ON PARTIALLY CONFORMAL QC
DEFORMATIONS (Complex Analysis on Hyperbolic 3-Manifolds)

Author(s)

OHTAKE, HIROMI

Citation

数理解析研究所講究録 (1994), 882: 73-76

Issue Date

1994-08

URL

http://hdl.handle.net/2433/84241

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
ON PARTIALLY CONFORMAL QC DEFORMATIONS

HIROMI OHTAKE

Kyoto University of Education

1. Let $M(R)$ be the Banach space of all Beltrami differentials $\mu = \mu(z) \frac{dz}{dz}$ on a Riemann surface R with norm $\|\mu\|_\infty := \text{ess sup} |\mu(z)|$. We denote by $M(R)_1$ the open unit ball of $M(R)$. Let \mathbb{D} be the unit disk in \mathbb{C}. For each $\mu \in M(\mathbb{D})_1$, there is a unique normalized quasiconformal self-mapping W^μ of \mathbb{D} whose Beltrami coefficient $\mu(W^\mu) := W^\mu_z/W^\mu_{\overline{z}}$ is μ, that is, $W^\mu: \mathbb{D} \to \mathbb{D}$ is a homeomorphism whose generalized derivatives satisfy the Beltrami equation $f_z = \mu f_z$, and its continuous extension to the closed unit disk \mathbb{D} fixes 1, i and -1. Two elements μ and ν in $M(\mathbb{D})_1$ are said to be equivalent if W^μ and W^ν have the same boundary values. Let R be a hyperbolic Riemann surface and $\pi: \mathbb{D} \to R$ be a universal covering mapping. We define μ, $\nu \in M(R)_1$ are equivalent when so are their pull-backs $\pi^*\mu$ and $\pi^*\nu$, and quasiconformal mappings $f: R \to f(R)$ and $g: R \to g(R)$ are equivalent if so are their Beltrami coefficients $\mu(f)$ and $\mu(g)$. It is known that f and g are equivalent if and only if there is a conformal mapping $h: f(R) \to g(R)$ such that $h \circ f$ is homotopic to g modulo the border of R. The Teichmüller space $T(R)$ of R is the quotient space of $M(R)_1$ with respect to this equivalence relation. We denote by $[\mu]$ the equivalence class containing μ, and identify it with the marked Riemann surface $[f(R), f], \mu(f) = \mu$.

Let V be a measurable subset of R and set

$$M(V)_1 := \{\mu \in M(R)_1: \mu|_{R \backslash V} = 0\}.$$

A quasiconformal mapping f is 'conformal' outside V if $\mu(f) \in M(V)_1$, so we say $[f(R), f]$ is a partially conformal qc deformation of $[R, \text{id}_R]$. A family of partially conformal qc mappings is useful to investigate Teichmüller spaces and extremal problems on them (see for example Krushkal [5], Gardiner [2], [3], Reich [10] and Fehlmann-Sakan [1]).

2. We summarize some known facts. First of all, in general, $[M(V)_1] \neq T(R)$ (cf. Savin [11]). For example, if $R \backslash V$ is an incompressible annular domain, then $[M(V)_1] \neq T(R)$. But if $R \backslash V$ is a topological disk, then $[M(V)_1] = T(R)$.

If R is of finite conformal type, that is, R is a Riemann surface obtained by removing a finite number of punctures from a compact one, then $[M(V)_k]$ is a
neighborhood of the origin $[0]$ of $T(R)$ for any V with positive measure and any $0 < k \leq 1$. This is a classical result. While there are R of infinite conformal type and a subset V of R with positive measure such that $[M(V)_1]$ is not a neighborhood of $[0]$ (Oikawa [9]).

A general necessary condition for V to insure that $[M(V)_1]$ becomes a neighborhood of $[0]$ is

$$r(V) := \inf \left\{ \iint_V |\phi| \, dx \, dy : \phi \in A_2^1(R), \|\phi\|_1 = 1 \right\} > 0.$$

Moreover, when $R = \mathbb{D}$, the condition (1) is equivalent to a simple geometric one:

$$\inf \{ \text{Area}(V \cap \Delta(z;\rho)) : z \in \mathbb{D} \} > 0 \quad \text{for some } \rho > 0$$

where $\Delta(z;\rho)$ is the hyperbolic disk with center z and radius ρ, and Area means its hyperbolic area (Ohtake [7]).

On the other hand, a known sufficient condition is as follows. Set

$$\omega(z) := \sup \{ \lambda(z)^{-2} |\phi(z)| : \phi \in A_2^1(R), \|\phi\|_1 = 1 \}.$$

It is not difficult to see that the function ω on R is continuous and vanishing at the punctures of R. If V has positive measure and if

$$\iint_V \max \{ \omega(z)^2, 1 \} \, dx \, dy < \infty,$$

then $[M(V)_k]$ contains $[0]$ in its interior for any $0 < k \leq 1$ (Ohtake [6]).

3. We give here a quantitative version of the necessary condition (1) above.

Theorem 1. If $[M(R)_k] \subset [M(V)_{k'}]$, then we have

$$r(V) \geq \frac{K - 1}{K' - 1}.$$

where $K := (1 - k)/(1 + k)$, $K' := (1 - k')/(1 + k')$.

Proof. Take arbitrary $0 < t < k$ and $\phi \in A_2^1(R)$ with $\|\phi\|_1 = 1$. Let $f_0 : R \to R_0$ be a quasiconformal mapping whose Beltrami coefficient is $t\overline{\phi}/|\phi|$ and $\psi \in A_2^1(R_0)$ be the terminal differential of the Teichmüller mapping f_0 (cf. Lehto [4]). Then $f_0^{-1} : R_0 \to R$ is a Teichmüller mapping with $\mu(f_0^{-1}) = -k\overline{\psi}/|\psi|$. By assumption, there is a quasiconformal mapping $f : R \to R_0$ which is equivalent to f and whose Beltrami coefficient $\mu(f)$ is in $M(V)_{k'}$. Applying Reich-Strebel inequality (Strebel [12], [13]) to $-\psi$ and $f \circ f_0^{-1}$ equivalent to the identity mapping of R_0, we have

$$\|\psi\|_1 \leq \iint_{R_0} |\psi| \frac{1 + \mu(f \circ f_0^{-1})}{1 - |\mu(f \circ f_0^{-1})|^2} \, dudv.$$
Since
\[K(f_0)|\phi(z)| \, dxdy = |\psi(w)| \, dudv, \quad w = f_0(z) \]
\[\frac{\overline{\psi}(w)}{|\psi(w)|} = \frac{p(z)}{|\overline{p}(z)|} \cdot \frac{\overline{\phi}(z)}{|\phi(z)|}, \quad p = (f_0)_{\overline{z}} \]
\[\mu(f \circ f_0^{-1})(w) = \frac{\mu(f)(z) - \mu(f_0)(z)}{1 - \overline{\mu}(f_0)(z) \mu(f)(z)} \cdot \frac{p(z)}{|\overline{p}(z)|} \]
change of variable gives us
\[K(f_0) \leq K(f_0) \int \int_R \frac{|1 - \mu(f_0) \frac{\phi}{|\phi|}|^2 |1 + \mu(f) \frac{\phi}{|\phi|} \cdot \frac{1 - \overline{\mu}(f_0) \overline{\phi}/|\phi|}{1 - \mu(f_0) \phi/|\phi|}|^2}{(1 - |\mu(f_0)|^2)(1 - |\mu(f)|^2)} |\phi| \, dxdy \]
\[= \int \int_{R} \frac{|1 + \mu(f) \phi/|\phi||^2}{1 - |\mu(f)|^2} |\phi| \, dxdy \]
\[\leq K' \int \int_{V} |\phi| \, dxdy + \int \int_{R \setminus V} |\phi| \, dxdy \]
\[= (K' - 1) \int \int_{V} |\phi| \, dxdy + 1. \]
Letting \(t \to k \), we have a desired inequality (2).

We can show a partial converse of Theorem 1. Its proof and the details are omitted and will appear elsewhere.

Theorem 2. For \(A > 0 \) and \(l > 0 \), there are positive constants \(C \) and \(t_0 \leq 1 \) such that if a Riemann surface \(R \) has hyperbolic area less than \(A \) and if the length of each closed geodesic of \(R \) is not shorter than \(l \), then
\[[M(R)_t] \subset [M(V)_{Ct/r(V)^2}] \quad \text{for any } 0 \leq t \leq t_0. \]
where the constants \(C \) and \(t_0 \) depend only on \(A \), \(l \) and \(r(V) \) but not on \(R \) nor \(V \).

References

1 FUKAKUSA-FUJINOMORI, FUSHIMI, KYOTO 612 JAPAN
E-mail address: h54378@sakura.kudpc.kyoto-u.ac.jp