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I.Introduction

Recently, wavelet transform is often used for the 'time-
frequency' analysis and for the 'multi-resolution' analysis in
signall processing.[1-4] It 1is a kind of expansion of a
square—integfable function into a superposition of 'wavelets'
which have a constant shape but with various time-scales and
with ‘various time-shifts. VIn fhis field, several types of
'wavelets' are proposed for practical overcomplete systems whose
(pseudo-)basis  vectors are almost localized both in the time
domain and in the frequency domain.

In terms of mathematical phySics, this 'wavelet' is fegarded
as a generalized coherent state associated with the affine
group[8] which 1is analoguous to the coherent state associated
with the Weyl—Hisenbérg group. The unitary representation of
the affine group was investigated by Gelfand and Neumark[5] and
Aslaksen and Klauder[6][7]. In terms of the Hermitean operators
satisfying [Q,P]=1iI, the affine transformation of the coordinate
(or the eigenvalue of Q) x—rx-q 1is represented by the unitary
operator exp(-iqP)exp(isB) where s=-log r and B=(PQ+QP)/2 [T7].
The operator B satisfies the commutation relation [B,P]=iP.

As 1is well known, the coherent state | a) a is the



eigenvector of. the annihilation operator a=2—1/2(Q+iP)
[9] and satisfies the 'displacement' relation
exp(ipQ-1aP) | a) = expliIm{7 " }1 | a+7)
' where 7=2_1/2(q+ip) . (1)

In this paper, for the affine group, we will find an analogous

operator A whose eigenvector | a)‘A satisfies the relation

exp(-igP)exp(isB) | @) ,= c(a,s,q) [f(ea;s,q)) , (2)
where c and f are scalar functions of a,s and q. It is
desirable that the system of eigenvectors is complete in the
domain of definition of the operator A, and that the wavefunction
of the eigenvector has useful property.

In Section III, we will discuss how to find such an operator,
in respect of commutation relations. In the following sections

we will discuss one of such operators

1 (k:positive integer)

A= Q-ikP~
which is defined in a subspace of Lg(R) which is orthogonal
to the eigenvector IO)]Pof the operator P. For the operétor Ak ,
relation (2) holds with f(a;s,q)=exp(-s)(a+q) , for any complex
eigenvalue «a.

In Section 1V, we will show that the wavefunction of the
eigenvector of this operator (in 'position coordinate
representation’') 1is a very simple rational function which is
square-integrable, and then we will investigate several
properties of this function, such as the 'admissibility' and the

degree of localization. It is also shown that the system of the

eigenfunctions is over-complete in Lg(R)
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When k is large, this wavefunction has very similar shape to
that of the squeezed state[10], or in particular cases to that of

the coherent state ( in terms of signal processing, to the

Gabor's wavelet). In Section V, we will show this fact
mathematically in terms of the norm Il ”LZ'
II. WAVELETS

The wavelet transform was propoesd by Morlet et al.[1]. 1In
this section we will mention the wavelet briefly. When a h(x)

in LZ(R) satisfies the 'admissibility condition'’

A -1 2
C, = Lo Iy IH) 1P dy < = (4)
where H(y) is the Fourier transform of h(x), then an arbitrary

square-integrable function can be expressed as a linear

superposition of the 'wavelets' with the 'similar shape to h(x)'

in the following sense. Define

n(@bkxy 2 a7 2h((x-b)/a) ( a,b:real ) . (5)
Then { h(a’b)(x) ; a,b:real } is a complete system in LZ(R).
(See [2]1[3]1[4]) However, it is 'over-complete'. In terms of

quantum mechanics, by denoting an arbitrary function in Lg(R)
by a vector [ &) (not necessarily normalized) suéh that
Q (x| ¢) =f(x) ( where IXSQ, denotes the eigenvector
of the position coordinate operator Q associated with the

eigenvalue x ) and h(a’b)(x) by the vector |a,b) such that

Q (x |a,b) =h(a’b)(X) ,

GlL% 1al™ da £ db lab) (abl gy = [4) . (8)

It is analogous to the overcomplete system of the coherent states
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[91[11] which satisfies

T dRea) LTd(Ima) L), (el d) =14) . (7)

III. OPERATOR WHOSE EIGENVECTORS CONSTITUTE A WAVELET SYSTEM

It is well known that the relation (7) holds for more general
cases and the system of coherent states is a special case of
them. In a similar sense to this, the relation (6) holds
whenever h(x) satisfies the admissibility condition (4). So a
question arises: 1is there any simple operator such that the
system of the eigenvectors would be a overcomplete system
satisfing the relation (6) and for the eigenvectors a 'shift of
the eigenvalue' would be performed by the unitary
transformation represented by exp(-igP)exp(isB) ? In this
section we will discuss this question in terms of commutation
relations.

In the case of the coherent state, the displacement of the
eigenvalue in (1) can be derived from the relation

exp(-ipQ+iqP) a exp(ipQ-igP)

= exp(v*a—vé*) avexp(va* -77a) =a+ oI , (8)
which results from the commutation relation [Q,P]=1i1 or
[a,aY ]=I. In a similar manner to this, if we can find a
operator A such that

exp(-isB)exp(igqP) A exp(-iqP)exp(isB) = f(A;s,q) (9)

( where B=(PQ+QP)/2 as defined above, and f(A;s,q) 1is the
operator obtained by the substitution of the operator A -
into some function f(a;s,q) ) ,

then, from the relation with the eigenvector | a).A of
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of the operator A associated with the eigenvalue a

A [ exp(-igP)exp(isB) | a) A] = exp(-iqgP)exp(isB)f(A;s,q) | a)A

= f(a;s,q) [ exp(-iqP)exp(isB) | a) (10)

Al
the relation (2) is shown to hold. In comparison with the well-
known relation for general operators S and T ( See Chap.3 of
[111) |

exp(zS) T exp(-2z8S) =T + z[S,T] + (z2/2!)[s,[S,T]]

+ (z°/31)0s,[S,[S,T111 + ... , (11)
an operator satisfying the following commutation relations has
the property (10);

[B,A] = g,(A) and [P,A] = g,(A) (12)
where gl and gz are functions of A. Since it 1is shown-from the
definition of B that [B,P"]=inP™ and [B,Q"1=-inQ"™, we can find an
example satisfying (12) easily. A trivial example 1is A=1I.
There are two other trivial cases, where A=Pn or A=Q. A simple
but nontrivial example is

& _ -1
Ak— Q ikP

( k:integer ) (13)
which is the main subject of this paper. For the well-
definedness of the . operator we restrict the space within a

subspace where the the inner product

H(y) £ p (y | ¢

satisfies the condition

2

P 0y 1T HGy) 12 dy <

(e o)

( It is clear that this subspace is orthogonal to | O)P )
The operator Ak has complex eigenvalues as shown in the next

section, and it satisfies the following relations;

Ay = Ay (14)



13

[B,Ak] = —iAk, (15)

[P,Ak] = -iI (18)

[Q.A1 = -kp™2 (17)

-2

[Ak’Aj] = (k-j) P (18)
From (11),(15) and (16),

exp(-isB)exp(iqP) Ak exp(-igP)exp(isB) = exp(-s)(A+ql), (19)
so the wanted relation holds as

exp(-iqP)exp(isB) | @) o= cla,s,q) Iexp(—S)(a+q))Ak . (20)

k

Note that this relation holds even if k is not an integer.
However, in the next section, it is shown that the eigenvector

of Ak is square-integrable when k is a positive integer and the

eigenvalue is not real.
IV. WAVEFUNCTIONS OF THE EIGENVECTORS OF Q—ikal
First, we calculate the eigenfunctions of Ak in position-
coordinate -representation

(a) 4
'hk (x) = Q (x| a) Ak . (21)
Because of the restriction of the domain of definition of the

operator which is mentioned in Section III, the relation

p (0] a) A 0 must hold which means

k

(2ol oax =0 . , (22)
Since .

(PQ-ikI) | @) , = PA, | @) , = aP|a), , (23)

k k k
the wavefunction belongs to the class of the solutions of the

differential equation
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d
(x-a) — n{®) 0+ D) n{?) 0 =0 . (24)
dx

For positive k, the solution satisfying the condition (22) of

this differential equation exists only when a is not real, as

(a) _ - (k+1) ‘
hk (x) = Ck(x a) (25)
where Ck is a constant. We can easily verify this solution to

be satisfying

A |l a) ,= a | a) .

k Ak Ak

Since a residue calculus results in

0 ( if (Img)(Im2a)<0 )

§ 2 x-p )T @) ()T D gy o |
. n * —-(m+n+1)
27zi(-1) m+nCn (A-u )

( if (Img)(Ima)>0 ) , (28)

So, when a is not real, we redefine the eigenfunctions as

hi® ) = ¥ 2K a0 TIma | TERTD) T2 (g gy (R D)

k 2k "k e
so that the normalization can be made as

2ol 12 ax =1 4 (28)

- o k X = .

Thus the eigenfﬁnctions associated with non-real eigenvalues are
square integrable for k=1,2,3,...

The wavefunctions are almost localized and their shape are
'wavelet-likef. Some examples are given in Figs.l and 2 ( where
the maximum values are normalized ). This wave-like behavior
results from the fact that arg(x—a)-is almost 1linear around
x=Rea . When k is large, the 'phase' of the eigenfunction

increses at an alomst constant rate in a wide range of x near the
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Fig.1
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center of the wavelet, and then the 'envelope' of the wavelet is
similar to the Gaussian shape. So the shape seems to be very
close to the wavefunctions of coherent states or squeezed states.
This resemblance is mathematically verified, in the next section.

The center of the wavelet is located at x=Rea and the wavelet is

more wide-spread as |Ima | is larger. The number of 'large
peaks' 1is nearly aslarge as kl/z, which can be shown by an easy
calculation. As is expected from the relation (20), for the

affine transformation of the coordinate x—rx-q the eigenfunction

satisfies the relation

h®) (rx-q) = r/Z 00 @D/ Ty (r>0). (29)
As a very useful property, the real part of the eigenfunction is
an even function of (x-Rea), its imaginary part 1is an odd
function of (x-Rea).

(a)

Next, we investigate the Fourier transform of h (x) or the

k
wavefunction in the momentum representation
Fay -1/2 .
H&a)(y) = p (y | a) Ak= (27) 1/ [j; h;a)(x) exp(-iyx) dx . (30)
By a residue calculus,
0 : ( If y(Ima ) 20 )
H ) = (31)
2k+1/2 [(Zk)!fl/z | Im & Ik+1/2 yk exp(-1iay)

( If y(Ima)<0 ).
When k is large, the eigenfunction in the momentum representation
is almost localized around y=-k/Ima . So, 1in terms of signal
processing, the wavelets associated to these eigenvectors are

almost localized both in the time domain and in the frequency
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~domain. .
We can show that the eigenfunctions satisfy the admissibility

condition (4) as

cla) & (o -1 (a)
Cy, = Lo Iyl IH = (y) | dx
k .
= 22 e 12 2y exp(-2y I Ima 1) ay
= 4k |Ima | < = . (32)

According to the argument of Section II, the system
{ h&a)(x) ; a :complex and Ima #0 }
constitutes an over-complete system in Lg(R) because the relation

(29) and the relation

h{~®)x) = (-1)¥*1nl @) x) (33)
k k
hold. If we wish to apply these eigenfunction for the wavelet

transform of real- valued signals, we can use the real part or
the imaginary part of them. It is easily verified that the
admissibility condition is satisfied for each part. Because of

the 'parity' of each part, the systems

{ Re'h&a)(x); a :complex and Ima>0 }

(a)
k

are over-complete in LZ(R)

{ Im h (x); a:complex and Ima>0 }

V. RESEMBLANCE TO THE WAVEFUNCTIONS OF SQUEEZED STATES
As has been pointed out 1in the above section, the
eigenfunctions has a resemblance to the wavefunctions of some

kinds of 'squeezed states when k 1is large. In a rough
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arrroximation, this resemblance can be expected also from the

following facts;

1. | x) | 1s proportional to the probability density

h(iiﬁji
k

function of Student's t-distribution with the degree of
freedom k which converges to the standard Gaussian distribution

as k— o,

2. arg hia)(Re¢z+u) = -(k+1)u + O(ua)
In this section, we will prove this property more exactly. For
r:real(r#0) , define
M(r) 2 (r+r 1y/2 | (34)
N(r) 2 (r-r'1)/2 | (35)
s(x; a,r) = ¢ (x | a;M(r),N(r)) o (386)
and ’
S(y; a,r) = [i; s(x; a,r) exp(-iyx) dx

= p (¥l asM(r),N(r)) o , (37)
where | a; u, v) b denotes the vector of the squeezed state[10]
(normalized). Then,

s(x; a,r)

= (2/7)% 2 expl -r? (x-Re @)%+ 2i(Ima)x - i(Rea)(Ima) ]

S(y; a,r) 38

= (22) V42 expr-(2r) 2 (y-2Ima)?- i(Rea)y + i(Rea)(Ima)]

For simplicity, define (29)

K(k) & [(k+1)/217 /2 (40)
Then, using the formula

f;b tn_lexp(-ctz) df = 2_1c—n/21‘(n/2) ' (Ij:Gamma func.)(il)

we can show from (31) and (39) that the following relation holds
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for any real numbers r and v;

exp[-iK(k)rv] A (V=1K(K) /r | v+iK(K)riM(r) ,N(r))
k

. E 3
exp[-iK(k)rv] Lﬁ; H&V-lK(k)/r)(y) S(y;v+iK(k)r,r) dy

X I v& expl -(2r)2 y2 1 ay

= PR/2 ;74 (W24 /4 b (e1y/2) [T (2ke) T2 (42)
From the relation known as Stirling's formula

1im (272)Y 2exp(-t) ' Y2 [r(t)17t = 1 (43)
t—
and the relation

1im  (dk+1)XTC[ (ap)¥rCel/d 7o

k—»oo ) k

( ¢c: a real const. ; d=1,2 ) , (44)

we have

1lim exp[-iK(k)rv] A (v-iK(k)/r | v+iK(k)r;M(r),N(r)) b = 1.
k— o k a (45)

Since the eigenvectors | a) and | a;u, v) p are normalized,

Ag

the relation (45) implies that

lim | | v-iK(k)/r) A~ exp[-iK(k)rv] | v+iK(k)r;M(r),N(r)) b “L2

k— o k
=0
(46)
or
lim ,Li; I h;v—iK(k)/r&X) - exp[-iK(k)rv] s(x;v+iK(k)r,r) [2 dx
k— o .
= 0
(47)

Thus we can verify that the eigenvector of Ak gradually

approaches a sequence of squeezed-state vectors with respect to
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the norm || As a special case where r=1, this approaches

”LZ'

destinated to a sequence of coherent-state vectors because

L a31,0) = [ a) .
VII. CONCLUSIONS

We have discussed the system of the eigenvectors of the
operator Q—ikP_l. The system constitutes an over-complete
wavelet system, where the eigenvector associated with a non-real
eigenvalue 1is transformed to the eigenvalue associated with
another non-real eigenvalue by the affine transformation of the
coordinate. We have shown this fact in terms of the operator
algebra. . The eigenfunctions in position coordinate
representation are simple rational functions and have é localized
'wavelet-1like' shape. They satisfy the 'admissibility
condition’. It has been proved that in a limit the eigenvector
gradually approaches a sequence of sqeezed-state vectors with

respect to || as k—
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