Title
Representations and Pseudo-representations (Moduli spaces, Galois representations and L-functions)

Author(s)
CARAYOL, Henri

Citation
数理解析研究所講究録 (1994), 884: 24-26

Issue Date
1994-09

URL
http://hdl.handle.net/2433/84281

Type
Departmental Bulletin Paper

Textversion
displayed
Representations and Pseudo-representations

(Abstract)

by Henri Carayol

(I) Representations over local rings ([C])

Let G be an abstract group and R a local ring with maximal ideal m and residue field F. We define a d-dimensional representation of G over R as usual, i.e. as an homomorphism:

$$\rho : G \rightarrow GL_d(R);$$

two such representations are called equivalent if one is conjugate of the other by some $M \in GL_d(R)$. The residual representation $\bar{\rho} : G \rightarrow GL_d(F)$ is obtained by reducing modulo m.

Our first result is the following:

Theorem 1. — Suppose ρ and ρ' are two d-dimensional representations of G over R. Assume:

(a) $\forall g \in G$, trace $\rho(g) = \text{trace} \, \rho'(g)$,
(b) $\bar{\rho}$ is absolutely irreducible;

then ρ and ρ' are equivalent.

My paper [C] also contains some "Schur-type" result, which allows, under suitable hypothesis, to realize a representation over a subring where the trace takes its values. As a consequence, we give a construction of Galois representations associated to some modular forms defined over rings. This kind of results can now be viewed as corollaries of a theorem of Louise Nyssen on pseudo-representations, which I will explain in the next paragraph.

(II) Pseudo-representations

Pseudo-representations were first introduced in dimension 2 by Andrew Wiles, as a sort of substitute for representations; they played a crucial role in the construction, using congruences between
modular forms, of some \(\ell \)-adic Galois representations ([W]). Taylor ([T]) generalized them to any dimension.

A pseudo-representation of dimension \(d \) of a group is a function on this group which satisfies the formal properties of the trace of a representation: two of those properties are obvious, and the third one reflects a certain polynomial identity on matrix rings ([P]). More precisely:

Definition. — Let \(G \) be a group and \(R \) a (commutative) ring. A \(d \)-dimensional pseudo-representation of \(G \) over \(R \) is a map \(T : G \to R \) which satisfies:

(a) \(T(1) = d \),

(b) \(\forall x, y \in G, \ T(xy) = T(yx) \),

(c) \(\forall x_1, \ldots, x_{d+1} \in G, \ \sum_{\sigma \in S_{d+1}} \epsilon(\sigma) T_{\sigma}(x_1, \ldots, x_{d+1}) = 0 \),

where \(\epsilon(\sigma) \) denotes the signature of \(\sigma \), and where \(T_{\sigma} \) is defined as follows: if \(\sigma \) is decomposed into a product of disjoint cycles (including fixed points viewed as 1-cycles):

\[
\sigma = (i_1^{i_2} \cdots i_1^{k_1}) \cdots (i_m^{i_1} \cdots i_m^{k_m})
\]

\[
T_{\sigma}(x_1, \ldots, x_{d+1}) = T(x_{i_1^{i_2} \cdots i_1^{k_1}}) \cdots T(x_{i_m^{i_1} \cdots i_m^{k_m}})
\]

(this makes unambiguous sense thanks to (b)).

The trace of any representation is a pseudo-representation, and according to [T] the converse is also true over an algebraically closed field of characteristic 0. Because theorem 1 asserts that we have a good theory for those representations over local rings which reduce to absolutely irreducible representations, it seems reasonable to compare both notions in this context:

Theorem 2 [N]. — Let \(T \) be a \(d \)-dimensional pseudo-representation of a group \(G \) over an henselian separated local ring \(R \). We assume that its reduction \(\overline{T} \) modulo the maximal ideal is the trace of some absolutely irreducible \(d \)-dimensional representation over the residue field. Then \(T \) itself is the trace of a \(d \)-dimensional representation of \(G \) over \(R \) (well-defined up to equivalence according to theorem 1).
Note: A recent preprint of K. Saito ([S]) contains related results in the case of 2-dimensional representations.

(III) References

[S] K. Saito. — *Representation varieties of a finitely generated group into SL_2 or GL_2*, preprint RIMS Kyoto University.

Institut de Recherche Mathématique Avancée Université Louis Pasteur et C.N.R.S.
7, rue René-Descartes
67084 Strasbourg Cedex