AN APPLICATION OF QUANTITATIVE SUBSPACE THEOREM

Department of Mathematics, College of Science and Technology, Nihon University, Suruga-Dai, Kanda, Chiyoda, Tokyo 101, Japan

(日艾理工)

1. Introduction

We give here one kind of generalization of the Schmidt-Schlickewei quantitative subspace theorem, using the argument of M. Ru and P. -M. Wong. We consider linear forms not only of the same number as variables but also of a larger number than the number of variables.

Let K be a normal extention of \mathbf{Q} of degree d over \mathbf{Q} . Let M(K) be the set of non-equivalent places of K: for $v \in M(K)$, denote by $|\cdot|_v$ the corresponding absolute value normalized such that for $a \in \mathbf{Q}$, $|a|_v = |a|$ if v lies above the archimedean prime of \mathbf{Q} , and $|p|_v = 1/p$ if v lies above the rational prime p. Let $M_{\infty}(K)$ be the set of archimedean places of K.

We consider $S \subset M(K)$ (not necessarily containing $M_{\infty}(K)$), of cardinality $s < \infty$. Let K_v be the completion of K with repect to $|\cdot|_v$. Put $d_v = [K_v : \mathbf{Q}_v]$ for the local degree. For $a \in K$, we put $||a|| = |a|^{\frac{d_v}{d}}$.

For $\mathbf{a} = (a_0, \dots, a_n) \in K^{n+1}, v \in M(K)$, write

$$|\mathbf{a}|_{v} = (|a_{0}|_{v}^{2} + \cdots + |a_{n}|_{v}^{2})^{\frac{1}{2}}$$

if v is archmedean, and

$$\mid \mathbf{a} \mid_v = \max_{0 \le i \le n} \mid a_i \mid_v$$

if v is nonarchmedean. Let us denote $\|\mathbf{a}\|_{v} = |\mathbf{a}|_{v}^{\frac{d_{v}}{d}}$. We define the height of \mathbf{a} by

$$H(\mathbf{a}) = \prod_{v \in M(K)} \| \mathbf{a} \|_v$$

and write $h(\mathbf{a}) = \log H(\mathbf{a})$.

It is well-known that the definition of $H(\mathbf{a})$ is independent of a choice of field where \mathbf{a} lies, and also that $H(c\mathbf{a}) = H(\mathbf{a})$ for $c \in K - \{0\}$. Given a linear form $L(\mathbf{x}) = a_0x_0 + \cdots + a_nx_n$

Typeset by AM S-TEX

with coefficients $a_0, \dots a_n \in K$ not all zero, we put $H(L) = H(\mathbf{a})$ for $\mathbf{a} = (a_0 \dots a_n)$ as the height of L. For $v \in M(K)$ we denote $||L||_v = ||\mathbf{a}||_v$.

2. Quantitative subspace theorem

A higher dimensional case of Roth's theorem, that we call the subspace theorem, is established by W. M. Schmidt for archimedean places. A quantitative version is also derived by himself, and extended by H. P. Schlickewei to nonarchimedean places. See for the historical survey in [Schl] [Schm 1] [Schm 2]. We apply here the theorem of Schlickewei in [Schl] which is stated as follows.

Theorem 2.1 (Schlickewei).

Let K, S as above. Suppose that for each $v \in S$ we are given n+1 linearly independent linear forms $L_1^{(v)}, \dots, L_{n+1}^{(v)}$ in n+1 variables with coefficients in K. Let $0 < \delta < 1$. Consider the inequality

$$\prod_{v \in S} \prod_{i=1}^{n+1} \frac{\parallel L_i^{(v)}(\mathbf{x}) \parallel_v}{\parallel L_i^{(v)} \parallel_v \parallel \mathbf{x} \parallel_v} < H(\mathbf{x})^{-n-1-\delta}.$$

Then there exists proper subspaces S_1, \dots, S_{t_1} of K^{n+1} with

$$t_1 = [(8sd)^{2^{34(n+1)d}s^6\delta^{-2}}]$$

such that every solution $\mathbf{x} \in K^{n+1}$ lies in

$$\bigcup_{i=1}^{t_1} S_i \bigcup D$$

where

$$D = \{\mathbf{x} \in K^{n+1} \quad ; \quad H(\mathbf{x}) < \max(\,(n+1)!^{\frac{9}{\delta}}, \quad H(L_i^{(v)})^{\frac{9d(n+1)s}{\delta}} \, \big(v \in S, \, i = 1, \cdots, n+1\big) \,\big) \}.$$

3. Preliminaries

We recall here the definition of subgeneral position and Nochka weight following [R-W]. Let $1 \le k \le n < q$ be rational integers. Consider nonzero distinct q linear forms in k+1 variables with coefficients in K. For each linear form $L_i(\mathbf{x}) = a_{i0}x_0 + \cdots + a_{ik}x_k$, put $\mathbf{a}_i = \mathbf{a}(L_i) = (a_{i0}, \dots, a_{ik}) \in K^{k+1}$ $(1 \le i \le q)$. The linear forms L_1, \dots, L_q are called in n-subgeneral position if any distinct n+1 elements of the set $\{\mathbf{a}_1, \dots, \mathbf{a}_q\}$ span K^{k+1} . We see that n-subgeneral position is equivalent to general position when n = k.

Now we define Nochka weight (cf [R-W]).

Let $1 \le k \le n < q$ be rational integers and L_1, \dots, L_q be linear forms in k+1 variables with coefficients in K, supposed to be in n-subgeneral position. We denote the dimension of

the linear span over K of a subset $B \subset A := \{\mathbf{a}_1, \dots, \mathbf{a}_q\}$ by d(B). Put $P(B) = (\sharp B, d(B))$ which is regarded as a point in \mathbf{R}^2 . For two points $P_1 = (x_1, y_1), P_2 = (x_2, y_2)$ in \mathbf{R}^2 with $x_1 \neq x_2$, we write $\sigma(P_1, P_2) = \frac{y_1 - y_2}{x_1 - x_2}$. Proposition 2.1 in [R-W] (under some corrections) allows us to show that there exists a sequence of subsets

$$A = B_{s+1} \supset B_s \supset B_{s-1} \cdots \supset B_1 \supset B_0 = \emptyset$$

where the sequence of numbers $\sigma(P(B_{i+1}), P(B_i))$ $(0 \le i \le s)$ is uniquely determined. If an element $\mathbf{a} \in A$ lies in $B_{i+1} - B_i$ $(0 \le i \le s)$, we put $\omega(\mathbf{a}) = \sigma(P(B_{i+1}), P(B_i))$, which is called Nochka weight. For simplicity, we write $\sigma(P(B_{i+1}), P(B_i)) = \sigma_i$. Several

4. Results

For simplicity, we restrict here $K \subset \mathbf{R}$ and consider $S = \{\infty\}$; one archmedean place of K defined by $|x|_{\infty} = \max(x, -x)$. Put $|x|_{\infty} = |x|$.

For $1 \leq k \leq n < q$, consider linear forms L_1, \dots, L_q in k+1 variables with coefficients in K, supposed to be in n-subgeneral position. Write $\mathbf{a}_i = (a_{i0}, \dots, a_{ik})$ a coefficient vector of L_i respectively $(1 \leq i \leq q)$. Then for all $\mathbf{x} \in \mathbf{R}^{k+1}$ we claim

$$\sharp \left\{ i : \frac{\parallel L_i(\mathbf{x}) \parallel}{\parallel L_i \parallel \parallel \mathbf{x} \parallel} < c_0 \right\} \le n$$

with

$$c_0 = \frac{1}{2} \min_{\mathbf{a}_i \mid \mathbf{a}_j} \left(1 - \frac{|\left(\mathbf{a}_i, \mathbf{a}_j\right)|}{|\left|\mathbf{a}_i\right||\left|\mathbf{a}_j\right|} \right)^{\frac{-1}{2}}$$

where $(\mathbf{a}_i, \mathbf{a}_j) = a_{0i}a_{0j} + \cdots + a_{ki}a_{kj}$.

properties of Nochka weight are presented in [R-W].

Using Theorem 2.1, we get the following quantitative statement of Theorem 3.3 of [R-W].

Theorem 4.1.

Let K, S as above.

Let $1 \le k \le n < q$ be rational integers and L_1, \dots, L_q be linear forms in k+1 variables with coefficients in K, supposed to be in n-subgeneral position. Let $\omega_i = \omega(\mathbf{a}_i)$ be the associated Nochka weight with L_i $(1 \le i \le q)$. Let $0 < \delta < 1$. Consider the inequality

$$\sum_{i=1}^{q} \omega_{i} \log \left(\frac{\parallel L_{i} \parallel \parallel \mathbf{x} \parallel}{\parallel L_{i}(\mathbf{x}) \parallel} \right) > (k+1+\delta) \log \mid \mathbf{x} \mid.$$

Then there exists proper subspaces S_1, \dots, S_{t_2} of K^{k+1} with

$$t_2 = [32d^{2^{34(k+1)d}\delta^{-2}}]$$

such that every solution $\mathbf{x} \in \mathbf{Z}^{k+1}$ with $L_i(\mathbf{x}) \neq 0$ for all $1 \leq i \leq q$ lies in

$$\bigcup_{i=1}^{t_2} S_i \bigcup D_1 \bigcup D_2$$

where

$$D_1 = \left\{ \mathbf{x} \in \mathbf{Z}^{k+1} \quad ; \quad |\mathbf{x}| < \exp\left(\frac{2c_1}{\delta}\right) \right\},$$

$$D_2 = \left\{ \mathbf{x} \in \mathbf{Z}^{k+1} \quad ; \quad H(x) < \max\left((k+1)!^{\frac{18}{\delta}}, \quad H(L_i)^{\frac{18d(k+1)}{\delta}}\right) \right\}$$

$$c_1 = \frac{(q-n)(k+1)}{n+1} \log \frac{1}{c_0}.$$

and

Outline of the proof of Theorem 4.1

We follow the argument of Ru-Wong. Take c_0 as above. For $1 \le i \le q$, put $E_i(\mathbf{x}) = \frac{\|L_i\| \|\mathbf{x}\|}{\|L_i(\mathbf{x})\|}$. Then we have $\sharp I(\mathbf{x}) \le n$ where $I(\mathbf{x}) = \left\{i; \log E_i(\mathbf{x}) \ge \log \frac{1}{c_0}\right\}$. Lemma 3.1 of [R-W] implies that there exists a set $J(\mathbf{x})$ of cardinality k+1 such that $\{\mathbf{a}_i; i \in J(\mathbf{x})\}$ are linearly independent and

$$\prod_{i\in I(\mathbf{x})} E_i(\mathbf{x})^{\omega_i} \leq \prod_{i\in J(\mathbf{x})} E_i(\mathbf{x})$$

with $\omega_i = \omega(\mathbf{a}_i)$ for $L_i(\mathbf{x}) = (\mathbf{a}_i, \mathbf{x})$. Therefore

$$\prod_{i \in J(\mathbf{x})} E_i(\mathbf{x}) \le \max_{I} \prod_{i \in I} E_i(\mathbf{x})$$

where I runs over the family of all subsets of $\{1,\cdots,q\}$ with $\sharp I=k+1$ and $\{\mathbf{a}_i;i\in I\}$ linearly independent. Using the property $\omega_i\leq \frac{k+1}{n+1}$ of Nochka weight, we obtain

$$\sum_{i=1}^{q} \omega_i \log E_i(\mathbf{x}) = \sum_{i \in I(\mathbf{x})} \omega_i \log E_i(\mathbf{x}) + c_1 \leq \max_{I} \sum_{i \in I(\mathbf{x})} \log E_i(\mathbf{x}) + c_1$$

with $c_1 = \frac{(q-n)(k+1)}{n+1} \log \frac{1}{c_0}$. Thus the solutions $\mathbf{x} \in \mathbf{Z}^{k+1}$ outside of L_1, \dots, L_q of the inequality

$$\sum_{i=1}^{q} \omega_{i} \log E_{i}(\mathbf{x}) > (k+1+\delta) \log |\mathbf{x}|$$

are contained in the solutions $\mathbf{x} \in \mathbf{Z}^{k+1}$ outside of L_1, \dots, L_q of the inequality

(4.2)
$$\max \sum_{i \in I}^{q} \log E_i(\mathbf{x}) > (k+1+\delta) \log |\mathbf{x}| - c_1.$$

Then the solutions of (4.2) are contained in the union of the set D_1 and the set of the solutions of

(4.3)
$$\max \sum_{i \in I}^{q} \log E_i(\mathbf{x}) > (k+1+\frac{\delta}{2}) \log |\mathbf{x}|,$$

because the solutions of (4.2) with log $|\mathbf{x}| \geq \frac{2c_1}{\delta}$ satisfies

$$(k+1+\delta)\log |\mathbf{x}| - c_1 \ge (k+1+\frac{\delta}{2})\log |\mathbf{x}|.$$

Now we apply Theorem 2.1 for k+1 variables to solve (4.3) which establishes our statement.

Applying this theorem, we obtain a quantitative statement of Theorem 3.5 of [R-W] as follows.

Theorem 4.4.

Let $1 \le k \le n < q$ with q > 2n - k + 1 be rational integers and L_1, \dots, L_q be linear forms in k + 1 variables with coefficients in K, in n-subgeneral position.

Let $0 < \delta < 1$. Consider the inequality

$$\sum_{i=1}^{q} \log \frac{\parallel L_i \parallel \parallel \mathbf{x} \parallel}{\parallel L_i(\mathbf{x}) \parallel} > (2n - k + 1 + \delta) \log \mid \mathbf{x} \mid.$$

Then there exists proper subspaces S_1, \dots, S_{t_3} of K^{k+1} with

$$t_3 = [128d^{2^{34(k+1)d}(2n+1)^2\delta^{-2}}]$$

such that every solution $\mathbf{x} \in \mathbf{Z}^{k+1}$ with $L_i(\mathbf{x}) \neq 0$ for all $1 \leq i \leq q$ lies in

$$\bigcup_{i=1}^{t_3} S_i \bigcup D_3 \bigcup D_4$$

where

$$D_3 = \left\{ \mathbf{x} \in \mathbf{Z}^{k+1} \quad ; \quad |\mathbf{x}| < \exp\left(\frac{4(2n+1)c_1}{\delta}\right) \right\},$$

$$D_4 = \{ \mathbf{x} \in \mathbf{Z}^{k+1} : H(x) < \max((k+1)!^{\frac{36(2n+1)}{\delta}}, H(L_i)^{\frac{36d(2n+1)(k+1)}{\delta}} (i = 1, \dots, q)) \}$$

with c_1 in Theorem 4.1.

Outline of the proof of Theorem 4.4 Put $\theta = \frac{1}{\sigma_s}$. Then $\theta = \frac{q-2n+k-1}{\omega_1+\cdots+\omega_q-(k+1)}$ and $\frac{n+1}{k+1} \leq \theta \leq \frac{2n-k+1}{k+1} \leq 2n+1$ by Theorem 4.3 (1) (3) of [R-W]. For all $v \in M(K)$ and for \mathbf{x} outside of zeroes of L_i , we claim that

$$\log \frac{\parallel L_i \parallel_v \parallel \mathbf{x} \parallel_v}{\parallel L_i(\mathbf{x}) \parallel_v} > 0$$

which derives

$$\log E_i(\mathbf{x}) \leq \sum_{v \in M(K)} \log \frac{\parallel L_i \parallel_v \parallel \mathbf{x} \parallel_v}{\parallel L_i(\mathbf{x}) \parallel_v} = h(\mathbf{a}_i) + h(\mathbf{x}),$$

 $v \in M(K)$ log $||L_i(\mathbf{x})||_v = 0$ by the product formula. For $\varepsilon_1 > 0$, we get that a point **x** either is contained in D_5 or satisfies $\log E_i(\mathbf{x}) \leq (1 + \varepsilon_1)h(\mathbf{x})$ where

$$D_5 = \left\{ \mathbf{x} \quad ; \quad h(\mathbf{x}) < rac{\max_{1 \leq i \leq q} h(\mathbf{a}_i)}{arepsilon_1}
ight\}.$$

Therefore for $\mathbf{x} \notin D_{\mathbf{s}}$, we have

$$\sum_{1 \leq i \leq q} \log E_i(\mathbf{x})$$

$$= \sum_{1 \leq i \leq q} (1 - \theta\omega_i) \log E_i(\mathbf{x}) + \theta \sum_{1 \leq i \leq q} \omega_i \log E_i(\mathbf{x})$$

$$\leq (1 + \varepsilon_1) h(\mathbf{x}) \sum_{1 \leq i \leq q} (1 - \theta\omega_i) + \theta \sum_{1 \leq i \leq q} \omega_i \log E_i(\mathbf{x}).$$

Consider $\mathbf{x} \in \mathbf{Z}^{k+1}$ with $L_i(\mathbf{x}) \neq 0$. By theorem 4.1, the inequality

$$\sum_{1 \le i \le q} \log E_i(\mathbf{x}) \le (1 + \varepsilon_1) h(\mathbf{x}) \left(q - \theta \sum_{1 \le i \le q} \omega_i \right) + \theta (k + 1 + \delta_1) \log |\mathbf{x}|$$

holds for all

$$\mathbf{x} \notin \bigcup_{i=1}^{t_2} S_i \bigcup D_1 \bigcup D_2 \bigcup D_5,$$

with $\delta = \delta_1$ in theorem 4.1. Since we have $h(\mathbf{x}) \leq \log |\mathbf{x}|$ for $\mathbf{x} \in \mathbf{Z}^{k+1}$, using the property of θ mentioned above, **x** satisfies

$$\begin{split} \sum_{1 \leq i \leq q} \log E_i(\mathbf{x}) &\leq (1 + \varepsilon_1) (2n - k + 1 - \theta(k+1)) \log |\mathbf{x}| \\ &+ \theta(k+1 + \delta_1) \log |\mathbf{x}| \\ &= (2n - k + 1 + \delta_1 \theta + \varepsilon_1 (2n - k + 1 - \theta(k+1))) \log |\mathbf{x}|. \end{split}$$

For any $0 < \delta < 1$, take $\delta_1 = \varepsilon_1 = \frac{\delta}{2(2n+1)}$. Then $\varepsilon_1 \le \frac{\delta}{2(2n-k+1-\theta(k+1))}$ if $2n-k+1-\theta(k+1) \ne 0$, and otherwise we have $\varepsilon_1(2n-k+1-\theta(k+1)) = 0$. This implies $\delta \ge \delta_1\theta + \varepsilon_1(2n-k+1-\theta(k+1))$ which shows that the solutions $\mathbf{x} \in \mathbf{Z}^{k+1}$ with $L_i(\mathbf{x}) \ne 0$ for all $1 \le i \le q$ of the inequality in the statement of the Theorem lie in the desired region.

REFERENCES

- [R-W] M. Ru P. -M. Wong, Integral points of Pⁿ 2n + 1 hyperplanes in general position, Invent. math. 106 (1991), 195-216.
- [Schl] H. P. Schlickewei, The quantitative Subspace Theorem for number fields, Compositio Math. 82 (1992), 245-273.
- [Schm 1] W. M. Schmidt, The subspace theorem in diophantine approximations, Compositio Math. 69 (1989), 121-173.
- [Schm 2] W. M. Schmidt, Diophantine Approximations and Diophantine Equations, Lecture Notes in Math., Springer 1467 (1991).