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§0 Introduction

Since the present paper is a continuation of the joint work [6] with Y.Hironaka, we begin
by summarizing what we did in [6] .

Let X = Sym(2,Q)™ = {z € M(2,Q)|‘z =2,detz #0}, G = GLF(Q), and T =
SLy(Z). In [6] , we considered the function spaces

C*(MX) = {¢: X > C|g(y-2)=¢(z) (ye D)},
S(T\X) = {¢ € C>®(I'\X) |Supp(®) consists of a finite number of I'-orbits}

and studied the action of the Hecke algebra H = H(G,I') on S(T'\X) and C*(I'\X). In
particular, we determined the H-module structure of S(I'\ X) and all H-eigen functions in
C*(T'\X).

Since C*°(I'\ X) can be regarded as the set of all invariants of proper equivalence classes
of rational binary quadratic forms, we call an element in C*(I'\X) an (abstract) class
invariant. One of our results in [6] is the eigenfunction expansion of abstract class invari-
ants. Therefore H-eigen class invariants are quite interesting and should be important in
the arithmetic of binary quadratic forms (or quadratic number fields). The results in [6]
showed that the zeta functions of binary quadratic forms are the most fundamental class
invariants in the sense that the zeta functions contain all necessary information to deter-
mine the H-module structures of C*°(I'\X) and S(T'\X). In particular, we can construct
a standard basis of each H-eigen space starting from the zeta functions. However it is still
interesting to find an arithmetic method of constructing H-eigen class invariants. In [6] ,
we presented two examples of arithmetically defined H-eigen class invariants:



1. the residue of the Dirichlet series

o0
cot Tna .
E - = a real quadratic number
n
n=1

at s = 1 viewed as a function of a (due to Arakawa [1]);

2. the Hirzebruch sum, which is defined with the continued fraction expansion of a real
quadratic number (due to Lu [8]).

These two examples of eigen class invariants essentially coincide with each other and re-
duced to a certain special value of the zeta functions of binary quadratic forms (Arakawa
1, 12). |

In the present paper, we give another construction of Hecke-eigen class invariants starting
from Hecke-eigen Maass forms. Namely, using the period integral of Maass forms, we define
an H-homomorphism of the space of even Maass forms into C*(I'\ X). Hence the periods
of Hecke-eigen forms provide Hecke-eigen class invariants. Applying the results in [6] to the
periods of Maass forms, we can see that properties of Hecke-eigen abstract class invariants
are closely related to several important facts in the theory of the theta correspondence
(Maass correspondence) of Maass wave forms (cf. [7]).

The present paper is organized as follows. In §1, we recall the result in [6] on the
determination of H-eigen class invariants (Theorem 1.1). We also calculate the action of
the Hecke operators on functions on Z — {0} obtained by taking an average of values of
class invariants over the set of I'-equivalence classes with fixed discriminant (Theorem 1.2).
In §2.1, the action of Hecke operators on periods of Maass forms is examined. In §2.2, we
discuss the relation of Theorem 1.2 and the theta correspondence between Maass forms of
weight 0 and Maass forms of weight 1/2. In §2.3, we prove an expression of zeta functions
attached to H-eigen class invariants as a linear combination of Euler products related to
quadratic number fields (and @ & Q). For the periods of Maass forms, the expression is
essentially equivalent to the definition of the Shimura correspondence (for Maass forms)
based on Fourier coefficients.

§1 Hecke-eigen class invariants

1.1 Let

S
il

{a: €EM(2,Q) |tz ==z, detm;éO},
G = GL;(Q)={g € GLy(Q)| detg > 0},
I = SLy2).

Then G acts on X by
g-z=(detg)™'-gz% (g€G, ze€X).
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Put
CPM\X)={P: X - C|®(y-z) =8(z) (ye)}.

We call a function in C*(T'\X) an (abstract) class invariant. We denote by H = H(G,T)
the Hecke algebra of G with respect to I', which acts on C*(I'\X) as follows:

[Cgl]*®(z) =) ®(gi-z), Tgl'= JTg: (disjoint union).

Note that the action of any double coset containing a scalar matrix is trivial.

1.2 In [6] we have determined all Hecke-eigen abstract class invariants. Let us recall
briefly the result in [6] .

Denote by K a quadratic number field or @ ® @ and let D = Dy be its discriminant.
We understand that Dggg = 1. Let Oy x be the order of K of conductor f and Cly x the
narrow ideal class group of Oy k. Let X (f) be the character group of Cl; k. If f; divides
f2, then, using the canonical mapping Cly, x — Clj, g, we consider Xk (f1) as a subgroup
of Xk(f3). Let Xk(f)?" be the subset of primitive characters in X (f) and put

Xe= | Xx(f).
' fEN

For a x € Xk, we denote by f, the conductor of x.
Denote by disc(z) the discriminant of z € X:

disc(z) = b* — dac, z = ( b72 bﬁ? ) .

For a non-zero rational number d, we put

{z € X | disc(z) = d}, ‘ ifd>0,
B {z € X | disc(z) = d, = = positive definite}, if d < 0.

For a I'-stable subset Y of X, set
C*(T\Y) ={® € C*(T'\X) | Supp(®) C Y}.
Then the decomposition

(1) e>(0\X) = [T I {€=(C\Xap) UC=(T\(-Xap))} x [T I €*(0\Xap)

D<0 tEQ: D>0 teQi

is a direct product decomposition as H-module. Note that C*°(T\Xgp) is isomorphic to
C*(I'\Xp) by the mapping ® — ®'(z) = ®(tz) (t > 0) and C=(T'\(—Xep)) is isomorphic



to C*(I'\Xep) by the mapping ® — &'(z) = ®(—z). Hence it is sufficient to study the
H-module structure only for C*°(I'\ Xp). ' ’
a,b,c € Z,(a,b,c)=1 }

C opr a
Xk = {x - ( b/2 ¢ ) €Xx disc(z) = f2D

. Namely X}y is the set of half-integral primitive binary quadratic forms of conductor f.
We say that the conductor of z € X is equal to f if tz € X7 for some ¢ € Q. Denote
by f. the conductor of z. It is well-known that T\ X fx can be canonically identified with
Cls k and has a group structure. In the following, we do not distinguish these two groups
and consider a character in Xx(f) as a character of I'\X}. We denote by Ay x the class
number |Clj g|.

Let ch, be the characteristic function of [z] := -z for z € X. For x € Xx and T € X},
take a common multiple f; of f, and f, and put ,

Pl =—— ¥ x(SDehyrs)

LK [slecty, x

where T - S stands for a representative of the product in Cl; g of [T] and the image of [S]
under the canonical map Cly, k¥ — Cls k.- Then the right hand side is independent of the
choice of such an fi; hence we get a linear operator p, on C*(I'\Xp). Since p, (x € Xk)
are H-endomorphisms and satisfy

_} Px if x =1,
Pxop¢_{ 0 ifx#v

([6, Lemma 2.3 (i)]), we obtain the following direct product decomposition

C=(T\Xp) = [ C*(I'\Xp)y
x€Xk
as H-module, where C*(I'\Xp), = p,(C*(I'\Xp)).
For a x € Xk and a multiple f of f,, set

1
(1.2) s =7— 2, x([SDchys.
! X hsx 51601, x T
Then ¢, (f € N) span the space C*(I'\ Xp),.
) For any A = (A\,)p:prime, (Ap e C/ lig;l), we define an algebra homomorphism &, : H — C
y

En(Ty)

PP +p7), T, = [F ( T ) F}

()

€A(Tp,p)
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for each rational prime p.

Theorem 1.1 ([6, Theorem 6]) (i) If¢:H — C is an algebra homomorphism obtained
as a system of eigenvalues of some Hecke-eigen class invariant, then £ = £, for some A.

(i) Put
C2(T\Xp)yn = {@ € C=(D\Xp)y | f* @ = &n()®, ("f € H)}.

Then we have
dimC®(T\Xp)ya =1

and the space C*°(I'\Xp)ya is spanned by the function
1

Wy = o O R x Urpr1. () S fy
XA [C’)}{ : O}X,K] ; f x: 1 fx X f
IxIf
¢va/fx(A) = H ¢xm"’()‘p)’ €p = Ordp(f/fx))
pl-,f;
'va,p‘()‘p)
4 (e+1)Xp __ —(e+1)2, Ap
Y P _ —(e+l)/2p p~* : -
P PR x(p)p e — p"‘» of X}(,fx(P) =0
p? - (=1 e S
= (1+p'1)(P"P—p"‘r){ PR (pPe — p7) = pTe (e — p T if g () =
pf eAp (A —1-2 - -1
— —— 1 P°7 (P + p7 T — (x(p) + X(p))p?
(1=p ) (p*—p '\P) { ( v)) ) ifXK,fx(p)_—_la
—edg( - — L
L —p™(p7 + p7H — (x(p) + X(P))pH)}
where XK,fx(p) = (fpﬂ) and

x(p) = { x(Zp.p) +2(1, 1)) D=1
x([p N Oy, %) if D# 1 and (p) = pp in K.

The functions 1, pe satisfy the following recursion formula:

(1.3) (P + P22y pe(Ap) = P20 pets (Np) + P20, pem1 (V).



Note that the recursion formula is of the form precisely the same as that of the recursion
formula satisfied by the Fourier coefficients a(p®) of a Hecke-eigen Maass wave form with
the eigenvalue p*» + p~?» (cf. §2, (2.1)).

1.3 Hecke algebra action on functions of discriminant

We say that a function ® € C*(I'\X) is homogeneous of degree 0, if ®(tz) = ®(z) for
any t € @Q*. Let C®(T'\X)° be the space of functions in C*°(I'\ X) homogeneous of degree
0. Let Z* = Z — {0} and denote by C(Z*) the space of C-valued functions on Z*. We define
a linear mapping p : C*(T'\X)? — C(Z*) by setting

p@)() = In|™* 3 0(x) (nel),
€M\ Xz
disc(z)=n

where X7z is the set of half-integral 2 by 2 symmetric matrices.
Let x4 be the class invariant defined by

(=) [O% : O}, k] if disc(z) is not a square,
z) =
g 1 if disc(z) is a square,

where f, is the conductor of z. We introduce a new action % of X on C*°(I'\ X) by setting
(1.4) f*2(z) = u(z)(f * (W7'9)(z) (f €H,®€C(T\X)).

The definition of the x-action may look quite technical; however the action on the char-
acteristic function ch, of T' - z is quite simple. In fact we have the following ([6, Lemma
2.4)):

[Lgl]*ch, = chy.s, gl =|JTg: (disjoint union).

We define an action of H also on C(Z*). For a rational prime p and a b € C(Z*), put
(15) Tyebl) = )+ () 800 + 5 5),

Top*b(n) = b(n),
where (%) is the Legendre symbol. We understand that ( ) = 0 if p divides n. Since T,

») =
and T generate the Hecke algebra H, the identity (1.5) defines an action of H on C(Z*).

The mapping p : C*(I'\X)® — C(Z*) has the following compatibility with the H-action.

Theorem 1.2 For dny odd prime p and any ® € C®(T\X)°, we have
| PTpx @) =Ty % p(). |
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Remarks. (1) The action of p~ 2T, on C(Z*) is of the same form as that of the action -
of the Hecke operator T,z on the Fourier coefficients of Maass wave forms of 1-weight (cf.
(2.3), [7]). Therefore we write

(16 Tybn) = pns®) + 577 2) 8) + 57850,

We explain some implication of the theorem above in the theory of automorphic forms in

§2.

(2) For p = 2, as we can see from the proof below, we have the following:

o(Tyx ®)(f2D) = Ty * p(®)(f>D) unless 2 Jf and 4|D.

The proof of the theorem above is based on the following proposition, which describes
the xaction of H on C*(T'\Xp) completely.

Proposition 1.3 For x € Xk, let ¢y 5 be the function in C*°(T\Xp), defined by (1.2).
We understand cx,f =0 unless f,|f. Then

tyrens = =y + 0 =6 (E) (5 5000, s (o) cu
) p)=p X

where Xy ((p) = (1—)1{—2-) and §(a) =1 or 0 according asa €Z or ¢ Z.

Proposition 1.3 is proved essentlally in [6, pp. 134—135] In the special case where x is
the trivial character, we have the following;

Corollary 1.4 For a positive integer f, put
1
cro) == 3 chys(a)
K.f [s1ecty

Then . , , :
Cigp+ ¢ 3 ,
T*_,e:{ pr x.fIp fP‘f

, (p XK(p))cfp (1 + XK(p))Cf z.fp/{f:
where x,(p) = (%).



Proof of Theorem 1.2. For an z € X, put
disc(z)) if disc(z) is not a
. { Q(y/dise(2)) if disc(z) is not a square
‘ QeQ if disc(z) is a square.

Let f, be the conductor of z. For a @ € C*(I'\X)°, we put

LY a(s).

hie ke (s1e6ty, x,

prad(s) =

Then, by [6, pp. 133-135], we have

pri(fx®) = fx(pri(®)) (f €H).

We also have p(®) = p(pr1(®)). Hence it is enough to to prove Theorem 1.2 for functions
satisfying ® = pr;(®). Define a function csx by .

1
— ifz € QXTy
csx(z) = h‘f’K >
"0  otherwise.

Then, taking a representative z x of X} for each f and K, we have

d = Z Z hsx®(zsx)cs K-
K f=1

By Corollary to Proposition 1.3,

Tp*q) = Zth,K@(wf,K)Tp‘ka,K
K f=1

= 3 ) hyx®(zsx)
K f=1

<= i Eesm + (1= (£)) -+ sxMensc +5 (L) crpc}

Put 7p = 2 or 1 according as D < 0 or D > 0. We write n = f2D, where D is a
fundamental discriminant, and let K = Q(v/D) (D # 1) ot @ ® Q (D = 1). Then we have

p(Tx)(n) = a1y ¥ T,%0(z)
dif =€Clax

= Tp |n|_3/4 z hd,K TP * (D(md,K)
dlf
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o I~ Y o { (1 s (g)) a +,'xK(p))<1><xd,K)

d|f

h
+ ,;::KQ(xde) +6 (d) (p—xx 4(p)) }

]

bl 5 { (125 ($)) 1+ x(eDhaxo(an

d|f
+ (o) 48 ) (= e g a0

Suppose that p{f. Then p fd and é (%) = 0. Hence
p(Tx®)(n) = 7pIn|™* x4 (p) D hax®(zax) + 7o |n| =%/ > hax®(zax)
dlf dlfp
(1.7) = P*I*p(®)(np) + xx(p)p(®)(n)-
Since p[f, we have x.(p) = (%) = (Qﬁ) = (-:—), By assumption, p is odd, hence p? /D.

3
This implies that p? fn and p(®)(n/p?) = 0. Thus we obtain Theorem 2 in the case p ff.

Next we consider the case p|f. Then we have

pT*®)(n) = 7 |n|™M* (14 X, (P)hax®(zax) + 7o In| ™/ 3 hax®(zak)

alf v d|fp
pld rld

+7p || ™/* 3o (p — Xk o(P)) ha x B(2a k)
di

= p*?p(®)(np?) + p~?p(®)(n/P?).
This proves Theorem 1.2 completely. 1

§2 Periods of Maass forms

2.1 Let § = {2z € C|S2z > 0}. Then the group GLI(R) acts on $ by linear fractional
transformation. We put T' = SL,(Z) as in §1. For k = 0 or 1/2, put

o* o . 0
Ay =y (8 5+ m)—kty—a—;.

Let L*(T'\$) be the space of measurable functions on I'\$) square mtegrable with respect
to the invariant measure 4—’—‘13“ Put

Ao AM1-X)¢=0, z z
GJ(I‘\S’J,)\)={ ¢ € L*(T\9) il $ #=2) = 42) }

f #(z +iy)dz =0




137

A function in &F(T'\$, )) is called an even Maass wave form (of weight 0). A function ¢
in &F(T'\$, A) has an Fourier expansion of the form

$(2) = 3_ a(m)Wo s_1 (47 |n| y)e(nz),
n#0
where e(z) = exp(27iz) and Wy, ,(z) is the Whittaker function, which is given by
% il e (142
w7 = WT{)/ (1+3)
(Re(u+ 32 — k) > 0,|arg 2| < m).

Since ¢ is assumed to be even, we have a(n) = a(—n). The Hecke algebra H acts on the

space GF(T'\$, ) by

[TgT] * ¢(z) = Z #(g;i-2z), Igl'= U Tg; (disjoi’nt union).

The mapping ¢ +— p~1/2T}, x ¢ coincides with the Hecke operator introduced by Maass [9].
Let

p“llsz * ¢(z) = Z b(n)I/VO,A__%(ll?r || y)e(nz),
n#0

be the Fourier expansion. Then the action of T}, is expressed in terms of Fourier coefficients
as follows:

(2.1) 1) = et + p-i (ﬁ) .
P
For € = %, we put .
10\ oy
01/ ¢
01 _
10) T

_30(2)={k,,=(_co§e sme)lgen} .

sinf cosf

SO(1,1) = {( g a‘ll )

We normalize the Haar measure du, on H, by

I =

and

H.=SO(I.) =

aER} €= —.

ym 1/2d9 e—+

At = da



138

For an z € X, we write
to0: - I4, t, €ER*, g, € SLQ(R) if disc(z) < 0,
" tege-I-, t. €RX,g, € SLy(R) if disc(z) > 0.

We define the period mapping M : &7 (T'\$, A) — €*(I'\X)° by

M($)(z) = / b(gah-)duh), (z€X,peBHT\D,N)),

:—lrzgx\He

where € = sgn(—disc(z)) and T', = {y € T | y-z = z}. Since ¢ is cuspidal, the integral
M(¢)(z) is absolutely convergent and defines a function in C*(T'\ X)°. We also consider
the following slight modification P of M:

P:&II\D,Y) — C*(O\X).
¢ — SM(4)(z)
Theorem 2.1 (i) We consider C*(T'\X)° as an H-module under the x-action. Then the

mapping
T M GEHT\H, A) — 2 (T\X)°

is an H-homomorphism:
M(fx¢)=[f+M(¢) (feH).

(i) We consider C*°(T'\X)°? as an H-module under the *-action. Then the mapping
| P: 6F(\H,)) — C=(T\X)°

15 an H-homomorphism:

P(fx¢)=f*P(¢) (feH).

Proof. By (1.4), the first assertion is equivalent to the second. Let us prove the second
assertion. It is sufficient to prove it for f = [['gl']. Let

Igl' =JTg
be the right coset decomposition. Put

I = I‘z N (ﬂ gflf-gi) .



Then, I, is a subgroup of T', of finite index. Since we can take g ., = p~*/2g;g,, by the
definition of the period and the action of the Hecke-algebra, we have

M([TgT] % ¢)(z) = / " $(gigeh - i) dps ()

F:gz\H:k :
= gch 1) dus(h
T p Z/_lr’gg\H #(gigsh - 1) dus(h)
= ,—11“..,,—:1;/ ' goh - 1) dus(h
Z[g' 929 ] (gigs)~ Fg,t(ggx)\H:\‘: ¢(gg ) Mi( )

= 2 107 Tgiz: : TJM(8)(gi - 2).

t

By [6, (1.2) and Lemma 1.1}, the right hand side is equal to

(m)
Z g - 2) M($)(gi - z).

Hence we obtain
P([CgT] * $)(z) = Z'P(¢) (g: - ) = [LgT] * P($) ().
This proves the theorem. R E '
By Theorems 1.2 and 2.1, we have the following
Corollary 2.2 We have’

p(M(T, % 4)) =T, * po(M(9)) (4 € &5(T\H, )
for any odd prime p.

Theorem 2.3 Suppose that ¢ € GJ(I‘\S’),A) is an even Hecke-eigen Maass form and
satisfies

Tp*¢ = Fpd
for any rational prime p. Then M(¢) (resp. P(¢)) is a Hecke-eigen class invariant under
the - (resp. *-) action:
Ty x M(¢) = BpM($), T,*P(¢)=F,P($) for any prime p.

Moreover, if we define A = (},) by B, = p'/? (p"" +p'__"l’), then

,P(¢) ZhK Z fx

x€Xk I X plfy [sl€Ciyy k

~T5 (1 (D")){ > T{S]SM(@(S)}@,A,
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where &y, A s a function obtained from the function w, s given in Theorem 1.1 by extending
it to a function of homogeneous of degree 0 supported on @Q*Xp, .

Proof. By the previous theorem, it is obvious that M(¢) (resp. P(¢)) is a Hecke-eigen
class invariant under %- (resp. *-) action. Since P(¢) is homogeneous of degree 0, by (1.1)

and Theorem 1.1, we have
P(¢) = Z Z y, K Wy,A
K xeXk
for some constants a, x. Let S, be the element in X}’;’ x that represents the unit element
of Clg, k. Then

axk = Px(P($))(Sx)
= — T XBEIPOE)
oK [s)ecty,

1 —_——
= k0% : OL 4] [S]egiw XD M($)(S).

Since h D

(2.2) hs g = S K (1 — (—If-) p‘l) ,
Mok 0},,{],[,; P

we obtain '

T4 (s (2)) = xEMEE).

x.K =
hfo [S]eol.fx.K

Corollary 2.4 Under the same assumption as in the theorem above, we have

Ty o(M(8)) = p2B, p(M($))  for any odd prime p
(for the definition of T, see (1.6)).

2.2 Fory= ( rcz 3 ) € I'o(4), we put

where



and (%) has the same meaning as in [13]. Let

F(y-2)=J(v,2)F(z) (Vv €To(4))
&7 (To(D\D,u) = {F: 9> C MupF +p(1=p)F =0, LF = F
f; Fle+idz=o, |F()

Fo(4)\f)

= () 7 B ()

We call an F' € 61/2(1‘0(4)\5’), 1) a Maass cusp form of weight -;— A Maass cusp form Fin
GY2(To(4)\9, 1) has a Fourier expansion of the form

5 dz dy

< oo

where

= Z p(n)W%sgn(n),p—;-(47r |1’l.| y)e(n:c)
n#0

For each odd prime p, the action of the Hecke operator T is defined by
(2.3) T2 F(2)
n _ n
=3 {pp (np®) +p7 (;) p(n)+p7'p (;}3) } Wisga(mu—1 (47 In| y)e(nz).

n#0

Let us recall the Maass correspondence between &7 (I'\$, A) and 61/2(I‘0(4)\5’J,u) (cf.

[7]). Put
0 0 -2 2 00
Q=(0 1 0), R=(010).
—20 0 00 2

- Let r : SLy(R) — GL3(R) be the second symmetric tensor representation:

. b a? ab b?
r(( J )) = | 2ac ad+bc 2bd |.
A c? cd d?
The image of SLy(R) coincides with the identity component of SO(Q)g.
Let .

0(z,9) = 4°/* 3 e((sQ + yR)[r(9)7'z]) (2 =z +iy € H,9 € SLy(R))
: z€Z?

be the Siegel Theta series. Then ©(z, g) has the following properties:
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(i) ©(y-z,9) = J(7,2)O(z,9), v € To(4);
(i) ©(z,vgk) = O(z,9), (v € T,k € SO(2));

1Y (n2 0 ). C
(i) © (z, ( 0 1 ) ( 0 i is an even function of £.

Theorem 2.5 For a ¢ € GF(T\H, ), put
OW)(D) = [, 4 #9)09)ds.

Then,
(1) O(¢) is in &Y, (To(4)\H,p) for p= 241 gnd the mapping

© : 65 (T\$, ) — &1, (To(H)\9, 1)
is compatible with the action of H. Namely we have
@(p_llsz¢) =T.0(4) for any odd prime p.
(i) Let

0(¢)(2) = Eﬂ MW ignnyu-1 (47 0] y)e(nz).

n#0

be the Fourier expansion. Then, under a suitable normalization of the Haar measure dg on

SLy(R), we have
pln) = n™ 3 M($)(2) = p(M(8))(n)-

r€Xz

disc(z)=n

(for the definition of p(M(¢)), see §1.3.)

A proof of the theorem above can be found in, e.g., [7] except the compatibility of © with
the H-action (see also [4], [10], and [14] in the holomorphic case). The compatibility with
the H-action is an immediate consequence of Corollary 2.2. The following commutative

diagram summarizes the argument leading to the compatibility with the H-action:

e
&5 (T\9, A) — &71,(To(H\H, 1)

M | period Fourier coefficients

=T\ X)° c(z).



The compatibility of the mapping M (resp. p) with the H—actlon is given by Theorem 2.1
(1) (resp. Theorem 1.2).

Recall that the proof of Theorem 1.2 is based on Proposition 1.3, and the proof of
Proposition 1.3 in [6] is based on two lemmas of Shintani ([14, Lemmas 2.3, 2.4]), which
are key lemmas of his proof of the compatibility of the theta correspondence with the Hecke
operators in the case of holomorphic modular forms. Thus the diagram above reveals the
properties of the H-action on C*(T'\ X) lying behind Shintani’s proof.

2.3 Zeta functions with coeflicients M(¢)
Let S(Sym(2,Q)) be the space of Schwartz-Bruhat functions on Sym(2, Q), namely,
functions f satisfying the conditions

(2.4) there exist lattices L; and Ly such that Supp(f) C L; and f(z) is constant on each
coset modulo L.

We identify Sym(2, Q) with its dual vector space via the symmetric bilinear form (z, z*) =

tr(zwz*w™!), where w = ( _01 (1) )

For fo € 8(Sym(2, Q)), we define its Fourier transform ¥, as follows. For z* € S ym(2,Q),
take a lattice L in Sym(2, Q) such that the value of fy(z) is determined by the coset of z
modulo L and z* is contained in the dual lattice

L* = {z* € Sym(2,Q) | (z*, L) C Z}.

Put RN .
fo(w*) — U(L)“l Z fo(ﬂﬁ) 621n<:r,:r">’
IGSym(Z,Q)/L
where v(L) = / . dz. Then fo(z*) is independent of the choice of L and defines a
Sym(2, L

function in 8(Sym(2,Q)), which is the Fourier transform of fo.
For an fo € 8(Sym(2,Q)), take a congruence subgroup I'y C SLy(Z) satisfying

folvz ') = fo(z) (v €Ty).

dmdy
r
v(lo) = /r\:g 2

For ¢ € GF(T\$,)) and f, € S(Sym(2,Q)), we define the zeta functions by setting

fo(z)n(z) M($)(=)
2 |disc(z)|* ’

Put

2.5 e\PJos8) = Ty
23 L=y T

sgn disc(z)=e¢

€ ==,
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where n(z) = [[; : Toz]. The zeta functions £, are absolutely convergent for Re(s) > 2 and

" do not depend on the choice of Ty. In [12, §6.2], we have studied analytic properties of ¢,
in the case where f, is the characteristic function of a lattice in Sym(2, Q). The general
theory of zeta functions with automorphic forms developed in [12] can be applied to &, for
arbitrary fo and we can obtain the following theorem:

Theorem 2.6 The zeta functions £x(¢, fo; s) have analytic continuations to entire func-
tions of s of finite order and satisfy the functional equation.

Ex(b, fos 2 — 5) e (A1 N
(f.(¢,fo;§—s)) = 2 2F($+T)F(s_5)
o) Fmmgysin(3) (w,go;s))

:—;;:‘Tr(‘g—rll_;%cos (%) ~sin(7s) E-(p,fo;8) )

Problem (Converse theorem?). It is quite natural to ask whether the functional equa- .
tions in Theorem 2.6 characterize the image of the period mapping M in C*°(T'\X)°. Let
® € C>°(I'\X)? and consider the Dirichlet series :

fo(z)n(2)®(2)

(2.6) E+(®, fo; ) =1 > Tdisc@)[ (fo € 8(Sym(2,Q))).

v(To) z€To\ X
sgndisc(z)=%

Suppose that £4(®, fo; s) converge absolutely for sufficiently large Re(s) and the conclusion
of Theorem 2.6 holds for all fo € S(Sym(2,Q)). Then one can ask:

Is there any ¢ € GF(T'\H, A) such that ® = M($)?

Now we consider the following special case of the zeta functions (2.6):

‘Ee(@, Xl; S) = Ee(q)’ qu;s);

where fx, is the characteristic function of the lattice Xz of half-integral 2 by 2 symmetric
matrices.

Theorem 2.7 Let ® € C*(T\X)° be a Hecke-eigen class invariant under. the x-action and
p2(p*® + p~») the eigenvalue of T,. Put

1
L(®;s) = .
( ) 1;[ 1-— (P)" + p—A,)p—s + p—23




Suppose that £(®, fo; s) converge absolutely when Re(s) is sufficiently large. Then we have

e e X =cear (B2 -5) 3 AOEE G,

5__

-

sgn DK—e K

where ((s) is the Riemann zeta function and

el the Dedekind zeta function of K if K is a quadratic number field,
Tl ik =qee.

Proof. By the same argument as in the proof of Theorem 2.3, any *-eigen class invariant

® in C=(T'\X)? is of the form

o(z) 1

p(z) ; hy, xezx:;( fx 1,1|;Ix L ( (Dk )) {[Slegl:fx,x m@(S)} @x,a(z).

Put

(I)O(w) = “(m); % ( Z (I)(S)) a}xo,K,A(a:)’

[SleCh k
where x,  is the trivial character of Cl; x. Then we have

ge(Q)Xl; S) = GG(QOa Xl) S).

Hence, we obtain

3 & ®o(dS)
v I‘& (I),X ;8) = Te
el = nl & le ; disc(dS)]
sgnD=e¢
1 0 thOK Offx]
B ¢1X=:1dz's %: z_: hi L"')Xo,KxA('S’f,K)a
sgnD=e¢

where 7. = 1 of 2 according as € = + or —, and Sy x is a representative of X} . By the
definition of @, 4 (Theorem 1.1),

Wxy xn(S1.) = Yy, .1 (A).
Therefore, the class number formula (2.2) yields the identity

= e 5 P@UD) & () (DY
(D@ Xzis) = 42) T RN 5 S 13(1 (2)7)

sgnD=e

B %‘i—l%ﬁ—)g{u(l-(g) ) £ b))

e=1
sgnD=¢
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The recursion formula (1.3) implies the relation

(1o (2) ) Sy oy re= PP (R)57)
p)F ) G e T I (o p )y T 4 p T

This proves the theorem. : L 1

In the theorem above, let us assume that ® = M(¢) for some Hecke-eigen Maass form
$ € 64 (T'\H, ) satisfying
(2.8) Phl/sz * ¢ = apd

for any rational prime p. Then L(M(¢);s) coincides with the L-function

1 :
L(¢,s) = -
(¢ ) l—pI 1-— CYPP_’ +p 2s

of ¢ introduced by Maass [9]. Hence we have the following.
Corollary 2.8 Let ¢ € GF(T'\$,)) be a Hecke-eigen Maass form satisfying (2.8). Then

_we have

29) o0 Xes) = oo (h2s—3) T AEIRPA (ogasy
Dy *

sgn DK—e

Remarks. (1) Let us consider the subseries

M(4)(z)

D6, X =Y. Y [disc(z)[*

f=1 zer\Xgz
disc(z)=f2Dy

of £&.(, fxg; s) corresponding to K. For simplicity, we put p(n) = p(M(4$))(n). Then we
have

p(f*Dk)
'U(F)fj{((ﬁ, an;S) _,_3/4 Z fgs 3/1; .
Moreover the term in the right hand side of (2.9) correspondlng to K is

(DK) ¢(25)L ($,25 ~ 1)
D}{— Cx(2s) '

p(Dg)L(¢,s) =L ( ; (DI\ )) le P(J;:DIA .

Hence we have




This is the Maass form version of the formula relating the Fourier coeflicients of forms of
half-integral weight and the Fourier coefficients of forms of integral weight (cf. [13] for the
holomorphic case, and [7, Proposition 4.1] for the Maass form case). Thus the structure
of the H-module C*(T'\ X) is closely related to the fact that the Dirichlet series Y22, @
given by the Mellin transform of a Hecke-eigen form of half-integral weight does not have
Euler product, but the subseries }-77.; Lf;—,D—K) does have.

(2) In [3], Datskovski obtained a formula similar to (2.9) in the case where ¢ is a con-
stant function on SLy(R) ([3, Theorem 7.2]). In this case we must remove the subseries
EQoq (P, fxg;s) from €(&, fxg; s) to obtain converging Dirichlet series. The proof of the
theorem above applies also to this non-cuspidal case and the theorem remains to hold if
we remove the terms corresponding to K = @ @ @. The Hecke-eigenvalue o, of a con-
stant function is equal to p'/2 + p~1/2 and L(¢,s) = ((25)((2s — 1). Hence our result is
consistent with Datskovski’s. Datskovski proved a similar result also in the case where the
base field is an algebraic number field with class number 1 ([3, Theorem 7.1]), or more
generally with odd class number ([3, Theorem 7.3]). Hironaka [5] extended the results in
[6] to the case where the class number of the base field is equal to 1. Using her results,
we can obtain a generalization of the theorem above to Hilbert modular case under the
same assumption on the class number of the base field, which covers also [3, Theorem 7.1].
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