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On the solution complexes of
confluent hypergeometric D-modules
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1 A point of view for Binet-Stirling formula

The function I'(2) is a meromorphic function in the complex plan, which has the integral
representation '

P = [ exp(-e)e ez,

and the infinite product representation

Ty = Fexe(n2) fjl (142 exp(-2).

It satisfies the functional equalities
P(z+1) =2I(z), T(1)=1,

and
T

P(2)T(1 - 2) =

sinmz’
We also have so-called Binet (1820)-Stirling formula,
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1 1
(|2| = oo, |argz|_<_§1r—e, K, <csc2e (0<€<Z7r))

where By (N =0,1,2,...) are Bernoulli numbers and therefore we have
lim |2VEn(2)| = 0.
|z]—o00

Poincaré obtained the concept of asymptotic expansion from the formula. By his terminol-
ogy, ) )

J(z) =logI'(z) — (2 — 5) logz+ 2z — —2—log27r
is asymptotically developable to the series

f: ~1)*'B,

(2n — 1)22-1°

which does not converge, because of

lim B.2n(2n — 1)
e B2+ )(2n+1)

" The Binet-Stirling formula is derived form Binet’s integral formulae

_ [ n(t L N Binet’s 1st integral formul
J(z)_‘/0 e (2 e‘—l)?z_ (Rz > 0) (Binet’s 1st integral formula),

J(z) = ——/ooo et (2 +1-~ 7 _te_t)%t (Rz > 0) (Binet’s 1st integral formula),

o arctan Ldt
J(z) =2 /0 _a%:n__zl (Rz > 0) (Binet’s 2nd integral formula),

1 foo 2 1
1) == [ grlos gt (R2>0),

and we have these formulae by using
d?
2 1o8l(z ) =

— 1 —t(z+n) il /00
n2=0 o n) + 2 / te dt = + t,

n=0

n=0 (Z + n)2 - 4 222 0 (22 + t2)2 e2rt _1°

Fom the Binet’s second integral formula, we have

2(=1)" oo rt u?"du dt
: En(2) = 22n—1 /0» {/0 u2+z2} e2rt _ 1’
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from which we have the estimate(for example, see Whittaker-Watson [13]) and by using

— 3 2n IB'"|
27 = (hmsup ,' (@n)! ' ,

we have also the estimate with Gevrey order 1=2-1

(=)""'By
2N(2N —1)

< K((2N -2))} (517;)21“,

1 2N
[En()] < K@M (52) 1172,

1
(|2| =@ 00, |argz| < 5T 6 (0<e< ;11-71'))

According to the Binet’s first integral formula, we know the following remarkable thing:the
difference equation

J(z+1) —J(z)# -1- (z+ %) log (1+-i—)
has a formal power-series solution

i (_1)n—1Bn
1 2n(2n — 1)227-1

of which the Borel transform is equal to

(t 1+ t )1_ (t+1 t )1
2 Tet—1) 2 2 1—et) t2

and as the Laplace transform, we have

J(2) =log'(2) — {(z - %) logz — 2+ %10g27r} .
Then, we can derive the Binet-Stirling formula by using Watson’s Lemma: q(t) has N-th

derivative and
|q(k)(t)| —<—Meat (k‘-:o, la"'a'N),

then Nt
oo ‘ - 0) M
“2a(t)dt = q (
b a0 = 2 L )

(]| @ o0, |argz| < %w—e, (0<e< %w))
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2 Poincaré’s asymptotic expansion and asymptotic
expansion with Gevrey order

A function f(z) defined on S is asymptotically developpable to a formal series f (2) =
T2 0 arz~* as |z| = oo in the sense of Poincaré , if, for any positive integer N and for any
open subsector S’ , we have

N-1

1£(2) = 3 axz™| < constant|z|~V,

k=0
where the series is said to be asymptotic series. A function defined in a sector S at the
infinity has an asymptotic expansion with Gevrey order ¢ = s — 1 as |z| = oo, if it is
asymptotically developpable and the asymptotic sereis f (2) satisfies the following condi-
tions:

lax) < C(K)°AF (k=0, 1, 2,--.),

and for any integer N and for any subsector S, there exists K and B ,

|1£(z) - Nf axz"*| < K(N)7BN|2|V.
k=0

3 Index theorems of ordinary differential operator
and its irregularity

Consider a linear ordinary differential operator with coefficients in holomorphic functions
at the origin in the complex plan

m
Pu= (Y ai(z)(d/dz)")u.
i=0
Let O ,0, K, K and & be the ring of convergent power-series, the ring of formal power-series,
the ring of convergent Laurent series with finite negative order terms, the ring of formal, the
ring of formal Laurent series with finite negative term and the ring of convergent Laurent
series, respectively.

Denote by F one of O; @, K, K and €. We consider P as an operator from F to
itself. Then, Ker(P; F) and Coker(P; F) are finite dimensional, and has a index x(P;F) =
dim¢ Ker(P; F) — dim¢ Coker(P; F) , which can be calculated as follow:

x(P;0) =m — v(am), x(P; @) = sup{i — v(a;) : i = 1, ...,711},
x(P;K) =m = v(an) —sup{i —v(a;) : i =1,...,m}, x(P;K) =0,
x(P;€) =0.
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At the origin, the folloings are the same and the quantity is said to be the irregularity
of P at the origin, denoted by Irr(P):

X(P;0) = x(P;0), x(P;0/0),
x(P; K) — x(K), —=x(P; K), x(P; K/K),
x(P;€) — x(P; K), x(P;E/K),
x(P;€/0) = x(P;K/0),

dim¢ Ker(P; 0/0),

dim¢ Ker(P; l&/}C),

dim¢ Ker(P; £/K),

dim¢ Ker(P; (£/0)/(K/O)).

In spirihg the characterization of regular singularity by Fuchs using the coefficients and

by Deligne as the validity of comparison theorem, Malrange [9] got another characterization:

The opetator P is regular singular at the origin if and only if
sup{i —v(a;) : i +1,...,m} — {m—v(an)} =0,

which is equivalent to
(zero irregularity )
Irr(P)g = 0,

(validity of comparison theorem between O and O)

Ker(P; O) ~ Ker(P;0), Coker(P;®) =~ Coker(P;0),
(validity of comparison theorem between K and K)

Ker(P;K) ~ Ker(P;K), Coker(P;K) =~ Coker(P;K),
(validity of comparison theorem between K and £, Deligne [1])

Ker(P; £) ~ Ker(P;K), Coker(P;&) ~ Coker(P;K).

Let Dy be the sheaf of germs of linear ordinary differential operators with holomorphic
coefficients, and put Mgy = Dy/DyP . Then, My has a projective resolution
0+ Mg + Dy = Dy + 0,

from which, by operating the functor Homp, (-, Fo), we have the solution complex with
values in F at the origin,

SOl(MQ,fo) : Fo i) Fo — 0.
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We have the isomorphism:
Ext®(Mo, Fo) ~ Ker(Fo; P), Ext!(M,, Fo) =~ Coker(Fo; P).
Therefore, the index as D-module at the origin,
x(M; F)o = dime Ext® (M, Fo) — dime Ext! (Mo, Fo),

is equal to the index x(P; F), and the irregularity as D-module at the origin,

Irr(M)o = x(Mo; 0) — x(Mq; 0),
is equal to the irregularity Irr(P)o and

Irr(M)o = X(Mo; K) — x(Mo; K),

Irr(M)o = x(Mo; ) — x(Mo; K),

Irr(M)o = x(Mo; £/O) — x(Mo; £/O).
Ramis [10], [11] obtained index theorems with Gevrey order.

4 Indices of holonomic D-modules and their irregu-
larities

Let D be the sheaf of germs of linear partial differential operetors with coefficients of
holomorphic functions on a manifold M and let M be a holonomic D-module. The module
M has a projective resolution

P,

0 MeDm Lpm Bopm B fentpmae g

from which, by operating the functor Homp(-,F) , we have the solution complex with
values in F , ‘

Sol(M, F) : Fmo By g Hy | gt gy g
For a point p, the index of holonomic D-module Mwith values in F is defined by
. 2n
X(M; F)p, = dime(-1) Ext' (M, F),.
i=0

For the point p, the irregularity of holonomic D-module Mis defined by

Irr(M)p = X(M; OM]H))p - X(M; OMIH)p)

where O is the sheaf of germs of holomorphic functions on M , H is the set of singular
points of M, Oy is the zero-extension of the restriction of O on H and (’)M~I g is the
Zariski completion of O along H.
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5 Holonomic D-module defined by confluent hyper-
geometric partial differential equations ®,

In the sequel, we consider the solution complexes of holonomic D-module defined by
confluent hypergeometric partial differential equations ®; and give the calculation of the
cohomology groups.

We put M = P} x P} and H = {(00,y);y € PA} U {(z,);z € P}}.

For a domain U included in {(c0,y);y € P}}, we define

Osit a0 V) = {E £, (4)x553C > 0,n, s:t.sup | fa(g)| < CA™{(n — 1)!}"‘} ,
v 320 yeU

and for a domain V included in {(z,00);z € PL}, we define

j>0

Oﬁ,s,A(V’ o0) = {Zf: z)y~%;3C" > 0,Vn, s.t. sup|f,,( )| < C'A™{(n - 1)!}3—1}.

For a point p € H\(c0,0) , if p € {(c0,y); y € P5} then we put

(Oﬁﬁ{,s,A) Ind llm(')m\H’ ’A(OO,U),

and if p € {(z,0);z € P}}, then we put

(O it 0,407 I,fle(‘i,lclm Ojitt,s,4 (V> 0)-
We define as follow:
(O@’s)p = Ind hm((')MiH, ’A)
((9)‘7'?1’(3))p = Pr%llm M|HsA)P
(Om,s’/‘_)p = Ind hm(OMIH B)P ,
O oan)e = Pr%Lhm(OMmsB)

The system of confluent hypergeometric partial differential equations ®, [2] is as follows:

0%u 0Pu Ou
. w+ym+(c—x)%——bu— (denoted byL;u = 0)
i __311_;_+x32u +(é-— )@-—- u=0 (deotedbLu—O)
Yoy T Tozoy Ygy ~ T noted ByLat =

where b, b, c are not non-negative integers.
We consider the D-module M, defined by ®,, namely we put

My = D/(DLl + DLQ)
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We have a projective resolution
00— Mo +—D+—D—D? 0
and we have the solution complex Sol (Mz, F ) with values in F
F o 73 Iy F2_40,
where
L

Vo=| L |,
L

—Ly, Ly 0
Vi=| 0 90 E
dy oz

by using Takayama’s Kan [12] and we have the following -

Theorem 1 . Let M = PLx P}, H = {(00,y);y € PA}U{(z,00);z € PL}, p € H\(00,00)
be as above. The dimensions of chohomology groups of the solution complexes for the D-
module defined by ®5 are as folow:

1) If1<s<2,

for F = Oz oy Ot s,a-2 Ot sy Citiin,s

dime Ext! (Ma),, Fp) = { (1) 8 _ (1)) ?
@) Ifs>2,
- for F=0g5 0 O ©

MH,(s)’ ¥ M|H,s,A~" " M|H,(s,A+)’ = M|H,s’

dim¢ Ext/((Ms),, Fp) =0, (=0,1,2).

(3) In the case of s =2,
(i) ifA>1,
for F=0— (¢

MIH2,A-"" M|H,(2,A+)’

dim¢ Ext?(Ma),, F,) =0, (j=0,1,2).

(i) f0< A <1,

for F = OM]H 2,41 0A’4|71,)(2,A+) ’

0, (=0,2)

dim¢ Eth((M2)p,fP) = { 1, (G=1)
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(iii) if A=1,

0, (.7 =0, 2)
1, (=1
( =0,1,2).

dimc Extj((MZ)pa (OIL/!-];I,Z,I—)?) = {

dimc EXtJ((M2)ps (OIVITH,(ZI-;-))”) = 0’

(iv) dime Ext! (M), (O o)) = { 0, (7=0,2)

| L, (=1
dime Bxt! (Ma)p, (O )p) =0, (7 =0,1,2).

(4) dime Ext/ (Ma),, (Ogm)p) =0, (5=0,1,2).

Corollary 1 . The indezes of D-module defined by ®, are as follow:
(1) If1<s<2, "

for F = Oz (> Ottt -2 Ot (o,44) Citiire

X((MZ’)pvfp) =-L

(2) If s > 2,

for F= OM|H ()’ Oﬁys’A— ’ Oﬁl\H’(&Aﬂ ’ OWI’S’

X((M2)p’ fp) =0.

(3) In the case of s =2
(i) if A>1,
for F=0— (@)

MIH2,A- "~ MH,2,A+)"

X((M2)p’fp) =0.

(i) f0< A<,
for F=0— o

MR 2,A-" Y MIH,(2,A+)’

X((Mz)p,fp) =-1.
(i) if A= 1,

X((M2)p, (OWI?l—) ) -1.
((M2)p, (O =0.
() 2((Ma)y, O o)) = 1.
X((M2)p, (OWQ)P) = 0.
(4) X((M2)P7 (Om)p) =0

MI|H,(2, 1+)) )
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Corollary 2 . The irregularity Irr((M,),) = 1.

We have the results for ®3 similar to those as above.
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