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The mean square of Hecke L-series
attached to holomorphic cusp-forms

by

YOICHI MOTOHASHI (##% 4 — )

Department of Mathematics, College of Science and Technology,
Nihon University, Surugadai, Tokyo-101, Japan

The aim of the present paper is to indicate a new approach to the mean square of Hecke
L-functions attached to holomorphic cusp-forms, which is simpler than the one developed by
A.Good in his important works [1][2] and is in fact able to yield a deeper result. We restrict
ourselves to the case of SL(2,Z) the full modular group, mainly for the sake of simplicity.
The extension to an arbitrary congruence subgroup should not cause any essential difficulty,
save for the technical complexity induced by the possible presence of many inequivalent
cusps.

Thus, let A be a holomorphic cusp-form of an even integral weight k (> 12). We denote

its Fourier expansion by
o0

A(z) = Za(n)e(nz),
n=1
where e(-) = exp(2ni-) and z is on the upper half-plane as usual. We assume that A is
a simultaneous eigen-function of all Hecke operators acting on the space spanned by all
holomorphic cusp-forms of the weight k. Namely, we have, for any positive integer n, the
relation

R ONIC DRV

ad—n b=

with a certain real number ¢(n). This implies that

a(n) = a(1)t(n)na®D,
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The L-function and the Hecke series attached to A are defined by

e o]

La(s) =) a(mn™, Re(s) > 3(k+1),

n=1

Ha(s) = it(n)n"", Re(s) > 1,

n=1

respectively. Both sums converge absolutely in the indicated ranges of the variable s, and
continuable to entire functions. '

Then our problem is to consider the mean value

IA(T) = /0 ’ |Ha(3 + it)|*dt.
Good [2] has already established the asymptotic formula
I4(T) =TP(logT, A) + E4(T),
where P(-, A) is a linear polynomial and
EA(T) <4 TY3(log T)°.

We shall show briefly an alternative proof of this estimate. An advantage of our argument
over Good’s is in that ours can yield an estimate of the mean square of the error term E4(T)
that seems essentially the best possible.

Our basic idea is an adaptation, to the present situation, of the argument that we have
developed in [5] for the analysis of the fourth power moment of the Riemann zeta-function:

T
/ 1L(3 + it)|*dt.
0
Thus we start from the expression
Ia(u,v;G) = (Gvr)™! / Hau + it)Ha(v — it)e” ¥ ge,
—o0

where G > 0 is arbitrary. This is an entire function of the complex variables u, v. In
particular we have

(s o]

Ia(PriG) = (GVA)™ [ 1HAG+i(T + 0)Pe s,
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where Pr is the point (3 + iT,  — iT) with an arbitrary T > 0. We are going to establish
an explicit formula for I4(Pr; G).
We have, on the other hand,

IA(ua'U; G) = Ia(1)|—2JA(u + %(k - 1)1” + %(k - 1)’ G)

Ja(t,v;G) = (Gv/7 )™ / La(u+it)Lz(v — it)e= ¢V dy,

where A(z) denotes the complex conjugate of A(—2). In the region of absolute convergence

we have o
an)aim m
6= Y 2D o (— S rog 2y
n,m>1
= Ra(u+v) + JQ (4,9;G) + IV (v,4; G).
Here

(e o]
Ra(s) =) _ la(n)[*n~"
n=1
is the Rankin zeta-function for the form A, and

a(n)a(n + m)
n*(n + m)?

n+m

K6 = Y exp (— (S log “E™y),

n,m2>1

To transform this double sum we introduce the function
; Y G 9
w(z;u,G)=(1-1) exp(—(-é-log(l——x)) ), 0<z<1,
as well as its Mellin transform

1
w(s;u,G) = / z*Lw(z;u, G)dz.
0

Since we have

W(s;u,G) = (17 /1 z"”’"l(i)pw(x' u G’)d:z:
U s(s+1)-(s+p=1) o oz B

the function w(s;u,G) is regular except for s = 0, —1, —2,..., and of rapid decay in the

half plane Re(s) > —B with an arbitrary fixed positive B; moreover it is entire with respect

to u. ’



Then we have, by Mellin’s inversion formula,

M a(n)a(n + m)_ ,
T 6) = n£1 (n + m)wty ( m' " 4

a(n)a(n +m) e
27!'2 Z (n+ m)u+v - (n +m ) W(s; u, G)dS

= 2i {Zm ’DA(u+v—s m) }(s; u, G)ds.
Tt J(n) m>1

Here the function D4 is defined by

a(n)a(n + m) .

DA(31 m) = Z (n + m)s

n=1

Checking the absolute convergence, we see that the last expression for J 2 (u,v; G) holds on
the condition, e.g.,
n>1, . Re(u+v)>k+n.

Next, we need a spectral decomposition of D4(s,m). For this sake we introduce the
Poincaré series

Pu(z,8)= Y (Img(2))’e(mg(2)),

9€To\SL(2,Z)

where T, is the stabilizer of the point at infinity. Then we have

(47r)s+k-—1 k

DA(S+IC°— 1,m)= m—_—l)'(

Pm('1 3)1 |A|2>k ) RB(S) > 1.
The inner product {a,b) is defined to be
[ a o)

where & and du(z) are the usual fundamental region of SL(2,Z) and the Poincaré metric
on the upper half plane, respectively. We shall also use the convention

(a,b) = {a,bdo.
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At this stage we have to introduce some rudimental notion from the theory of non--
holomorphic cusp-forms. Thus, let {)\; = sz + -‘1;; »; > 0,7 > 1} U {0} be the discrete
spectrum of the hyperbolic Laplacian acting on the Hilbert space of all real-analytic functions
that are SL(2,Z)-automorphic and square integrable with respéct to du over the region %.
Let 1; be the eigen-wave corresponding to A; so that it has the Fourier expansion

%i(2) = v ) pi() Kixy(27Iny)e(nz),
n#0

where K, is the K-Bessel function of order v. We may assume the set {¥;} forms an
orthonormal system, and moreover each 1; is a Maass wave. The latter means that ¢; is a
simultaneous eigen-function of all Hecke operators. Namely, we have, for any positive integer

n,

d
D IPMACHUEIOMID

ad=n b=1
as well as-

Vi (—2) = g;9;(2)

with a certain real number t;(n) and ¢; = +1. In particular we have

pim) = s (V(R),  t5(-m) = &5t (m).

We need also to introduce the Hecke series H;(s) attached to 1;. This is defined initially to
be the sum '

00
th(n)n_’, Re(s) > 1
n=1

and continued to an entire function.

Now we may return to the issue of the spectral decomposition of the function D4(s,m).
We have, for Re(s) > 1,

OO:

<Pm(': S), |A|2>k = Z(Pm('js))wj)(IAlz’%)k

j=1
1 [~ . . '
4 [ (Pals) B +in) (AR, BC,§ - inhedr,
where E(z, s) is the Eisenstein series for SL(2,Z). We have

(Pr(-8),%5) = Va(drm)3=5p;(m)T(s — 1 +i5)T(s — 1 — is;) /T(s),
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I(s — 3 +ir)I(s — § —ir)
L(s)['(3 — ir)t(1 — 2ir)

(Pm(8), E(-, 1 + ir)) = 2209 n(mm) 3 7* " g3, (m)

and .
-+zr ‘.‘4(5 + Z'I’)
I3 +ir)¢(1 + 2ir)’

(A%, E(, 5 — ir))x = m2
where
Ry (s) = 220~k 1=k=25T()T(s + k — 1){(28)Ra(s + k — 1).

As is well-known, the modified Rankin zeta-function R%(s) has simple poles at s =0, 1, and
is regular elsewhere satisfying the functional equation RY(s) = R%(1 — s).

Collecting these, we find that for Re(s) > 1

Da(s+k—1,m)=

x)emz—* x ___
2I‘(S)1P337Z k- 1) { Zpi(l)tj(m)(%, |APYT(s — 1 +i36))T(s — L — ise5)

TG + it + 2ir)P |

On the right side the convergence is very rapid. To see it we invoke

Lemma.

For any positive X we have

3 st m)e™ < X2 4+ mite
3; <X

and

X |Ru(3 ‘+z‘r)|
E s, 1A 26”"f+/ A2 e?"Irldr « X%,

where € is an arbitrary fized positive constant.

The first statement is due to Kuznetsov [4] and the second to Good [2].
We now insert the above spectral decomposition of D4(-,m) into the relation
TP+ Lk - 1,2+ (k—1);G) =

/ Zm ’DA(u+'u—s+k——1 m)}w(s,u+2(k' 1), G)ds,
21!'2 ).
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‘where Re(u+v) > 147 > 2. The resulting sums and integrals are all absolutely convergent. .
Then, after some housekeeping, we obtain

JPw+ik-1),v+i(k-1);6)=

— i(4m)*~ IZPJ(DH (u+ v~ 55, [ AP P53, % G)
=1

1. k-—l/ (2+2T)C(u+v—-+zr)§(u+v—-_zr)
) W, (7 -Q\d
2z(47r) —o0 IT(3 +4r)L(1 + 2ir)|? (i w, v; G)dr,
where
. F(u'l'v—s-—-%+ir)F(u+v—5‘——5—zfr)~
\Ilk(T‘,'U:,'U,G)—/(n) Tt o_sT@to—stk—1) W(s;u+ 3(k — 1), G)ds.

We have to continue analytically this spectral decomposition to a neighborhood of the point
Pr.

For this sake we transform Wy (r; u,v; G). We replace w(s; u+ 2k —1), G) by its defining
integral over the interval 0 < z < 1. The resulting double integral is 'absolutely convergent.
Then, after exchanglng the order of 1ntegrat10n we get a Barnes integral inside. It is equal

to
i T I'(3 +ir)T(3 — k+ir)

tan(wi'r) (1 + 2ir)

F(3+1 ir,3 — k +ir; 1 + 2ir; )

+ (the same expression but with —r instead of r),

where F is the hypergeometric function. To this we apply the functional equation
F(a,b;c;z) = (1— 2)° 7 F(c—a,c — b;c; 2),

getting
w1 TG +in(3 -k +ir)
(1 + 2ir)

+ (the same expression but with —r instead of ).

i

u+v——+tr 1-—
tan(mir) o (1-2)

F(3 +ir,k — } +ir;1 + 2ir; z)

We then replace this F' by its Euler integral representation. It gives the formula

I -k+ir)
ta,n(mr)I‘(2 +ir) Jo

e 1 . N
We(r;,;G) = et (1 - )i exp (— (5 log(1 — 2))?)

x / (1 — )37 (1 - zy) i~ dydo
0

+ (the same expression but with —r instead of r).



In this we change the variables by replacing = by z/(1 + ) and y by 1 — y so that we have
L@ —k+ir)

Yi(r;u,v;G) =1 , .
k(s v; G) Ztan(7rzr)1‘(%+zr) 0

ZUto3tir(1 4 g)3kD-vexp (— (g log(1 +z))?)

1
X / (w1 — ) 77 (1 + zy) 7~ *dydz
0

+ (the same expréssion'but with —r instead of T).

But, the last integral over y is equal to :
I} +ir) < DA 4ir+s)T(k— 1 +ir+s)

2mil(k — § +1ir) J_ooi I'(1 4 2ir + s)
where the path separates the poles of I'(—s) and those of the other factors in the integrand

I'(—s)z’ds,

to the right and the left, respectively. Inserting this into the last expression for W¢(r; u,v; G),
we get a double integral that converges absolutely. Then, exchanging the order of integration
again, we obtain

Zk(—ir;u,v; G) — Ex(ir; u,v; G)

P(riw,v; G) = , . —,
(i, v;6) 2sin(mir)['(k — % +ir)T'(k — § — ir)

where

o . B ooir\(u+v—%_—s+§)
.._,k(f,u,’v,G)—/_ooi P(%_u—v+s+f)

xT(s+1—u—v)[(k+s—u—v)i(s;v—3(k—1),G)ds

with 10, (s;w, G) being the Mellin transform of

w(z,6) = (L +2)™ exp ( ~ (5 log(1 +2))%).

In the last integral the path separates the poles of I'(u + v — % — s+ &) and those of
I(s+1—u—v)l(k+s—u—v)d.(s;v— 2(k—1),G) to the right and the left, respectively.
We note that w. (s;w,G), as a function of s, has poles at non-positive integers, and is regular
elsewhere; moreover it is of rapid decay in any fixed vertical strip.

Now, the last formula for ¥x(r;u,v; G) gives, for those u, v such that Re(u + v) is
sufficiently large,

JPw+ Lk -1),v+ (k- 1);G)

Sk (655, u,v; G) — Ex(—is;u,v; G)}

1 e pi (D H;(u+v — )5, | AP
- 2(41r) ]z; sinh(ms¢)|T'(k — -% + izj)|2

+2(4r)*2 / RyGG+OUu+v—5+Lut+v—3 - =(§u,v; G)d§

© tan(m)l(k — 5 + Tk — 3 — LA +26)¢(1 - 2¢)
= S’d)(u,v; G)+ J,gl’c)(u, v; G),

221
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say. This reduces the problem of the required analytic continuation to the investigation
of the analytical properties of the function Zx(&; u,v; G). Such a study has already been
developed in our former paper [5]; in fact we have treated there a situation closely related to
the case k = 1, though we have k > 12 here. Thus by an easy modification of the argument
in the fourth section of [5] we find that Z(&;u, v; G) is (i) a meromorphic function of three

complex variables &, u, v whose polar set is
{(&,u,v); either £ = —j — 2 or £ +u +v=—j +  with integers j,5' > 0}

and (ii) of rapid decay with respect to £ when it remains in any fixed vertical strip and (u,v)
in any fixed compacta of C2. This observation and the above lemma. give immediately that
J,gl’d) (u,v; G) is meromorphic over the entire C?, and regular in a neighborhood of the point
Pr. On the other hand the analytic continuation of J,‘,"c’ (u,v; G) can be achieved in much
the same way as in the corresponding part of the fourth section of [5], though in the present
situation we have to invoke some analytical properties of the Rankin zeta-function R4(s).
Thus, in the above expression for Jf,l"c) (u,v; G) we shift the contour to the far right; one
should note that Zg(&;u,v; G) is regular for Re(€§) > 0. Among the poles we encounter in
this process the point §{ = u+v— %, which comes from the factor L(u+v— % —&), is the most
significant. In fact, because of the analytic continuation we may confine (u, v) in the vicinity
of Pr in the resulting expression and shift back the contour to the original; those residues
coming from the poles except for { = —u—v+ %, which belongs to the factor {(u+v— % +£),
cancel out. Hence in the vicinity of Pr the function ng’c) (u,v; G) has the expression as the
sum of the residues at the points £ = +(u+v — %) and the same integral as in the original
expression of JJ(:’C) (u,v; G) but with a different (u,v).

Collecting the above discussion we obtain the following explicit formula for I4(Pr; G):

Theorem.

For any positive G and T we have

(Gym) / Ha(k +i(T + ) e’ dt

B = {pi (M, |AP)eH; (2)
= MA(T; G) + ]z:; smh(ﬂ'?g)ﬂ‘(k _ _% + i%j)|2
1 /°° j,(% + zr)[{(% +ir)|?

21 J_oo tanh(mr)|D(k — 1+ ir)C(1 + 2ir)|2

ek(%j; T: G)

+ Ok(r; T, G)dr.
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Here M4(T,G) is essentially a linear polynomial of log T, and
: k[ 11 1 G 1,\2
Ou(ri T, G) = —(n)* [ (a(o+1)) cos(Tlog(1+2)) exp (~ (5 log (1+2))Aw(z, r)da;
0

I'(k— % +ir)TE +ir)
T(1 + 2ir)

. : 1
Ax(z, r) = Im [x%_k_"' F(k - % + 17, % + ir; 1 + 21, —;)] .

This should be compared with [5, Theorem]. The similarity between them is rather remark-
able. ' ’

Naturally we have to make the statement on M4(T,G) more precise. As can be seen
from the above explanation of the analytic continuation of Jf,l’c) (u,v; G), it is actually the
value at (u,v) = Pr of the expression

i(4m)k1 RY (1) tan(nT)
P(r+ k-1 —7)¢(2-27)

I { Rar +6) - 2w u6)

where 7 = u +v — 1 and

@ (u,v; G) = Zi(T — 3%, v;G) + E(r — %;v,y; G) — Zk(3 — 73u,v;G) — Ex(3 — T5v,u; G).
To compute this we write the principal part of R%(s) at the origiﬁ as

() = Vs 0Q).

We observe first that the last two summands in ®x(u,v; G) are regular at Pr; thus their

contribution is

Ly i(4m)*tn Oy
|a(1)] 2F(k — 1)I‘(k)A§(2)

(Ex(3; Pr; G) + Ex(3; P13 G)).
By the definition of =g we have

Ex(z; Per; G) = — | T(=s)T(s + k — )du(s; 1 - 3k F T, G)ds

2

— 2mil(k —1) / "0 +2)*7T fu(z, G)dz,
0

where . .
(1+z)z¢*"D — (1 4 2)z-R)

Cz(l+ )2

fule,C) = exp (— (5 log(1 +2))?)
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Hence we have

a@mmn+a@nﬂ®=@mm—u/<m@mu+mﬁ@mm
0

«_GC
TG+T1)’

which is negligible. On the other hand, we have

S — 2,u,v G) = /ioo h@r — S)F(s —7)(s+k—1—7)d.(s;v— 3(k—1),G)ds

—1i00 F( )
o ()T +k~
= M G

1)111,.(27';1)—--%(14:—1),6')—!- w(T — 2,qu’)

The last term has the same integral representation as Zx(r — 4; u, v; G) but with the contour
Re(s) = 2, note that we may now assume that 7 is close to 0. It is obviously regular at Pr,

and we have
Zi(—3; Pr; G) = —E(3; Pr; G).

Hence its contribution is negligible.
Thus we have

A@@ﬁ)kmwahm{&m+@+&w%myuﬁﬁ%%5y

where _
(4r)* I(r)RY (7) tan(nr)

2 2r)I'(k — 7)¢(2 — 27)
Ax(u,v; G) = W, 21;u — (k= 1),G) + @ (21;v — (k- 1),G).

Sa(u,v;G) = Ak(u,v;G);

By the definition of @, we have, for (u,v) close to Pr,
A(u,v; G) = —1—/ ¥ 8k (z; u, v; G)dz,
. 2T 0
where
2 l(k-l)—u : 3 (k1)—v G, 2
(23,0 G) = — o [(1+ )3~ 4 (14 2)HED) exp (- (5 g1 +2))7)]
Hence in the vicinity of 7 = 0 we have

(47,)k+1 (—1) 1

Sa(w,:G) = “reray™

+ o(1),
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The main term has to cancel the principal part of R4(7 + k) at 7 = 0, as indeed it does.

This fact implies that we may take the above limit on the condition 7 = 0. Then we find

immediately that there are two constants pg))', pg) such that

MA(T,G) = 1 + pPmu(T, G),

where

mi(T,G) = / 8k(z; Pr; G) log z d.
0

We have
* 0 1k—1+4iT G 2
mi(T,G) = —2Re — [((1 + )32 exp (— (= log(1 + z)) )J log z dz
0 oz 2

— 2 a o0 a 0 1 . lk—2+‘i(T+t) _(t/G)z
- —G\/FRE[(EE)o;o/O T /_w(ak—1+2(T+t))(1 +1)2 e dtdz].

In the inner integral we move the contour to Im(t) = L with a large L > 0; then we may
exchange the order of integration. Thus we have

2
GyVr

___2 REATN —(t/G)? e
__Gﬁm[wr(5k+z(T+t))e =27+ 0(e),

mi(T,G) = —

/
Re {F—(%k +i(T 4 t)) + cot (i(T + t)) +’7}e_(t/0)2dt
Im@)=L ‘T

where v is the Euler constant.
Collecting the above discussion on M4(T,G) we find that there exist two constants

do(A), d1(A) such that
MA(T,G) = d1(A)log T + do(A) + O(T™)
uniformly for 0 < G < %T (log T)‘%, provided T is sufficiently large.

We may now turn to some immediate consequences of our theorem. The analysis devel-
oped in the sixth section of [5] can easily be modified to yield an asymptotic evaluation of
Oi(r; T, G). ‘Actually we have |

(4m)Ft1 | s

-3 T\~ (Grr2m)"
: 2TT 2cos(rlog4eT)c |

ek(’r; T, G) ~ —
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providing T¢ < G < $T(log T)“% with a fixed € > 0. Then, after an integration over T
of the formula in the theorem, we recover Good’s estimate of E4(T). Also, the argument
of Ivi¢ and Motohashi [3] can be extended to the present situation, and we obtain withdut
extra difficulty

g |
: / EA(T)%dT < V*(logV)°.
0

Further, the argument of the present paper can be modified so as to extend to Hecke
series the result of our recent paper [6] on the meromorphy of the function

/ 1L + it)| "¢ dt.

) ‘

In fact we can show that -

/ |Ha(k +it)|2t~4dt
1

can be continued to a function meromorphic over the entire complex plane. As in the case
of the zeta-function the critical line is Re(§) = % For, if we have

) ey, |APYH; (3) # 0

»j=p

then £ = % + ui is a simple pole. Moreover this implies that
EA(T) = Qe (VT).

However, we have not yet established such a non-vanishing theorem.
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