Title: Coverings of $\mathbb{P}^1-{0, 1, \infty}$ with restricted "vertical" ramifications. (Moduli spaces, Galois representations and L-functions)

Author(s): Ihara, Yasutaka

Citation: 数理解析研究所講究録 (1994), 884: 105-111

Issue Date: 1994-09

URL: http://hdl.handle.net/2433/84272

Type: Departmental Bulletin Paper

Textversion: publisher
Coverings of \(\mathbb{P}^{1} \setminus \{0,1,\infty\} \) with restricted "vertical" ramifications.

Yasutaka Ihara
RIMS, Kyoto University

Let \(S \) be any set of prime numbers, and put
\[
\mathbb{Z}_S = \mathbb{Z}[\frac{1}{p}; p \in S],
\]
\(Q_S : \) the maximal Galois extension over \(\mathbb{Q} \) unramified outside \(S \)'s
\(S_0, \pi_1(S\mathbb{Z}_S) = \text{Gal}(Q_S/\mathbb{Q}) \). We propose to study the action of this group on
\[
\pi_1^{(S)} := \text{Ker}(\pi_1(\mathbb{P}^{1} \setminus \{0,1,\infty\}/\mathbb{Z}_S) \to \pi_1(S\mathbb{Z}_S)),
\]
where
\[
\frac{\mathbb{P}^{1} \setminus \{0,1,\infty\}}{\mathbb{Z}_S} = \text{Spec} \mathbb{Z}_S[t, \frac{1}{t}, \frac{1}{t-1}], \quad (t: \text{a variable}).
\]
In terms of Galois theory of function fields, \(\pi_1^{(S)} = \text{Gal}(M_S/Q(t)) \),
where:
\[
M \rightarrow \max \text{Gal}(\mathbb{Q}(t)/\mathbb{Q}(t)) \text{ unram. outside } t=0,1,\infty
\]
\[
\begin{array}{c}
\pi_1^{(S)} \rightarrow \text{max Gal}(\mathbb{Q}(t)/\mathbb{Q}(t)) \text{ in } M \text{ in which } v_2(l \notin S)
\end{array}
\]

Here, \(v_2 \) is the unique extension of the \(l \)-adic valuation of \(\mathbb{Q} \) to \(\mathbb{Q}(t) \) such that \(l \) is a prime element and the residue class of \(t \) is transcendental over \(\mathbb{F}_2 \).

1) Although the titles are not the same, this is a resume of my talk at the conference on March 28, 94.
We have the following two short exact sequences

\[(*) \quad 1 \rightarrow \text{Gal}(M/\mathcal{O} M) \rightarrow \text{Gal}(M/\mathcal{O}(t)) \rightarrow \text{Gal} \left(M_{S}/\mathcal{O}(t) \right) \rightarrow 1 \]

\[\quad \text{F}_2 \text{ (free profinite)} \quad \text{rank} \quad 2 \quad \text{S} \]

\[(**) \quad 1 \rightarrow \text{Gal}(M_{S}/\mathcal{O}(t)) \rightarrow \text{Gal}(\mathcal{O}S/\mathcal{O}) \rightarrow 1 \]

The most basic question is, perhaps, whether (*) is useful in the (future) study of \(\text{Gal}(\mathcal{O}S/\mathcal{O}) \). I cannot say anything about this now. Here, I state some results of my "first thought" related to (**).

Terminology:
- "S-number": integers whose prime factors all belong to \(S \);
- "S-group": finite group whose order is an S-number;
- "pro-S group": proj. limit of S-groups (1|S| = 1 \Rightarrow \text{pro-nilpotent},
1|S| = 2 \Rightarrow \text{pro-solvable}).
- \(F_2^{pro-S} \): the pro-S completion of the free group of rank 2, i.e., the projective limit of all finite S-groups appearing as quotients of \(F_2 \).
Statement of results:

(i) Ramification indices of $t=0,1,\infty$ in any finite subextensions of $M_s/Q_s(t)$ are S-numbers. 3)

(ii) For any open subgroup $H \subset \pi_1^{<S>}$, its abelianization H^{ab} is a direct product of a pro-S group and a finite group.

These two are saying that $\pi_1^{<S>}$ as a quotient of $\widehat{F_2}$ is not so big. The next (iii) says something to the opposite direction.

(iii) $\text{Gal}(M_s^*/M_s)$, the kernel in (x), contains no non-trivial S-group as its quotient. In particular, $\widehat{\pi_2} \to \pi_2$ factors through $\pi_1^{<S>}$ as $\widehat{F_2} \to \pi_2 \to F_2$ pro-S (both \to are surjective).

About the exact sequence (x): (iv) The standard Puiseux embedding $\mathcal{M} \to \mathcal{O}[t] = \bigcup_{i \geq 0} \mathcal{O}[t^{1/2^i}]$ and $M_s \to Q_s[t]$, and M_s is stable under the coefficientwise $\text{Gal}(Q_s(t))$-action on $Q_s[t]$. This $\text{Gal}(Q_s(t))$-action on M_s gives a nice splitting of (x).

Remarks: If $S = \emptyset$, then $\Omega_s = \Omega$, $M_s = \Omega\mathbb{T}$ and $\pi_2^{<S>} = \{1\}$.

When $S = \{p\}$, I do not know whether $\pi_1^{<p>} \to F_2$ pro-p or not.

When $S = \{2, p\}$ or $\{p, \infty\}$, $\pi_1^{<S>}$ is not a pro-S group.

When $S = \{\text{all primes } l\}$, then $Q_s = \overline{Q}$, $M_s = M$, and $\pi_1^{<S>} = \widehat{F_2}$.

3) This property depends on the choice of three points on P^1_t, $t=0,1,\infty$.

If they were, e.g., $t=0,1,2,\infty$, then this property would not hold (unless $S \geq 2,3$).
Main ingredients for proofs.

(i) As T. Saito noted, (i) is obtained directly from the generalized Abhyankar lemma ([SGA 1] Exp XIII).

(ii) This proof relies on a result of Coleman [Co]. More precisely, it is reduced to the following statement which is (essentially) in [Co]:

Let A be an abelian variety over a number field k, and S be any set of primes of k. Assume A has good reduction outside S. For each positive integer n with $(n, S) = 1$, let $A[n]$ denote the group of all n-torsion points of $A(k)$, and $K[n]$ be its subgroup generated by the kernel of reduction mod v in $A[n]$, where v runs over all prime divisors of the field $k(A[n])$ dividing n. Then the order of $A[n]/K[n]$ is bounded by a positive number which depends only on A and k (in fact, only on $A \otimes \overline{k}$).

(iii) The proof relies on standard arguments of Grothendieck's ([SGA 4]) on descent of étale coverings; the only additional points to be checked are:

(a) For any finite subextension $L/Q_5(t)$ in M_5, the integral closure of $\overline{L}/\mathbb{Z}_5$ in L is regular outside S (including points above $t=0,1,\infty$ as long as they are not above S').
(b) The pro-S completion of the fundamental group of a compact Riemann surface of genus > 1 has trivial compact.

The assertion (a) can be checked easily, while (b) is proved in [Na].

(iv) The point is to prove the \mathbb{Q}_S-rationality of places of M_S above $t \to 0, 1, \infty$. This follows by using the purity of branch loci on suitable Fermat curves whose exponents are S-numbers.

Some open problems:

(Problem I) Characterize π_1^{ess} as quotient of \hat{F}_2.

Related questions:

(Q1) Is π_1^{ess} the biggest quotient of \hat{F}_2 on which $\text{Gal}(\bar{\mathbb{Q}}_S)$ acts trivially?

(Q2) Is the center of π_1^{ess} trivial?

(Q3) In connection with the result (ii), let H^a_0 denote the coprime-to-S part of the torsion subgroup of H^a. Then what can one say about the group $\frac{H^a_0}{H^a}$?
(Problem II) Is the homomorphism
\[\Phi_S : \text{Gal}(\bar{\mathbb{Q}} / \mathbb{Q}) \rightarrow \text{Aut} \pi_1^{(S)} \]
defined by the splitting (iv) of the exact sequence (xx) injective?

When \(S = \{ \text{all primes} \} \), \(\Phi_S \) is injective by the well-known injectivity of Belyi for the Galois representation \(\text{Gal}(\bar{\mathbb{Q}} / \mathbb{Q}) \rightarrow \text{Out} \pi_1(\mathbb{P}^1 - \{0,1,\infty\} / \mathbb{Q}) \).

I do not know at present whether \(\Phi_S \) is injective in any other cases, e.g., even when \(S = \{ \text{all primes} \} - \{p\} \).

In general, let \(\mathbb{Q}^*_S \) \((\mathbb{Q} \subset \mathbb{Q}^*_S \subset \mathbb{Q}_S) \) denote the field corresponding to the kernel of \(\Phi_S \). What we know about \(\mathbb{Q}^*_S \):

(\#) \(\mathbb{Q}^*_S \) contains all higher circular \(S \)-units (the obvious generalization of higher circular \(L \)-units in [A-I]).

(\###) Let \(n \geq 1 \), and \(S = S_n = \{ p ; p \text{ divides } n(n-1) \} \). Assume \(\pi_1^{(S)} \) is center-free. Then \(\mathbb{Q}^*_S \) contains the splitting field of the equation \[x^{n-2} + 2x^{n-3} + 3x^{n-4} + \ldots + (n-1)x + n = 0 \].
References:

[AJ] G. Anderson-Y. Ihara; Pro-l branched coverings of \mathbb{P}^1
and higher circular l-units; Ann of Math 128 (1988), 271-293.

[Na] H. Nakamura; Galois rigidity of pure sphere braid groups

[SGA 1] A. Grothendieck; Revêtements étals et groupe fondamental,
SLN 224.