<table>
<thead>
<tr>
<th>Title</th>
<th>A LINEAR OPERATOR AND SOME APPLICATIONS OF FIRST ORDER DIFFERENTIAL SUBORDINATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SAITOH, HITOSHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1994), 881: 145-151</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1994-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/84218</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A LINEAR OPERATOR AND SOME APPLICATIONS OF FIRST ORDER
DIFFERENTIAL SUBORDINATIONS

HITOSHI SAITOHO (斎藤斉
群馬工芸高等学校)

1. INTRODUCTION

Let A_p denote the class of functions of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad (p \in \mathbb{N} = \{1, 2, 3, \ldots\}) \quad (1.1)$$

which are analytic in the open unit disk $U = \{z : |z| < 1\}$.

For functions $f_j(z) \in A_p$ ($j=1, 2$) defined by

$$f_j(z) = z^p + \sum_{k=p+1}^{\infty} a_{k,j} z^k ,$$

we define the convolution (or Hadamard product) $f_1 * f_2(z)$ of functions $f_1(z)$ and $f_2(z)$ by

$$f_1 * f_2(z) = z^p + \sum_{k=p+1}^{\infty} a_{k,1} a_{k,2} z^k . \quad (1.2)$$

With the convolution above, we define

$$D^{n+p-1} f(z) = \frac{z^p}{(1-z)^{n+p}} * f(z) \quad (f(z) \in A_p) \quad (1.3)$$

where n is any integer greater than $-p$.

For a function $f(z) \in A_p$, we define the generalized Libera integral operator $J_{v,p}$ by

$$J_{v,p}(f(z)) = \frac{v + p}{z^v} \int_0^z t^{v-1} f(t) dt, \quad v > -p. \quad (1.4)$$
For $p = 1$ and $v \in \mathbb{N}$, the operator $J_{v,1}$ was introduced by Bernardi [1]. In particular, the operator $J_{1,1}$ was studied earlier by Libera [4] and Livingston [5]. Some interesting results for the operator $J_{v,p}$ were showed by Saitoh [12] and Saitoh et al. [13].

Now, let the function $\phi_p(a,c)$ be defined by

$$\phi_p(a,c;z) = \sum_{n=0}^{\infty} \frac{(a)_n}{(c)_n} z^{n+p} \quad (z \in \mathbb{D}), \quad (1.5)$$

for $c \neq 0,-1,-2,\ldots$, where $(a)_n$ is the Pochhammer symbol given by

$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1, & \text{if } n = 0 \\ a(a+1) \ldots (a+n-1), & \text{if } n \in \mathbb{N} \end{cases} \quad (1.6)$$

Also, we define a linear operator $L_p(a,c)$ on A_p by

$$L_p(a,c;z)f(z) = \phi_p(a,c;z)*f(z) \quad (1.7)$$

for $f(z) \in A_p$ and $c \neq 0,-1,-2,\ldots$.

The operator $L_1(a,c)$ was introduced by Carlson and Shaffer [2] in their systematic investigation of certain interesting classes of starlike, convex, and prestarlike hypergeometric functions.

Remarks.

(1) For $f(z) \in A_1 = A$,

$$L_1(n+1,1;z)f(z) = D^n f(z) = \frac{z}{(1-z)^{n+1}} * f(z)$$

is Ruscheweyh derivative of $f(z)$ ([8]).

(2) For $f(z) \in A_p$,

$$L_p(n+p,1;z)f(z) = D^{n+p-1} f(z) = \frac{z^p}{(1-z)^{n+p}} * f(z)$$

is Ruscheweyh derivative introduced by Goel and Sohi [3].
(3) For \(f(z) \in \mathcal{A}_p \),
\[
L_p(\nu+p,\nu+p+1;z)f(z) = J_{\nu,p}(f(z))
\]
is the generalized Libera integral operator ([12],[13]).

(4) \(\phi_1(a,c;z) \) is an incomplete beta function, related to the Gauss hypergeometric functions by
\[
\phi_1(a,c;z) = z^2 F_1(1,a,c;z).
\]

It follows from (1.7) that
\[
z(L_p(a,c;z)f(z))' = aL_p(a+1,c;z)f(z) - (a-p)L_p(a,c;z)f(z) \quad (1.8)
\]

Let the function \(f(z) \) and \(g(z) \) be analytic in \(U \). Then the \(f(z) \) is said to be subordinate to \(g(z) \) if there exists a function \(w(z) \) analytic in \(U \), with \(w(0)=0 \) and \(|w(z)|<1 \) (\(z \in U \)), such that \(f(z) = g(w(z)) \) (\(z \in U \)). We denote this subordination by \(f(z) \prec g(z) \).

2. MAIN RESULTS

To establish our main results, we need the following lemmas.

Lemma 1 [6]. Let \(h(z) \) be convex and \(B(z) \) be analytic in \(U \) with \(\text{Re}B(z) \geq 0 \). If \(p(z) \) is analytic in \(U \) and \(p(0)=h(0) \), then
\[
p(z) + B(z)zp'(z) \prec h(z) \text{ implies } p(z) \prec h(z) \quad (z \in U).
\]

Lemma 2 [9]. Let \(\gamma=0 \), \(\text{Re} \gamma \geq 0 \), and let \(h(z) \) be convex. If \(p(z) \) is analytic in \(U \) with \(p(0)=h(0) \), then
\[
p(z) + \frac{1}{\gamma}zp'(z) \prec h(z) \text{ implies } p(z) \prec \frac{\gamma}{z^\gamma} \int_0^zh(t)t^{\gamma-1}dt \quad (z \in U).
\]
Theorem 1. Let \(\lambda, a \) be a real number with \(\lambda \geq 0, a > 0 \). Let
\(h(z) \) be a convex function with \(h(0) = 1, c \neq 0, -1, -2, \ldots \) and
\(g(z) \in \mathbb{A}_p \) satisfies
\[
\text{Re} \left\{ \frac{L_p(a+1, c; z)g(z)}{L_p(a, c; z)g(z)} \right\} > 0 \tag{2.1}
\]
If \(f(z) \in \mathbb{A}_p \) satisfies
\[
(1-\lambda) \left\{ \frac{L_p(a, c; z)f(z)}{L_p(a, c; z)g(z)} \right\} + \lambda \left\{ \frac{L_p(a+1, c; z)f(z)}{L_p(a+1, c; z)g(z)} \right\} < h(z) \tag{2.2}
\]
then we have
\[
\frac{L_p(a, c; z)f(z)}{L_p(a, c; z)g(z)} < h(z) \quad (z \in U). \tag{2.3}
\]

Proof. Put
\[
H(z) = (1-\lambda) \left\{ \frac{L_p(a, c; z)f(z)}{L_p(a, c; z)g(z)} \right\} + \lambda \left\{ \frac{L_p(a+1, c; z)f(z)}{L_p(a+1, c; z)g(z)} \right\}
\]
From assumption, \(h(z) \) is convex with \(h(0) = 1 \) and \(f(z) \in \mathbb{A}_p \) satisfies
\(H(z) < h(z) \) \((z \in U) \), where \(\lambda \geq 0 \) and \(g(z) \in \mathbb{A}_p \) satisfies \((2.1) \).

Set
\[
B(z) = \frac{L_p(a, c; z)g(z)}{L_p(a+1, c; z)g(z)}
\]
According to \((2.1) \), we have \(\text{Re}B(z) > 0 \). Define \(p(z) \) by
\[
p(z) = \frac{L_p(a, c; z)f(z)}{L_p(a, c; z)g(z)} \tag{2.4}
\]
We can see that \(p(z) \) is analytic in \(U \) and \(p(0) = 1 \). Logarithmic differentiating \((2.4) \) and using \((1.8) \), we can get
\[
\frac{L_p(a+1, c; z)f(z)}{L_p(a+1, c; z)g(z)} = p(z) + \frac{1}{\lambda} B(z)zp'(z) \quad (z \in U). \tag{2.5}
\]
Then \((2.2) \) can be written
\[p(z) + B(z)zp'(z) \prec h(z). \]

By Lemma 1, we have
\[p(z) \prec h(z). \]

Thus, we have
\[\frac{L_p(a,c;z)f(z)}{L_p(a,c;z)g(z)} \prec h(z). \]

This completes the proof of Theorem 1.

Putting \(a = n+p, \ c=1 \) in Theorem 1, we have

COROLLARY 1. Let \(\lambda \) be a real number with \(\lambda \geq 0 \). Let \(h(z) \) be a convex function with \(h(0) = 1 \) and \(g(z) \in A_p \) satisfies
\[\text{Re} \left\{ \frac{D^{n+p}g(z)}{D^{n+p-1}g(z)} \right\} > 0. \]

If \(f(z) \in A_p \) satisfies
\[(1-\lambda)\frac{D^{n+p-1}f(z)}{D^{n+p-1}g(z)} + \lambda \frac{D^{n+p}f(z)}{D^{n+p}g(z)} \prec h(z), \]

then we have
\[\frac{D^{n+p-1}f(z)}{D^{n+p-1}g(z)} \prec h(z) \quad (z \in U). \]

Making \(a = \nu+p, \ c=\nu+p+1 \) in Theorem 1, we can show

COROLLARY 2. Let \(\lambda \) be a real number with \(\lambda \geq 0 \). Let \(h(z) \) be a convex function with \(h(0) = 1 \) and \(g(z) \in A_p \) satisfies
\[\text{Re} \left\{ \frac{g(z)}{J_{\nu,p}(g(z))} \right\} > 0. \]

If \(f(z) \in A_p \) satisfies
\[(1-\lambda)\frac{J_{\nu,p}(f(z))}{J_{\nu,p}(g(z))} + \lambda \frac{f(z)}{g(z)} \prec h(z), \]

then we have
\[\frac{J_{\nu,p}(f(z))}{J_{\nu,p}(g(z))} \prec h(z). \]
Next, we prove

Theorem 2. Let \(f(z) \in A_p \) and \(h(z) \) be a convex function with \(h(0) = 1 \). Then for any complex number \(\lambda \) with \(\Re \lambda \geq 0 \) \((\lambda > 0), \alpha > 0\),

\[
(1-\lambda)\left\{ \frac{L_p(a,c;z)f(z)}{z^p} \right\} + \lambda\left\{ \frac{L_p(a+1,c;z)f(z)}{z^p} \right\} < h(z) \quad (z \in U) \tag{2.6}
\]

implies

\[
\frac{L_p(a,c;z)f(z)}{z^p} < \frac{a}{\lambda z^{a/\lambda}} \int_0^z h(t)t^{a/\lambda-1}dt < h(z) \quad (z \in U) \tag{2.7}
\]

The result is sharp.

Proof. Choosing \(g(z) = z^p \) and \(B(z) = \frac{\lambda}{a} \), and use Lemma 2,

Theorem 2 follows from Theorem 1.

References

