, 2-dimensional orbits are classified into three types $G/H$,
$G/P$ , and $G/K$ , according to typical three elements $H=(\begin{array}{l}l,00,l\end{array}),$ $P=(\begin{array}{l}0,l0,0\end{array})$ , and
$K=(\begin{array}{l}0,-ll,0\end{array})$ . Here $G/X$ denotes the quotient of $G=PSL(2;R)$ or its cov-
ering by the l-parameter subgroup generated by X. The problem is which
combinations of types of 2-dimensional orbits can occur and how they are
glued together along l-dimensional orbit $\mathcal{L}$ .
Examples 1) The projective linear action of $PSL(2;R)$ as a subgroup of
$PSL(2;C)$ on $CP^{1}$ has an orbit decompostion [the upper half $sp$ace, $RP^{1}$ ,
the lower half $sp$ace] as a model of $[\mathcal{O}_{+}, \mathcal{L}, \mathcal{O}_{-}]=[G/K|G/K]$ .
2) If we take the projective sphere of the linear representation $g_{ad}$ , we find a
model of $[G/K|G/H]$ .
3) Like in 2) taking the projective spheres of linear representations, we obtain
models of $[G/H|G/H]$ and $[G/P|G/P]$ . Remark that they are analytic.
4) If we take the projective sphere of the linear representation $g_{ad}\oplus R$, we
find a $C^{1}$-model of $[G/K|G/P]$ and also that of $[G/H|G/P]$ by finding
$C^{1}$-invariant submanifolds.

By solving PDE Schneider [8] and Stowe [9] classified analytic structures
around $\mathcal{L}$ . According to them, for the models $[G/H|G/H],$ $[G/K|G/K]$ , and
$[G/H|G/K]$ we have countably infinitely many solutions. $[G/P|G/P]$ has
also infinitely many solutions, however, neither $[G/H|G/P]$ nor $[G/K|G/P]$

has analytic solutions.
Conjectures 1) The dimension of any Lie group which can act on a closed
n-manifold does not exceed $n^{2}+2n$ .
2) Only the projective linear actions on the projective spheres and the con-
formal actions on the standard spheres are the possible transitive actions
of non-compact Lie groups on compact manifolds.
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4 Characteristic Functions
Now we give an elementary method to classify actions in the previous

section without solving PDE’s. This method is valid for more general higher
dimensional cases, but efficient only for non-transitive actions.

For a while let $g$ denote any simple Lie algebra with its Killing form
$B$ : $garrow g^{*}$ , and let $M$ denote a Riemannian manifold with its metric
$R:TMarrow T^{*}M$ on which $g$ acts. For each point $x\in M$ , we have a lin-
ear endomophism $E_{x}=B^{-1}oA_{x}^{*}oRoA_{x}$ : $garrow g$ , where $A_{x}$ is the evaluation
$garrow \mathcal{X}(M)arrow T_{x}M$ and $A_{x}^{*}$ is its dual. For any invariant polynomial $\phi$ on
$gl(g)$ we obtain a function $\phi(x)=\phi(E.)$ on M.
Theorem 1) On any d-dimensional orbit, $\sigma_{d}$ does not change its sign,
where $\sigma_{d}$ is the d-th elemetary symmetric polynomial on eigenvalues.
2) Especially, for any $(d+1)$ -dimensional (semi-)simple Lie group $G$ and its
closed l-parameter subgroup $<X>$ generated by $X\in g$ and for any Rieman-
nian metn$c$ on $G/X$ , we have $\sigma_{d}>0,$ $\equiv 0$ , $or<0$ on $G/X$ according to
$B(X,X)>0,$ $=0$ , $or<0$ .
3) For $sl(2;R)$ -actions in the previous section, we have $\sigma_{2}>0$ on $G/K,$ $\equiv 0$

on $G/P$ , $and<0$ on $G/H$ .
Taking an analytic Riemannian metric around $\mathcal{L}$ , quite easily we obtain the
followings.
Corollary 1) We have analytic solutions neither for $[G/H|G/P]$ nor for
$[G/K|G/P]$ .
2) The equivalence classes of germs of $\sigma_{2}$ around $\mathcal{L}$ under local analytic
transformations classify the analytic structures of all analytic slutions of
$[G/H|G/H],$ $[G/K|G/K]$ , and $[G/H|G/K]$ .
The similar statements hold for higher dimensional cases, $e.g.$ , for the Lie
groups $SO(p, q)$ in the situation of Theorem 2).

Closely looking into all analytic solutions of $[G/H|G/H],$ $[G/K|G/K]$ ,
and $[G/H|G/K]$ , it turns out that they $aU$ belong to a single family, as
explained below. Under analytic conjugacy, Example 2) has the following
expression for the basis $H=(\begin{array}{l}1,00,l\end{array}),$ $L=(\begin{array}{l}0,ll,0\end{array})$ , and $K=(\begin{array}{l}0,-1l,0\end{array})$ around $\mathcal{L}$ .

$K=\partial/\partial x$

$H=$ $(1+y)\sin x\partial/\partial x+(2y+y^{2})\cos x\partial/\partial y$

$L=$ $(1+y)\cos x\partial/\partial x-(2y+y^{2})\sin x\partial/\partial y$
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Pulling back this model by the maps $\Phi_{n,\pm}(\xi, \eta)=(x=\xi, y=\pm\eta^{n})$ , we obtain
all analytic solutions of $[G/K|G/K]$ {resp. $[G/H|G/H]$ } taking $(n, \pm)=$

(even, $+$ ) {resp. (even, -)}, and those of $[G/H|G/K]$ taking (odd, $\pm$ ). (If we
take $y(\eta)$ to be non-analytic smooth function, we obtain smooth solutions.)
We can recover completely this function $\Phi$ from $\sigma_{1}$ and $\sigma_{2}$ . Thus Corollary
2) is strengthened a little.

Essentially these arguments also work for any reductive Lie algebras. If $M$

admits a symplectic structure $\Omega:TMarrow T^{*}M$ we can replace the Riemannian
metric with it. In the 2-dimensional case, we obtain the same results.
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