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1. Introduction

We give here one kind of generalization of the Schmidt-Schlickewei quantitative subspace
theorem, using the argument of M. Ru and P. -M. Wong. We consider linear forms not
only of the same number as variables but also of a larger number than the number of
variables. |

- Let K be a normal extention of Q of degree d over Q. Let M(K) be the set of non-
equivalent places of K : for v € M(K), denote by | - |, the corresponding absolute value
normalized such that for a € Q, | a |,=| a | if v lies above the archimedean prime of Q,
and | p |,= 1/p if v lies above the rational prime p. Let M ( Ix) be the set of archimedean
places of K. :

We consider S C M(K) (not necessarily containing MOO(A ), of cardinality s < co. Let
K, be the completion of K with repect to | - |,. Put d, = [K, : Q,] for the local degree.
For a € K, we put || a ||=| a | %.

For a = (ag, -+ ,a,) € K" v € M(K), write

Ialv (lao 2+ + | an [2)?

if v is archmedean, and

|al,= 01232{ | ai v

if v is nonarchmedean. Let us denote || a ||,=| a |;jL . We define the height of a by

Ha)= TT lall
vEM(K)

and write h(a) = log H(a).

It is well-known that the definition of H(a) is independent of a choice of field where a lies,
and also that H(ca) = H(a) for ¢ € K — {0}. Given a linear form L(x) = aozo+- -+ anZn
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with coefficients ag, - - an, € K not all zero, we put H(L) = H(a) for a = (ap---an) as
the height of L. For v € M(K) we denote || L ||, -|| ally. '

2. Quantitative subspace theorem

A higher dimensional case of Roth’s theorem, that we call the subspace theorem, is
established by W. M. Schmidt for archimedean pla,ces A quantitative version is also
derived by himself, and extended by H. P. Schlickewel to nonarchimedean places. See for
the historical survey in [Schl] [Schm 1] [Schm 2]. We apply here the theorem of Schlickewei
in [Schl] Which is stated as follows. '

Theorem 2.1 (Schlickewei). '
.Let K, S as above. Suppose that for each v € S we are given n+1 linearly mdependent

linear forms Lg ), ,Lfﬁl in n + 1 variables with coefficients in K. Let 0 < 6 < 1.
Consider the inequality

n+1 (v)
L; v el
” ﬂ ” (v) (X) ” <H(X) n—1 6'
ves i=1 1L llo [l % [l

Then there exists proper subspaces .5'1, -, 8, of K™ with
_ [(8sd)234(n+1)d366—2]

such that every solution x € K™*! lies in
ty
S UD
i=1

where

dn+13

D={xe K" ; H(x)<max((n+t1)!}, HI) ™ (wesi=1,-,n+1))}

3. Preliminaries

We recall here the definition of subgeneral position and Nochka weight following [R-W].
Let 1 < k < n < g be rational integers. Consider nonzero distinct ¢ linear forms in k + 1.
variables with coefficients in K. For each linear form L;(x) = aijozo + - -- + aixzk, put
a; = a(L;) = (ai0, -+ ,a:;) € K¥' (1 <4 < q). The linear forms Ly, -- , L, are called
in n-subgeneral position if any distinct n + 1 elements of the set {a;,--- ,a,} span K k+1,
We see that n-subgeneral position is equivalent to general position when n = k.

Now we define Nochka weight (cf [R-W]).

Let 1 <k < n < ¢ be rational integers and Ly, - - , Ly be linear forms in k + 1 variables
with coefficients in K, supposed to be in n-subgeneral position. We denote the dimension of
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the linear span over K of a subset B C A := {a;, -+, a4} by d(B). Put P(B) = (§B, d(B))
which is regarded as a point in R2. For two points Py = (z1, y1), P» = (22, y2) in R? with
z1 # T2., we write o(Py, P) = £1=22. Proposition 2.1 in [R-W] (under some corrections)
allows us to show that there exists a sequence of subsets

A=B3+1 DB_,DB,,_I"’DBIDBOZQ

where the sequence of numbers o(P(B;4+1), P(B;)) (0 <: < s) is uniquely determined.

If an element a € A lies in B;1; — B; (0 <7 < s), we put w(a) = o(P(Bit1), P(B;)),
which is called Nochka weight. For simplicity, we write o(P(Bit+1), P(B;)) = 0;. Several
properties of Nochka weight are presented in [R-W].

4. Results

For simplicity, we restrict here K C R and consider S = {00} ; one archmedean place
of K defined by | z |o= max(z,—z). Put | z |=|  |.

For 1 <k < n < g, consider linear forms L;,--- , L, in k+1 variables with coefficients in
K, supposed to be in n-subgeneral position. Write a; = (aio, - - ,aik) a coeflicient vector
of L; respectively (1 <i < ¢). Then for all x € R¥*! we claim

;LN _ )
ﬁ{ AVANEL }5

| (ai, a;) I)

| a; || a; |

with

[X]°W |

1
co—ginn (1—

where (a;,a;) = agiaoj + - - + ariak;.
Using Theorem 2.1, we get the following quantitative statement of Theorem 3.3 of [R-

Theorem 4.1.

Let K, S as above.

Let 1 < k < n < ¢ be rational integers and Ly, -- , L, be linear forms in k + 1 variables
with coefficients in K, supposed to be in n-subgeneral position. Let w; = w(a;) be the
associated Nochka weight with L; (1 <1 <¢q). Let 0 < é < 1. Consider the inequality

Zwilog([lllell|) ””> > (k+1+8)log|x|.

Then there exists proper subspaces Sy,--- ,S;, of K**1 with

ty = [32d234(k+1)d6—2]
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such that every solution x € Z¥*! with L;(x) # 0 for all 1 <i < ¢ lies in

t2
(\JS:\UD:\UD;
i=1

2
D1={xezk+1 : |x|<e><p(—§1—)},

Dgz{xezk“ . H(z) <max((k+ 1%, H(L)™F) |

where

and k+1). 1

n+1 ¢

Outline of the proof of Theorem 4.1

We follow the argument of Ru-Wong. - Take ¢y as above. For 1 < i < ¢, put E;(x) =
L‘%I—%;CI—I' Then we have $I(x) < n where I(x) = {z';logE,;(x) > log —Clg} Lemma 3.1 of
- [R-W] implies that there exists a set J(x) of cardinality k + 1 such that {a;;¢ € J(x)} are

linearly independent and
T B~ < TT B
i€I(x) i€ J(x)

with w; = w(a;) for L;(x) = (a;,x). Therefore
i€ J(x) T er

where I runs over the family of all subsets of {1,--- ,¢} with §I = k + 1 and {a;;: € I}
linearly independent. Using the property w; < "'H of Nochka weight, we obtain

q
Z w;log Ei(x) = Z wilog Ei(x) 4 ¢1 < max Z log Ei(x) + ¢
i=1 i€l(x) 1€l(x)

with ¢, = %log c—lo— Thus the solutions x € Z**! outside of Ly, -+, L, of the

inequality

.4
Y wilog Ei(x) > (k+1+6)log | x|

©oi=1

- are contained in the solutions x € Z*+! outside of Ly,--+, L, of the inequality

(4.2) ma.xZ log Ei(x) > (k +1+ 5) log | x | —¢;.
el



Then the solutions of (4.2) are contained in the union of the set D; and the set of the
solutions of

g
)
(4.3) ma.xz log Ei(x) > (k+1+ §)log | x|,
€T

because the solutions of (4.2) with log | x |> 2 satisfies
)
(k414 6)log [ x| —cs 2 (k+1+5)log | x|
Now we apply Theorem 2.1 for k+1 variables to solve (4.3) which establishes our statement.

Applying this theorem, we obtain a quantitative statement of Theorem 3.5 of [R-W] as
follows.

Theorem 4.4.

Let 1 <k < n < q with ¢ > 2n — k + 1 be rational integers and L1, - -- ,Lq be linear

forms in k + 1 variables with coefficients in K, in n-subgeneral position.
Let 0 < 6 < 1. Consider the inequality

Zlog I—Héiﬂ—“)l”ﬂ > 2n—k+1+6)log|x]|.

Then there exists proper.subspaces Sy, -+ , Sy, of I’k‘H with

by = [12842"* TV Cnb0 5

such that every solution x € Z*+! with L;(x) # 0 for all 1 <4 < q lies in

t3
UsUnUn
=1

where (2 .
D3:{X6Zk+1 ; |x|<exp((L;_——)-—ci)},
Dy ={x € Z*! ;H(z) < max( (k + 1)1,
364(2n+1)(k+1) .
H(L;) (t=1-,9)}

with ¢y in Theorem 4.1.
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Outline of the proof of Theorem 4.4
. _ —2n+k—1 n 2n—k
Put 6 = . Then § = —I=2" s and 3 <6< 2855 <2n + 1 by
Theorem 4.3 (1) (3) of [R-W]. For all v € M(K) and for x outside of zeroes of L;, we

claim that
| Li llo |l % {lo

Il Li(%) [l

log >0

which derives

ogB(x) < 3 tos el —ha + ),

vEM(K)

because we see vem(x) 108 || Li(x) |lv= 0 by the product formula. For 1 > 0, we get
that a point x either is contained in Dj or satisfies log E;(x) < (1 + €1)h(x)
where

€1

Dy = {x ;o h(x) < max1<i<e h(ai)} X

Therefore for x ¢ Dg, we have

2_ log Ei(x)

1<i<yq
=Y (1-6w)logEi(x)+6 Y w;logE;(x)
1<i<q 1<i<g
S(I+e)h(x) Y (1-6w)+6 Y wilogEi(x).

1<i<q 1<i<q

Consider x € Z*¥*! with L;(x) # 0. By theorem 4.1, the inequality

1<:i<¢ 1<i<q

Z log Ei(x) < (14 ¢€;1) h(x) (q—0 Z wi)
4 0(k+1+68)log x|
holds for all

X¢ USiUDIUDQUD5,

with § = é; in theorem 4.1. Since we have h(x) < log | x | for x € Z*¥*!, using the property
of 8 mentioned above, x satisfies



Y logEi(x) < (1+e1)(2n—k+1-6(k+1))log | x|

1<i<q '
+0(k+1461)log| x|
=2n—k+1+60+e1(2n—k+1—-0(k+1)))log|x]|.

For any 0 < 6 < 1, take §; = ¢; = 2—(2"2—“) Then ¢, < 2(2n—k+f—0(k+1)) if 2n — k +
1 —60(k+ 1) # 0, and otherwise we have 1(2n — k + 1 — 6(k + 1)) = 0. This implies
§ > 610+¢e1(2n—k+1—6(k+1)) which shows that the solutions x € Z**+! with L;(x) # 0
for all 1 <z < g of the inequality in the statement of the Theorem lie in the desired region.
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