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INTRODUCTION

In number theory, there often appear free pro-p-extensions ($p$ a prime), i.e. Galois
extensions whose Galois groups are free pro-p-groups. For example:

(1) The maximal pro-p-extension of a $\mathfrak{p}$-adic number field not containing a primitive
p-th root of unity is free ( $\check{S}afarevi\check{c}$ [\v{S}l], Theorem 1).

(2) The maximal unramified pro-p-extension of an algebraic function field over an
algebraically closed field of characteristic $p$ is free ( $\check{S}afarevi\check{c}$ [\v{S}l], Theorem 2).

(3) The maximal pro-p-extension of the cyclotomic $Z_{p}$-extension of an algebraic number
field is free (Iwasawa [Il]).

(4) The maximal pro-p-extension unramified outside $p$ of the cyclotomic $Z_{p}$-extension
of an algebraic number field is free if and only if the associated Iwasawa $\mu$-invariant
vanishes (cf. [I3], Theorem 2), and this is conjecturally always true.

(5) The freeness of the maximal unramified pro-p-extension of the cyclotomic $Z_{p^{-}}$

extension of a CM-field has been investigated by Wingberg [Wl].
Now we are interested in the following problem:

How large free pro-p-extension can be realized over a fixed algebraic number
field ?

We denote by $\rho$ the maximal rank of free pro-p-extensions of an algebraic number
field $k$ . Since the Leopoldt conjecture states that $k$ has exactly $r_{2}+1$ independent $Z_{p^{-}}$

extensions, where $r_{2}$ denotes the number of complex places of $k$ , we have an obvious
inequality $\rho\leq r_{2}+1$ under this conjecture. Some examples of $k$ and $p$ with $\rho=r_{2}+1$

have been known. In [Y], the author gave an explicit formula for $\rho$ in some special cases,
and in particular, gave some examples of $k$ and $p$ with $\rho<r_{2}+1$ . We shall briefiy review
the results of [Y] in \S 1.

Our main purpose of this talk is to report a simple remark on the uniqueness of a free
pro-p-extension of rank $r_{2}+1$ (when it exists). Such a uniqueness has been already proved
by Iwasawa under the assumption that the Leopoldt conjecture at $p$ is true for any finite
Galois p-extension of $k$ which is unramified outside $p$ (cf. [Y], Proposition 2.2). We claim
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that we have only to assume the validity of the Leopoldt conjecture for the ground field $k$ ,
in order to conclude the uniqueness (Theorem 2.2). We shall prove this in \S 2.

Finally, in \S 3, we shall refer to a very recent result by Wingberg [W2] on the existence
of free pro-p-extensions of rank $r_{2}+1$ in the case of CM-fields (Theorem 3.1).

Acknowledgements. This report was written while I stayed at the RIMS, Kyoto Uni-
versity. I would like to thank the institute for the hospitality. I also express my sincere
gratitude to Professor Kay Wingberg, who kindly allowed me to refer to his newest, hottest
result in my talk.

1 FREE $PRO-p$-EXTENSIONS

In this section, we review some known facts. See [Y] for the details. Let $p$ be a prime
and let $F_{d}$ denote a free pro-p-group of rank $d$ . In particular, $F_{1}\cong Z_{p}$ (the additive group
of p-adic integers). Let $k$ be an algebraic number field, i.e. a finite extension of the rational
number field $\mathbb{Q}$ .
Definition 1.1. An $F_{d}$-extension $K$ of $k$ is a Galois extension such that the Galois group
Gal$(K/k)$ is isomorphic to $F_{d}$ as a topological group.

We define the invariant

$\rho=\rho(k,p)$ $:= \max${$d;k$ has an $F_{d}$-extension},
and would like to know the exact value of $\rho$ . The following Lemma is basic in our study.

Lemma 1.2. An $F_{d}$-extension of an algebraic number field is unramified outside the
primes $aboi^{r}ep$ .

Let $S$ denote the set of the primes of $k$ above $p,$ $k_{S}$ the maximal pro-p-extension of
$k$ which is unramified outside $S$ , and let $G_{S};=$ Gal$(k_{S}/k)$ . By Lemma 1.2, $k$ has an
$F_{d}$-extension if and only if $G_{S}$ has a quotient isomorphic to $F_{d}$ . Concerning the structure
of the maximal abelian quotient $G_{S}^{ab}$ of $G_{S}$ , it is known by class field theory that $G_{S}^{ab}$ has
$\mathbb{Z}_{p}$ -rank at least $r_{2}+1$ , and there is the following famous

Conjecture 1.3. (The Leopoldt conjecture in the sense of [I2], page 254) The $\mathbb{Z}_{p}$-rank of
$G_{S}^{ab}$ is equal to $r_{2}+1$ ;

$G_{S}^{ab}\cong Z_{p^{2}}^{r+1}\cross(finite)$ .

Hence we obviously have $\rho\leq r_{2}+1$ if the Leopoldt conjecture is true for $k$ and $p$ . Note
that we always have $\rho\geq 1$ because $k$ has the cyclotomic $Z_{p}$-extension. Some examples of
$k$ and $p$ with $\rho=r_{2}+1$ and also with $\rho<r_{2}+1$ are known in the following way.

First, the case where $G_{S}$ itself is free would be the simplest. Since an explicit formula
for the minimal number of relations of $G_{S}$ was given by \v{S}afarevi\v{c} $([\check{S}2]$ ,Theorem 5, where
one can replace $\leq$

” by $=$
” using Tate’s duality theorem when $S$ contains all primes above

$p)$ , a necessary and sufficient condition for $G_{S}$ to be free is known. In particular, when $k$

contains a primitive p-th root of unity, $G_{S}$ is free if and only if the following two conditions
hold:

(1) $p$ does not decompose in $k/\mathbb{Q}$ ,
(2) $p$ does not divide the order of the S-ideal class group of $k$ .
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Here, the S-ideal class group is, by definition, the quotient group of the usual ideal class
group by the subgroup generated by the classes of prime ideals in $S$ . Furthermore, it is
known that if $G_{S}$ is free then its rank must be equal to $r_{2}+1$ , hence $\rho=r_{2}+1$ holds in
this case.

Example 1.4. (cf. $[\check{S}2]$ , \S 4) For $k=$ the p-th cyclotomic field $\mathbb{Q}(\mu_{p}),$ $G_{S}$ is free if and
only if $p$ is a regular prime, i.e. $p$ does not divide the class number of $k$ .

On the other hand, based on a result by Wingberg about free-product decomposition
of $G_{S}$ , the author obtained an explicit formula for $\rho$ in some special cases.

Theorem 1.5. ([Y], Corollary 4.6) Suppose that $p$ is an odd prime, $k$ contains a primitive
p-th root of unity, and that there exists a prime $v_{0}$ of $k$ which does not decompose in $k_{S}$

at all (then $v_{0}$ must divide $p$). Then we $hai^{\gamma}e$

$\rho=r_{2}+1-\frac{1}{2}\sum_{v|p}[k_{v}:\mathbb{Q}_{p}]v\neq v_{0}$
’

where $k_{v}$ denotes the completion of $k$ at $v$ . In particular, for such $k$ and $p,$ $\rho<r_{2}+1$

holds if and only if there exist more than one primes of $k$ above $p$ .

Example 1.6. ([Y], page 174) Let $p=3,$ $k=\mathbb{Q}(\sqrt{-3}, \sqrt{15})$ or $k=\mathbb{Q}(\sqrt{-3}, \sqrt{-26})$ . The
assumptions of Theorem 1.5 are satisfied, and we have $\rho=2$ while $r_{2}+1=3$ .

In general, the existence of $v_{0}$ in Theorem 1.5 can be checked in finite steps, provided
that we explicitly know a basis of the ideal class group and fundamental units of $k$ . The
author knows no other example with $\rho<r_{2}+1$ for which we can apply Theorem 1.5, but
there should be many such examples.

2 UNIQUENESS OF $F_{r_{2}+1}$ -EXTENSIONS

We keep the notation and, in addition, let LC $(k,p)$ denote the statement that the
Leopoldt conjecture for $k$ and $p$ is true. All algebraic extensions of $k$ appearing in this
section are considered as subfields of $k_{S}$ .

Proposition 2.1. (Remark by Iwasawa, cf. [Y], Proposition 2.2) $AssumeLC(L,p)$ for
any finite $su$bfield $L$ of $k_{S}/k$ . If $kh$as an $F_{r_{2}+1}$-extension $K$ , then the following hold.

(1) $K$ is unique.
(2) Any $F_{d}$-extension $(d\leq r_{2}+1)$ of $k$ is contained in $K$ .

We shall show that the assumption of this proposition can be weakened as follows.

Theorem 2.2. If $kh$as an $F_{r_{2}+1}$ -extension $K$ whicli contains the cyclotomic $Z_{p}$ -extension
of $k$ , then $K$ is uniq$ue$ . In particular, $we$ can prove Proposition 2.1 (1) assuming only
$LC(k,p)$ .

Remark 2.3. There are few examples of $k$ and $p$ which satisfy the assumption of Proposition
2.1, while there are many examples with LC $(k,p)$ .
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Remark 2.4. When $\rho<r_{2}+1$ , an $F_{\rho}$-extension is not necessarily unique. For example,
$\rho(k, 2)=1$ for $k=\mathbb{Q}(\sqrt{-7})$ (cf. [Y], page 174). Since $r_{2}+1=2,$ $k$ has infinitelv many
$F_{\rho}(=Z_{2})$ -extensions.

Remark 2.5. At present, the author knows no proof of Proposition 2.1 (2) under only
LC $(k,p)$ .

Proof of Theorem 2.2. Let $K/k$ be an $F_{r_{2}+1}$-extension which contains the cyclotomic $Z_{p^{-}}^{p}$

extension $k_{\infty}$ of $k$ .
We first prove the uniqueness of $k_{\infty}^{ab}\cap K$ , where ab means the maximal abelian extension.

Let $\Gamma$ $:=$ Gal $(k_{\infty}/k)$ and $X;=$ Gal $(k_{\infty}^{ab}\cap K/k_{\infty})=$ Gal$(K/k_{\infty})^{ab}$ . The exact sequence of
pro-p-groups

$1arrow Ga1(K/k_{\infty})arrow$ Gal$(K/k)arrow\Gammaarrow 1$

induces a natural action of $\Gamma$ on $X$ , hence a $\Lambda$-module structure on $X$ , where $\Lambda=Z_{p}[[\Gamma]]$ is
the completed group ring. Since Gal$(K/k)$ is a free pro-p-group of rank $r_{2}+1$ , Gal $(K/k_{\infty})$

is a free pro-p-T-operator group of rank $r_{2}$ , and we have $X\cong\Lambda^{r_{2}}$ (cf. [Wl], Section I).
We therefore have a surjection of $\Lambda$-modules

$Ga1(k_{S}/k_{\infty})^{ab}arrow X\cong\Lambda^{r_{2}}$ .

On the other hand, by Iwasawa theory, there exists an injection of $\Lambda$-modules

Gal $(k_{S}/k_{\infty})^{ab_{(-\rangle}}\Lambda^{r_{2}}\oplus$ ( $\Lambda$-torsion)

(cf. [I2], Theorem 17). That $k_{\infty}$ is cyclotomic is necessary only for this fact. Combining
these two facts, we know that the kernel of the natural surjection

$Ga1(k_{S}/k_{\infty})^{ab}arrow X$

is just the maximal $\Lambda$-torsion $\Lambda$-submodule of Gal$(k_{S}/k_{\infty})^{ab}$ , which is independent of $K$ .
Since $k_{\infty}^{ab}\cap K$ is the fixed field of this kernel, it also is independent of $K$ .

Now let
$k_{\infty}=K_{0}\subset K_{1}\subset K_{2}\subset\cdots\subset K$

be the tower of subfields of $K/k_{\infty}$ which corresponds to the derived series of Gal $(K/k_{\infty})$ .
Since the intersection of the derived series of a pro-p-group reduces to the identity element,
we have

$\bigcup_{n\geq 0}K_{n}=K$
. It therefore suffices to prove the uniqueness of each $K_{n}$ . This is trivial

for $n=0$ . Assume the uniqueness of $K_{n}$ . We have clearly $K_{n+1}=K_{n}^{ab}\cap K$ , and writing
$K_{n}=\cup L$ , where $L$ runs over all finite subfields of $K_{n}/k$ , we have $K_{n+1}=\cup(L^{ab}\cap K)$ .
By Schreier’s formula, Gal$(K/L)$ is a free pro-p-group of rank $[L : K]r_{2}+1=r_{2}(L)+1$
(cf. Lemma 1.2), and clearly $K$ contains the cyclotomic $Z_{p}$-extension $L_{\infty}$ of $L$ , therefore
$L_{\infty}^{ab}\cap K$ is independent of $K$ by applying what we have proved above to $L$ . Hence $L^{ab}\cap K=$

$L^{ab}\cap(L_{\infty}^{ab}\cap K)$ is also independent of $K$ , and thus $K_{n+1}$ is unique. $\square$
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3 A RECENT RESULT BY WINGBERG
ON THE EXISTENCE OF $F_{r_{2}+1}$ -EXTENSIONS

Recently, Wingberg obtained a remarkable result on the existence of $F_{r_{2}+1}$-extensions
of CM-fields.

Notation.
$p$ : an odd prime,
$k$ : a CM field containing a primitive p-th root of unity,

$k^{+}$ : the maximal totally real subfield of $k$ ,
$k_{n}^{+}$ : the n-th layer of the cyclotomic $Z_{p}$-extension $k_{\infty}^{+}$ of $k^{+}$ ,

$Cl_{S}(k_{n}^{+})$ : the S-ideal class group of $k_{n}^{+}$ , where $S$ is the set of the primes of $k_{n}^{+}$ above $p$ .

Theorem 3.1. (Wingberg, [W2], Theorem 2.4, Corollary 2.7)
(1) Assume that

(a) the Iwasawa $\mu$-invafiant of the cyclotomic $Z_{p}$ -extension of $k$ is zero,
(b) no prime of $k^{+}$ above $p$ splits in $k$ .

If $p$ does not $di$vide the $ord$er of $Cl_{S}(k_{n}^{+})$ for all $n\gg O$ , then $kh$as an $F_{r_{2}+1}$ -extension.
(2) $Coni^{\gamma}ersely$, assume that

(c) the Leopoldt conjecture $is$ true For $k$ an$dp$ ,
(d) the Greenberg conjecture is true For $k^{+}$ and $p$ , i.e. the Iwasawa $\lambda,$

$\mu$-invarian$ts$ of
$k_{\infty}^{+}/k^{+}$ are zero.

If $kh$as an $F_{r_{2}+1}$ -extension ($i.e$ . $\rho=r_{2}+1$ , because of $(c)$), then $p$ does not divide the
order of $Cl_{S}(k_{n}^{+})$ for all $n\gg O$ .

Note that the assumptions (a) and (c) are known to be true when $k$ is an abelian exten-
sion of $\mathbb{Q}$ , and note also that when $p$ does not split in $k^{+}/\mathbb{Q}$ the following are equivalent
(Iwasawa):

(1) $p$ does not divide the order of $Cl_{S}(k^{+})$ ,
(2) $p$ does not divide the order of $Cl_{S}(k_{n}^{+})$ for all $n\gg O$ .

We therefore have the following interesting

Corollary 3.2. ([W2], Theorem in the introduction) Let $k=\mathbb{Q}(\mu_{p})$ be the p-th cyclotomic
field. Then the following are equivalent:

(1) $\rho(k,p)=(p+1)/2$ holds and the Greeiiberg conjecture is true for $k^{+}$ and $p$ .
(2) Tlze Vandiver conjecture is true for $p$ , i.e. $p$ does not divide the class $n$ umber of

$k^{+}$ .

Finally, we give some examples with $\rho<r_{2}+1$ using Theorem 3.1.

Example 3.3. Let $p=3,$ $k=\mathbb{Q}(\sqrt{-3}, \sqrt{d})$ , where $d$ is a square-free positive integer.
Assumptions (a) and (c) are true as we mentioned above. Suppose, for simplicity, that 3
does not decompose in $k$ , i.e. $d\equiv 2(mod 3)$ or $d\equiv 3(mod 9)$ . Assuming the Greenberg
conjecture at 3 for $k^{+}=\mathbb{Q}(\sqrt{d})$ , we see by Theorem 3.1, that $\rho(k)<3$ if and only if the
class number of $k$ is divisible by 3. (In that case, the exact value of $\rho(k)$ is 2 because the
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subfield $\mathbb{Q}(\sqrt{-3})$ has an $F_{2}$-extension). Thus we have many examples with $\rho<r_{2}+1$ .
Here is the list of such $d$ ’s (except for the Greenberg conjecture) in the range $d<1000$ .

(1) $d\equiv 2(mod 3)$ :

$d=254,257,326,359,443,473,506,659,761,785,839,842,899$.

(2) $d\equiv 3(mod 9)$ :
$d=786,894,993$ .

Among these, the Greenberg conjecture has been verified for

$d=257,326,359,443,506,659,761,839,842$

as far as the author knows.1
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