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' Variable coefficient Explicit Runge-Kutta Methods

fg‘{:\% T BER) 5 &)EE%. (Masaharu. Nai(ashia)

Abstract
This paper deals with the construction of a class of A-stable
explicit Runge-Kutta methods, the present methods can not be written
down for a system simply by replacing scalars by vectors, but are
still compoment applicable to a system. Finally, some numerical tests

Justifing the results are present.

1. Introduction

The presént paper is concerned with the numerical integration
of stiff system of ordinary differential equation:

y' = £(x,5), y(xe) = yo. (1.1)
A basic difficulty in the numerical solution of stiff system
is the satisfying of the requirement of stability, from the
restriction of stability, implicit type methods have been present
and some explicit methods imposed the stability conditions have
derived, however there still remain stability problem for the
explicit methods, so it is the purpose of the present paper

to derive the explicit A-stable Runge-Kutta methods with respect

to the model equation. The outline of this paper is as follows:
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In § 2, We consider two-stage of order one Runge-Kutta methods.

In § 3, 'we proposed some numerical tests.

2. Derivation of the formulae
Consider the r-stage explicit Runge-Kutta methods:
V= Yy +h é\bLkL , (2.1)

k, = f(x,,% ) )
kg = f(x + cph,y, + h:é“a“kj),
cy = ;%au (i = 2,..,r).
The order conditions of the R-K methods which are discussed
in [1], are listing up to two order:

order 1: sby = 1, (2.2)

order 2: £ bicy = 1/2, (2.3)

Let us now apply the r-stage, p-th order Runge-Kutta methods
(2.1) to the test equation
Yo =1y, (2.4)
then we have the stability polynomial

Yoo = S(2)yg, » (2.5)
where S(z) takes the form
1
r
" S(z) = g + = 7 z;c .
i=1 i! k=p+l (z = ah ),

We shall study the stability polynomial S(z) with (p,r) = (1,2).

2.1: first order Runge-Kutta formula with two-stage
From (2.5) the numerical processes is

You= (1 + 2 + b, a zz)yﬁ ’ (2.6)
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here we assume that b2a21 has the form:
b, a, = 5;‘g_i}
t=o Vv
From the stability condition it is required
m<s -1
We may choice the integer s in any number, in this paper we study

only the case s = 2:

8 + pz

b - i (2.7
28.21 a+ﬁZ+‘rZz ( )

Putting (2.8) into (2.7) yields

a+ (at B)z + (v + 8+ 8)z2 + (v + p )2°
- d,(2.8)

(a + gh + v2?)

X\‘\'\

where the undetermined parameters a,8,y,5 and p must be chosen so that
the condition of A-stability is satisfied. we present some A-stable

algorithms.

Case (1): If ,for example, we chosse those parameters to
a=1,8=-1,yr=0,8=1and p =0,

(2.8) reduces to

b a = —7m—, (2.9)

and

which is A-stable algorithm.

Recalling that b2a21 is a free parameter, we may set bza21 by

Y.

n
b,a = ———— 2.10
2 21 y“_ h Zl ( )



162

where z, = (X%, ).

We find easily that, when we apply test function (2.5) to (2.10),
(2.9) may replacy by (2.10).
Soving order conditions (2.2) and stability condition (2.10),

we have the coefficients as follow:

Ya
(A) if 0 < D = —— <1/2 then we take
m

b, = , B =1-b,. (2.11)

with z = f(x .
, 1 (Xns¥) (a,,:free parameter)

(B) if D, or D, > 1/2 then we take

_ ¥

b = a =
7 T2 b, (1-hz)

2

, b.=1-b_. (2.12)

<0,
1
2
with z = f(x,¥, ).

Case (11): If, for example, we take -

1, 3=1and p = -1

a=1, 8=-1,r

then (2.8) reduces to
1 -2

b, a, = 1 -7+ 22’ (2.13)

and the numerical processes (2.9) has the form

1

Yam 1=z +22 7

.'\’
which ia A-stable algorithm. As the same reason of case (1), we may
replace (2.13) by

Yo~ 2
b oa = n % | (2.14)
2z ¥, hz+hz, :

with z = f(x“,y“), z,= f(x,+ h,y, +h z1/2).



Solving order condition with (2.14), we have the coefficients as

follow:

(A) if 0< D, =

then we take

_yﬂ
azl(xh" hz + hzz)

, b, =1-b,. (2.15)

1

b2 =
with z = f(x“,yn), z,= f(xnt h/2,y“ + hz /2),
(a21:free parameter)

1
(B) if D <0 or D > — then we take
2 2 2

a = , b, =1-D (2.16)
21 b, (¥ - hz + hzz) 1 2

with z = £(Xy V) z,= f(xpat h/2,yy + hzl/2).

1
b :'—2—,

2

3. Numerical Exa-ples
In order to test the method (2.1), we wish to present some numerical
results. The described methods are programmed in FORTRAN and run on
the Personal Computer 9801RA(NEC). The computations are done in

double precision.

(1) y = -1000y , ¥(0)

=1,
(2) Yy =AY, Y()=(1,1,1),
with
0.1 0 O
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(3) Yy =AY, Y(0) = (1,1,1),

Table 1

Result using (2.11) & (2.12) with h = 1/2% and h = 1/28

Absolute error

Problem 1
X 0.125 0.500.. 1
h=1/23 0.793E-2 0.396E-8 0.157E-16
h=1/2% 0.171E-9 0 0
Problem 2
(h = 1/2%)
x v, Y, v,

0.0625 0.484E-5 0.553E-1 0.140E-1
0.5 0.371E-4 0.946E-8 0.210E-14
1.0 0.706E-4 0.898E-16 0.443E-29
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Problem 3
(h= 1/2%)
X Y, Y, Y,
0.0625 0.491D-5 0.055E+0 0.014D+0
0.5 0.411D-4 0.946D-8 0.210D-14
1.0 0.864D-4 0.898D-16  0.443D-29

Finally we consider a variable step algorithm. Let yﬁoand i:i)denotes

the approximation to the i-th éomponent at x = x,, using step size h and
respectively.
#%r P y

Defining

EST

H

Uy - 301

L) ~a
max |y -'y." |
ses ™ "

We use the following step size control policy for a given local
accuracy requirement e.
1. If EST > ¢, reject the solution and half the step size h,
2. If ¢/50 < EST <g, accept the solution and keep the step size h fixed.
3, If EST < ¢/50, accept the solution and double the step size h.
To test our automatic step control policy, we consider the.problem

(I1) and (III) with ¢ = 0.1E-4. and the initial step size h=1/16 .

Absolute error

Problem 2
number of
X steps Y, A Y, Y,
0.00244.. 12 0.588D-8  0.685D-3  0.050D-1
0.051 112 0.122E-6  0.124E-2  0.282E-3

0.107 255 0.255E-6 0.588E-3 0.687E-6
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Problem 3
number of
X steps v, Yy, Y,
0.0024... 12 0.603E-8 0.685E-3 0.050E-1
0.051 112 0.127E-6 0.124E-2 0.282E-3
0.107 212 . 0.249E-6 0.209E-3 0.147E-5
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