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1. Introduction

In this note, we will introduce a local parametrization of the Teichmiiller space of
closed hyperbolic surfaces. It is given by geodesic cellular decompositions on closed hy-
perbolic surfaces. We will explain it briefly. Let £, be a closed surface of genus g (g > 2).
Let 7, be the Teichmiiller space of £,. Let ¢ be a hyperbolic structure on £,. Let Aq be
a geodesic cellular decomposition of the hyperbolic surface (£4,00). For each hyperbolic
structure o which is very close to g¢ in 7, there exists a geodesic cellular decomposition
A of (X4, 0) isotopic to Ag. (It is not unique. See the proof of Proposition 2.2.) Lengths
of edges of A are the coordinates of the parametrization around oo. See § 2 for the precise
description of the space of the parameters, which is denoted by V,;. The space V, has
dimension e — v, where e (resp. v) is the number of the edges (resp. vertices) of Ag. The
dimension of the Teichmiiller space 7 is 6g — 6. Note that (e — v) — (6g — 6) = 2v > 0,
which is shown by an elementary calculation. See the end of § 2 about the surplus of the

dimension.

Bowditch-Epstein [Bow-E] gave a global parametrization of the Teichmiiller space
of punctured hyperbolic surfaces times an open simplex representing ”weightings of the
cusps”. They also use geodesic cellullar decompositions of punctured hyperbolic surfaces,
which are called spinal triangulations, to construct the space of their parameters. In this

sense, our formulation is similar to theirs.

2. Formulation of the Results

In this section, we will formulate the parametrization of the Teichmiiller space of

closed hyperbolic surfaces.

Let 3, be an oriented closed surface of genus g (¢ > 2). Let o¢ be a hyperbolic struc-

ture on X4. Let Ag be a cellular decomposition of (£, 0¢), made of geodesic triangles. We



will denote the number of its vertices and the number of its edges, by v and e respectively.

Now we will consider cellular decompositions isotopic to Ag. Let r® := (r?,..., rd) e
R¢ be the vector whose components are the lengths of the edges of Ag. Let D be an open

neighborhood of r in R¢. Consider a map

hy:R°DD— R”

defined as follows. First, we will make hyperbolic geodesic triangles whose edge-lengths are
given by r € D and glue them together so that the vertices match up. Which triangle to
glue to which, and along which edge, is determined by the combinatorial data of Ag. Then,
generally we will have a hyperbolic structure on ¥, with cone singularities at v points. We
define A so that the components of hy(r) are equal to the cone angles at vertices obtained
by gluing the triangles together. For example, hy(r®) = (27,...,27). We will show the

following proposition in the next section.
Proposition 2.1. (27,...,27) € R” is a regular value of hy.

Let V, be the inverse image of (27,...,27) by hy, ie., h;'(27,...,27) ND = V.
Then, by Proposition 2.1, V, is an (e — v)-dimensional submanifold of R® at r. Each

point of V, gives a hyperbolic metric on ¥,. Then there is a natural map

b, V, — T,

Also, the following proposition will be shown in the next section.
Proposition 2.2. The map ¢, is a smooth submersion at r°.

By Propositions 2.1 and 2.2, we obtain the local parametrization of the Teichmiiller space

7,4, by means of geodesic cellular decompositions of closed hyperbolic surfaces.

Now consider the kernel of the derivative of the mapping ¢4. The euler number of
¥4 is 2 —2¢, and e, v satisfy the equation 3v = 2e. Then an elementary calculation shows
that (e — v) —(6g — 6) = 2v. Thus the dimension of

ker(d¢g : Tro Vg — T¢y(r0)’fg)



is 2v. There are elements of ker d¢,, which will be called infinitesimal flat moves of vertices.
Take a vertex v of Ay. Denote the non-v ends of all edges of Ay emanating from v by
V1, ..., Vk. Move v on (X4, 0¢) a bit, with fixing vy, ..., v, and then connect v with
v; by a geodesic segment, for each ¢ ( = 1, ..., k). Then we obtain a geodesic cellular
decomposition of (3,4, 0¢) isotopic to Ag. Let us call tangent vectors corresponding to
this move of v infinitesimal flat moves of v. Obviously, the infinitesimal flat moves of v
are contained in ker d¢,. Each vertex has two dimensional directions of this move. If the
infinitesimal flat moves of all vertices are linearly dependent, there exists a perturbation of
the triangles of Ay which has the following property : the derivatives of all edge-lengths of
Ao with respect to the perturbation are zero. Then one can construct a non-trivial Killing
vector fleld on (X4,00). This contradicts the result of Bochner [Boch]. Therefore the

infinitesimal flat moves are linearly independent. Thus we have the following proposition.

Proposition 2.3. ker d¢, is generated by the infinitesimal flat moves of all vertices.

3. Proofs of Propositions 2.1 and 2.2

In this section, we will give the proofs of Proposition 2.1 and Proposition 2.2. By
these propositions, as wroted in § 2, we obtain the local parametrization of the Teichmdiller

space of closed hyperbolic surfaces.

Proof of Proposition 2.1. Take any vertex p of the geodesic cellular decomposition
Ag. Let hy, be the cone angle at p given by r € D. For indicating that Vj is an (e — v)-
dimensional manifold, we will show that there are deformations of the edge-lengths each
of which induces a cone singularity at p (that is, the cone angle # 27) with the deformed

metric and that the derivative of hy , with respect to such a deformation is not equal to 0.

First, consider the case where p lies on a simple closed geodesic on (Z4,00). Take a

pentagon in the hyperbolic 2-space H? as indicated in Fig.1.




Let 6§ be the length of the closed geodesic and ¢ be some arbitrary small number. The
number ¢ is the parameter of the deformation which we need. Now cut (X,,0¢) along the
geodesic. Along the two boundary components of the surface cut just above, paste the two
copies of the pentagon symmetrically as in Fig.2. Glue the broken edges of the pentagons
by an isometry. For each t > 0, ¥, has a hyperbolic metric o, with singularity of cone

angle v at the vertex of the pentagon.

Cut and then g_qu

the two copies of
the Fem‘agon.

Fig.2



Then connect the cone point with vertices of Ag, which are originally connected with p in
Ao, by geodesic segments on (X4,0,). Thus, for each ¢ > 0, we have a geodesic cellular
decomposition of (X,,0¢) which is isotopic to Aq. In this way, we obtain a deformation of
the edge-lengths which makes a cone singularity at p. The edge-lengths smoothly depend
on t. By a formula of hyperbolic geometry (cf. [Be]), the cone angle 4 given by the

parameter ¢ satisfies the following:

cos% = (coshé)(sinht)? — (cosht)?.

Then
4y = —24/2(coshé — 1) < 0.
dt t=0
Therefore
dhg p
|70

Now consider the case where p does not lie on any simple closed curve on (X4, 0¢).
Then, (X,,0) can be cut into pairs of pants so that p lies in the interior of some pants
P. Denote the boundary components of P by 0;P, 0;P and 03P, and their lengths by
dy, dy and ds, respectively. As described by Thurston [T § 3.9], P can be obtained by
adequately gluing two ideal hyperbolic triangles and then adjoining limit points. If p lies
on the boundary of the ideal triangle, slightly move the edge-lengths of Ag so that p goes
to the interior of one of the ideal triangles. Then cut this ideal triangle into three triangles
K,, K; and K; along three geodesics, each starting from p and going to one of the ideal
vertices (Fig.3).
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Fig.3

Let 41, 72 and 3 be the angles of K;, K5 and K3 at p, respectively. For each i (1 <7 < 3)
and arbitrary small s > 0, take a geodesic triangle K;(s) with angles 0, 0 and ~; —s. Paste
K,(s), K5(s) and K3(s) with each other to be an ideal triangle with a cone point of angle
27 — 3s. Denote this triangle by IT(s). Now we will make a pair of pants P(s) with a cone
point of angle 27 — 3s, as we obtained P by gluing the two ideal triangles and adjoining the
limit points. We can, and will, glue IT(s) and an ideal triangle IT with sliding the edges
of IT(s), exactly same as in the case of P, so that P(s) has three boundary components
01P(s), 02P(s) and J3P(s), with lengths di, d; and ds, respectively. Then glue pairs of
pants to be ¥, with substituting P for P(s). In this substitution, we paste the boundaries
of P(s) and X, \ P as follows. For each j (1 < j < 3), fix a point {; in IT near the
ideal vertex v;, which spins around 9;P(s). (See Fig.4.) Let the limit point of the spiral
horocycle in P(s) which passes through €; go to the same place as the case of P (Fig.5).
Then we obtain a hyperbolic 2-orbifold (¥4, 0,) with cone angle 27 — 3s.

Fig.4
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Now consider the vertices of A included in P. If some of them, without p, are on
the boundaries of K, or K, or K3, then slightly move the edge-lengths of A so that they
lie in the interiors of K; or K, or K3, respectively. For each ¢, take K; and K;(s) in H? as
in Fig.6, and regard the vertices in the interior of K; as points in K;(s). Connect the cone
point of (Z4,0,) with these points and the vertices of Ag, which lie outside of P(s), by
geodesics, according to the combinatorial data of Ay (Fig.7). Then for each s, we obtain a
geodesic cellular decomposition on (X4, 0,) isotopic to Ag. By the construction above, the
edge-lengths smoothly depend on s (for verification of this, see Fig.8. Consider a vertex
z on P(s) and a vertex y on some other pairs of pants which are connected by an edge
of the decomposition of (£,4,0,). The edge crosses some component 8 of 0P(s). Draw a
geodesic which realizes a minimizing length from z to 8. Also draw such a geodesic about
y. Denote the legs of the geodesics by z and w. The length between z and w along &
moves smoothly with respect to s. Also the lengths of the two geodesics moves smoothly

with respect to s). The derivative of hg , is —3 with respect to s.
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Remark. See Troyanov [Tr] for constructions of hyperbolic structures with cone

singularities.

Proof of Proposition 2.2. We will construct a smooth section of ¢4 around (4, ¢4(r?))
= (X4, 00). Let us take fine meshes of a net made of closed geodesics on (X, ¢4(r°)) so that
each mesh contains at most one vertex of Ay. Let (£,, ) be a hyperbolic surface which is
arbitrarily near ¢4(r®). Then the geodesics of the meshes on (I, ¢4(r°)) moves smoothly
with respect to changing metrics on £, from ¢,(r?) to o. For each mesh on (2,4, o), which
is obtained by changing some mesh in which a vertex of A, is contained, take one of its
corners (Fig.9). Then we can, and will, connect all such corners by geodesics, according
to the combinatorial data of Ay. Thus we obtain a geodesic cellular decomposition A, on
(¥4, o) which is combinatorially equivalent to A¢ and which moves smoothly with respect
to the change of (2,4, ¢,(r%)) to (X, o). Denote this correspondence from T, to V, by n,.
This map 7, gives a section of ¢, on a neighborhood of (4, ¢,(r?)).
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