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Spinal hypersurfaces in complex hyperbolic space

Shigeyasu Kamiya
mE &R FHILER)

The purpose of this article is to introduce spinal hypersuraces in H&, which are studied
and developed by Goldman and Mostow.
In Section 1 we state the properties of elements of U(1,n; C). Section 2 is devoted to

discussing spinal hypersurfaces on which results are due to Goldman and Mostow (cf. [3],
[5]). In Section 3 we show Phillips’ theorem on the Dirichlet polyhedra (cf. 6], [7]).

0. First we recall definitions and notation. Let C be the field of complex numbers. Let
V = V1™(C) (n > 1) denote the vector space C"*!, together with the unitary structure
defined by the Hermitian form

B(Z,W) =-ZoWo + »_ ZiWi,
k=1

for Z = (29,21, ....2,),W = (Wy,W1,...,W,) in V.

An automorphism g of V, that is a linear bijection such that ®(g(Z), g(W)) = ®(Z, W)
for Z,W in V, will be called a unitary transformation. We denote the group of all unitary
transformations by U(1,n; C).

Let Vo ={Z € V| ®(Z,Z) =0} and V_ = {Z € V| ®(Z, Z) < 0}. It is clear that Vj
and V_ are invariant under U(1, n; C).

Set V* =V_UV,— {0}. Let w : V* — n(V*) be the projection map defined by

Zy  Zn
7(Zo, .oy Zn) = (-Z—:), Z) = (21, ..., Zn)-

Set Hg = n(V_).
An element g of U(1, n; C) operates in 7(V*), leaving H & (the closure of HZ in 7(V*))
invariant. Since H{ is identified with the complex unit ball

n
={zeC" |z*=)_ ll* < 1},
k=1

we can regard a unitary transformation as a transformation operating on B". Hence
discrete subgroups of U(1, n; C) is the generalizations of Fuchsian groups.

We can introduce the Bergman metric in B™. This hyperbolic distance d(z,w) for
z,w € B™ is expressed by the use of the Hermitian form & as follows.

|2(2, W)

d(z,w) = 2c<_)sh‘1 [3(Z, 2)8(W, W)\ 2’

where Z € 7~1(z),W € #~!(w). This does not depend on the choice of Z, W.
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To discuss some properties of unitary transformations, it may be more convenient to
use another matrix representation for U(1, n; C). By changing the basis of V, we introduce
the group U(1,n;C) as follows. Let

1/vV2 1/v2 0
D=|-1/v2 1/V2 0
0 0 I,

Define ﬁ(l,n; C) by D~1U(1,n;C)D. We see that Tj(l,n; C) is the automorphism group

of the Hermitian form

B(Z,W) = —(ZoW1 + ZiWo) + 3 ZxWi.
k=2

We can regard D~! as a mapping of complex unit ball B™ to

— 1o
H"={z€C" Re(:1)>3)_|al’},

k=2

which is called the Siegel domain.

1. The nontrivial elements fall into three general conjugacy types, depending on the
number and location of their fixed points. Since each element acts on the closure of B,
the Brouwer fixed point theorem implies that it has a fixed point. Let g # i1d. We call ¢
elliptic if it has a fixed point in B™ and ¢ parabolic if it has exactly one fixed point and
this lies on the boundary. An element ¢g will be called loxodromic if it has exactly two fixed
points and they lie on the boundary. If g is conjugate to an element (different fromthe
identity) in the identity component Up(1,1;R), it will be called hyperbolic. Hyperbolic
elements are special kinds of loxodromic elements.

Now we state properties of each kind of elements. Let

a 0

U(1;C) xU(n;C) = {(0 A

)| ol = 1, 44" = I,.).

Proposition 1.
(1) Let g be an elliptic element. Then:

1) g i3 conjugate to an element of U(1;C) x U(n; C).

2) g 1s semisimple with eigenvalues of absolute value 1.

(2) Let g be a lozodromic element. Then:

1) g 1s semisimple with n — 1 eigenvalues of absolute value 1.
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2) g leaves the geodesic joining the two fized points, invariant. This is called the azis
of g and denoted by A,.

8) g moves every point z in A, the same distance T(g) = d(z,9(z)). This T(g) is
called the translation length of g.

4) T(g) = min,epn d(z,9(2)).

(8) Let g be a parabolic element. Then:
1) g is not semisimple.

2) All absolute values of eigenvalues are 1.

If a parabolic element g is unipotent (that is, all eigenvalues are 1), then g is called
strictly parabolic. A standard form of strictly parabolic element of U(1, n; C) is as follows.

10 0
g=1s 1 @’ |,
aOIn_l

where Re(s) = 1|lal|*.
In particular, a conjugate element to

10
s 1 0
0 0 I,

(s # 0, Re(s) = 0) is called translation. We note that strictly parabolic elements are not
necessarily conjugate to translations, because their minimal polynomials are different.

2. Before defining a spinal hypersurface we recall the following important proposition.

Proposition 2 ([2, Proposition 2.5.1]). A totally geodesic submanifold in H 1s equiv-
alent to HE or H (m < n) under U(1,n;C).

Given two points z1,z2 € Hg, the equidistant surface E{z;, 22} of 21, 23 is by definition
E{z1,z3} = {z € HG| d(z,21) = d(z, 22)}.

We call this E{z1,25} a spinal hypersurface of {z;,2,}. By Proposition 2, a spinal hyper-
surface is not a totally geodesic submanifold in H&, but a real analytic hypersurface in H&
diffeomorphic to R?"*~! . Two points z;,22 in HE determine a unique complex geodesic
L. Set 0{z1,22} = E{z1,22} N X, which is called a spine of E. It follows that the spine
o{z1,22} is a (real) geodesic in L.

Theorem 3.

E=1I5'(c) = | O5'(s),
s€o
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where IIy : HE — ¥ is orthogonal projection onto X.
For our proof we need a lemma.

Lemma 4 ([3, Lemma II1.2.3.1}). Let L C Hg be a complex linear subspace with
orthogonal projection II. Then for allu € HE and s € L, then the geodesic for II(u) to u
and to s are orthogonal and span a totally real 2-space. Futhermore

Proof of Theorem 3. It follows from Lemma 4 that for : = 1,2

It is seen that
z € E{z1,22} <= d(2,21) = d(z, 22)
<> d(z1,0g(2)) = d(22,Ix(2))
< lg(z) € 0{21,22}-

The complex hyperplanes II5 1(s) for s € o are called the slices of E. The slice of E is
a maximal holomorphic submanifold of F.

Theorem 5. There 1s a bijective correspondence between ;spinal hypersurfaces in HG
and (real) geodesics in HE.

Proof. Let E{z1,z2} be a spinal hypersurface. Then there is a unique complex
geodesic ¥ which is orthogonal to slices of E. By setting 0 = E{z;,2,} N X we have a
unique geodesic o corresponding to E{z;,22}. Conversely, if a geodesic o is given, then
there is a unique complex geodesic ¥ and a reflection P, of ¥ with P,(¢0) = o. For any
point 2z; set zo = P,(21). Then it is easy to show that E{z;,2:} = lI5'(0).

Two end points in 0Hg of the spine o are called vertices of E.

Next we shall chracterize slices of spinal hypersurfaces. Let S be a complex hypersur-
face and let s be an inversion of S.

Theorem 6. Let uy,uz be two points in OHG. Then the complex hypersurface S 1s a
slice of E with ends points uy,uq if and only if s interchanges u; and us.
Let 21,25 be two points in HE. Then the inversion ts interchanges z; and z if and

only if S i3 the slice of E{zy,25}.

Theorem 7. Let Hy, H, be two ultraparallel complez hyperplanes in HE. Then there
ezists a unique spinal hypersurface E having Hy, Hy as slices.
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Proof. Let U,;,U; € C™t! be polar vectors to complex hyperplanes H; and H,,
respectively. Set

Uy =U; — (®(U1,Uz) £ /®(Uy,Us2)? — 1)U,

Let E be a spinal hypersurface with the vertices #(U,), #(U;). It is not difficult to show
that E is a spinal hypersurface with slices H; and Ho.

Definition 8. Two spinal hypersurfaces E1, E; in Hg are coequidistant if £, N X, # 0,
where ¥; denotes the complex spine of E; (¢ = 1,2). We say that E; and E, are covertical
if £; and ¥, are parallel. When E; and E; have a common slice, these are said to be
cotranchal.

Theorem 9. If two spinal hypersurfaces Ey, E; are coequidistant or covertical, then
they are not cotranchal.

We prepare a lemma.

Lemma 10 ({1, Theorem 7.16.2]). Let 6,,0,,...,0, be any ordered n-tuple with 0 < 6; <
7, 3=1, 2, ..., n. Then there ezists a polygon P with interior angles 04,0,,...,0,, occurring
in this order around OP, if and only if 6, + 02+ ... + 0, < (n — 2)7.

Proof of Proposition 9. As both ¥; and ¥, are orthogonal to S, the triangle formed
by ¥;, %9, S has two right angles. This contradicts Lemma 10.

Theorem 11. If two spinal hypersurfaces E, and E, contain a common point z, then
either Sy and Sy transversely intersect at = or there ezists a unigque common slice S in-
cluding z.

Proof. The tangent spaces T, E; and T, E; at z are real hyperplanes in the tangent
space T, HG of HE at z. Suppose that E; and E; do not transversely meet at . Then
T.E, = T,E,. Noting that T, S, and T,S; are maximal complex submanifolds of T, E,
and T, E,, respectively, we see that T,S; = T,.S,. Since S; and S, are totally geodesic and
S1 N Sy contains x, Sy = Ss.

Corollary 12. If two spinal hypersurfaces E1 and E; are coequidistant or covertical,
then they meet transversely.

Proof. Suppose that E; and E; do not meet transversely. Theoremll implies that
there exists a common slice .S, which is orthogonal to complex spines ¥; and ¥,. It follows
from Lemma 10 that ¥; and ¥, are ultraparallel. This is a contradiction.

Theorem 13. If two spinal hypersurfaces E; and E; have two common slices, then
E] — Eg.

Proof. Let o; denote the spine of E; (z = 1,2) and let /; and I; be distinct geodesics
orthogonal to both ¢, and ¢5. Then the quadrilateral formed by I, 04,2, 02 has four right
angles. Lemma 10 implies that E; = Ej.
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Let ¢1,g2 be points in OHG and let ¢ be a complex hyperplane. Let Q;,Q2 be null
vectors representing ¢;, ¢, and C a positive vector polar to ¢. Then the complex number

ca) — @(QI,C)(D(C, Q2)
’7(917412,0) —‘. Q(Qla Qz)Q(C, C) ’

is independent of the choices of representative vectors. It is easy to prove that n(q1, ¢2; ¢)
is U(1, n; C)-invariant.

Using the invariant 7(q;, g2;c), we can quantitatively discuss the intersection of a
spinal hypersurface with a complex geodesic c.

Theorem 14. Let E be a spinal hypersurface with vertices ¢q1,q2. Let ¢ be a complez
hypersurface. Assume that c is not a slice of E and q1,q2 ¢ Oc. Then

ENc# 0 <> Im(n)*+2Re(n) < 1.

Theorem 15. The number of components of E1 N E; 13 at most 2.

Proof. Let E; and E, be spinal hypersurfaces with vertices qi" ,q; and q; ,d2 » Tespec-
tively. Take QF € 771(¢S), Q7 € 7~1(¢;) such that (Q;,QF) = 2. Then vectors polar
to the slices of E, are given by

1 -1 -
Q) = 5(tQ7 +t7'Qz)
for 0 < t < 0o, and these vectors satisfy ®(Q2(t),Q2(t)) = 1. Set

@(Ql_’ Q2(t))¢(Q2(t)a Q‘1+)
3(Q2(t), Q2()2(Q7,QF)

The connected components of E; N E, correspond to the connected components of the
set of all ¢ > 0 such that n(t) € D, where D = {n|Im(n)? + 2Re(n) < 1}. It follows that
n(t) € D if and only if t=* f(t) < 0, where t=* f(t2) = 2Re(n(t)) + Im(n(t))? — 1 and f(s)
is a quartic polynomial with positive leading term. Thus n~!(D) = {t > 0|f(¢?) < 0} has
at most two components.

n(t) =n(ey, a5 22(t)) =

Theorem 16. If two spinal hypersurfaces E, and E, are coequidistant or covertical,
then E1 N E, 13 connected.

3. Let w be a point in H&. We may assume that w is not a fixed point of any element
g except the identity. Let Hy(w) = {2 € HE | d(z,w) < d(z,¢g(w))}. It is easy to see that
Hy(w) = {z € HE | d(z,w) < d(z,97"(w))}.

Definition 17. The Dirichlet polyhedron D(w) for G with the center w is defined by

Dw)= [\ Hw),

9€G—{id}
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where Hy(w) = {z € H3| d(z,w) < d(z,9(w))}.

It follows from Proposition 2 that D(w) is not necessarily convex. In the same manner
as in [1] we have

Proposition 18.
(1) The Dirichlet polyhedron D(w) i3 locally finite.
(2) The Dirichlet polyhedron D(w) is star-shaped about w.

Theorem 19. Let w be a point in HE. Let G =< g > be a cyclic group generated by g,
where g is strictly parabolic or hyperbolic. Then the Dirichlet polyhedron D(w) for G with
the center w has ezactly two disjoint faces.

Proof. Set Hy = H(w,g*) = {z € HE | d(z,w) < d(z,g*(w))}. It follows that

2 € Hy <= d(z,w) < d(z,¢*(w))

<= cosh? (ii-(%w—)> < cosh® (d(ig;(—“’))> :

Let f.(k) = cosh? (%ﬁu—u) . We regard f.(k) as a function of k. Therefore Hy =
{z € H& | f.(0) < f.(k)}. We can complete our proof by using the following two lemmas.

Lemma 20. If f.(k) is a convez function with respect to k for any z € HG, then
D(w) = Hl N H_1 and 0H1 N aH_1 = @

Proof. If z € H,, then f,(0) < f.(1). Let k > 1. Since f.(k) is a convex function with
respect to k,

kfz(l) < (k - l)fz(o) + 1fz(k) = kfz(o) - fz(O) + fz(k)

Hence f,(0) < k{f.(0)— f.(1)} + f.(k). Noting that f,(0)— f.(1) < 0, we see that z € Hy,
that is H; C Hy. Similarily we have H; C Hy for k < —1. Thus

Dw)= ()| He=HNH_
k=—00,k#0

Next we shall show that H; N H_; = §. Suppose that z € H; N H_;. Then f,(0) > f.(1)
and f,(0) > f,(—1). Therefore we have

0< {fz(l) - fZ(O)} + {fz(—l) - fz(O)}
This is a contradiction. Thus H; N H_; = §.

Lemma 21. If g 18 strictly parabolic or hyperbolic, then f,.(k) i3 a convez function with
respect to k for any z € HG.
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