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Abstract

In this paper, we show a basic inequality of Riemann-Hurwitz type for cer-
tain invariants (connected with the A-invariants) of cyclotomic Z,-fields. As its
application, if the Vandiver conjecture holds for p, then we have an upper bound
of the M-invariants of some cyclotomic Z,-fields containing exp(27v/—1/p).

Introduction

For a cyclotomic Z,-extension K of a number field K, with p-invariant 0, let
Xx (resp. Xk) be the Galois group over K of its maximal abelian p-extension
which is unramified (resp. unramified outside places dividing p) over K. We
introduce some invariants of K/Kj : let Mg (resp. Ax) be the Z,-rank of Xy
(resp. of the Z,[[Gal(K/K,)]]-torsion submodule of X ), and put A\z = Ag —
AknR- In [5], Kida proved a Riemann-Hurwitz formula for A~ of cyclotomic Z,-
extensions of CM type, and this follows from a similar formula for X of totally real
cyclotomic Z,-extensions which is shown in [8]. Recently, in [6] and [9], Nguyen
Quang Do and Wingberg proved a Riemann-Hurwitz formula for ) of general
cyclotomic Z,-extensions under some assumptions which seemed to cannot be
checked easily. We note that the results of [6] and [9] do not deduce immediately
a formula for A because the relation between ) and X is not clear. The aim
of this paper is to show a basic inequality of Riemann-Hurwitz type for certain
invariants of cyclotomic Z-extensions which deduces an inequality for A.
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Under the influence of genus theory, we consider an invariant
XK = dime(XK/pXK).

Then it is easy to see that A > Ax and that X = Ak if and only if X is
a free Z,-module. We will show that if K contains {, = exp(2rv/~1/p) and
L/K is a Galois p-extension unramified at all infinite places such that there is no
unramified extensions between their intermediate fields, then

N=1 < [L: KI5 = 1)+ Y(e(v/K) = 1), e

where v runs through all finite places of L, and e(v/K) denotes the ramification
index of v over K which will be well-defined and is equal to the local degree of v
over K. In particular, if p does not divide the class number of Q(cos(27/p)) and
K is the cyclotomic Z,-extension of Q((;), then we have

Ad—1 < [L: KOk = 1)+ Y (e(v/K) —1). (2)

When pis odd and L = K(p'/?*), we show that X is a cyclic A, = Z,[[Gal(L/ Q)]]—‘
module annihilated by an element ® of A, which is a deformation of the sum of
the p-adic L-functions, and that if (2) is an equality, then X & A,/(4,®). When

p = 2, we give examples of real quadratic extensions L/K such that (1) is an

equality (on the other hand, if the Greenberg conjecture [2] holds for L, then X[,

is always equal to 0).

1

Throughout this paper, we put §, = exp(2m/—1/n) (n € N), and we consider
any field as a subfield of C. For a prime number p, we call K a cyclotomic Z,-
field if K is a finite extension of the unique Z,-extension of Q. Then any finite
place of Q has finitely many extensions in K, and K becomes a Z,-extension of
a number field finite over Q which we denote by K = U,> K. For a cyclotomic
Z,field K = U,>o Ky, let Xk be a'Z,,-module which is the projective limit of
the p-ideal class groups of K, (n > 0) with respect to the norm maps, and let
K (resp K,) be the maximal unramified abelian p-extension of K (resp. K n)-
Then K = Un>o K, and hence by class field theory, X & Gal(K/K). We define
pukr = 0if Xk is a finitely generated Z,-module.

Let K be a cyclotomic Z,-field, and let L be a finite extension of K. Then we
can take K = U,>o Kn and L = Up>o Ln such that [L, : K,] =[L : K] for any n.



For a place v of L, we denote by e(v|L,/K,) (resp. f(v|Ln/K,)) the ramification
index (resp. the relative degree) of v|L, over K,, and let g(v|L,/K,) be the
number of places v’ of L,, satisfying v'|K,, = v|K,. If L is Galois over K, then for
sufficiently large n, L, is Galois over K, and hence

e(v|Ln/Ky) - f(v|Laf/Kn) - 9(v|Ln/Ka) = [Ln: K]

Proposition 1. Assume that K O (, and that L/ K is a Galois p-extension.
Then for any place v of L, lim e(v|Ln/Ky) and lim g(v|Ln/Ky,) ezist, and
nlgglo f(v|Ln/Kn) = 1.

Proof. 1t is enough to show this proposition for finite places. From the
assumption, there exists a sequence of field extensions:

K=M°cM'c.---cMF=1L

such that M**1/M* (i = 0,...,k — 1) is a cyclic extension of degree p. Then for
each i, Mt = M'(y/a;) for some o; € (M')*. Put M2 = K, and M}* =
K.(¥/og, ¥/oq, ..., gai) for i = 0, ..., k — 1. Then there exists N € N such that for
any n> N, [L,: K,;]=[L: K] and o; € (M:)*. Hence ((M}),: the completion
of M} by v)

. , . ; ,
lim g(leé“/M;) = { 1 .lf (Mn)'v F ¥a for any n
e p otherwise. ,
Therefore,

k-1
lim g(v|L./Kn) = ] lim g(v|M;*/M})
i=0
is well-defined.

We will show the rest of the statement. First we assume that v does not
divide p. Then the completion L, of L by v is a discrete valuation field, and
hence lim e(v|Ln/K,) (resp. Jim f(v|L,/K,)) is equal to the ramification index
(resp. the relative degree) of L,/K,. Moreover, the latter is equal to 1 because
the residue field of K, is the unique Z,-extension of a finite field. Second we
assume that v divides p. Then the p-power degree of e(v|K,/Ko) tends to infinity
as n — 00, and hence there exists N' > N such that one can take v-units §; € M:
satisfying Mi+! = M:(¢/F;) for any n > N’ and i = 0,...,k — 1. Let k, be the
residue field of M: at v, and put B; = B;mod(v). Then for any n > N’ and
i=0,..k—1, ki = K(JB) = K because k. is a finite field of p-power
order. Therefore,

k-1

Jim f(o1Ln/Ka) = II lim fOIMT/M) = 1,

=0
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and hence

[L: K].
lim, . Q(Uan/Kn).

lim e(v|Ln/Ky) =

Let K, L, and v be as in Proposition 1. Then we call lim e(v|L./K,) the
ramification index of v over K, and denote this by e(v/K). If (:(v/K) > 1, then
we call L/K is ramified at v. Let Py(L) (resp. P;(L,)) be the set of finite places
of L (resp. L), and let R(L/K) (resp. R(L./K,)) be the set of places of L
(resp. L,) ramified over K (resp. K,). By Proposition 1, for sufficiently large n,
the restriction v — v|L, of places of L induces a bijection

R(L/K) N Py(L) = R(La/Kon) N Py(Ly),

and hence R(L/K)N P;(L) is a finite set. It is shown by Iwasawa [3, Theorem
3] that if L is a p-extension of a Z,-field K with ux = 0, then u = 0. As for the
X'-invariant, we have the following results. .

Theorem 1. Let K be a cyclotomic Z,-field such that K 3 {, and ux =
0, and let L/K be a cyclic extension of degree p such that R(L/K) # ® and
R(L/K) C Ps(L). Then :

N=1 < p0k =D+ ¥ (eo/K) 1.
E .  vePy(L)

Proof Put T = Gal(L/K), and let v be a generator of T'. Let L (resp.
L,) be the maximal unramified abelian p-extension of L (resp. L,), and put
G = Gal(L/K), X; = Gal(L/L). Let R(L/K) = {vo,vy,...,v,}, and for each
i=0,..,s, let % be a place of I dividing v; with inertia subgroup I; of G. Put
G, = Gal(L,/K,) and X, = Gal(L./L,), and let I;, be the inertia subgroup
of G, at ¥;. Since for sufficiently large n, [L, : K,] = p and L, /K, is totally
ramified at v;, the injection I;, < G, induce:; an isomorphism I, =G, /X .
Therefore,

[ =liml, = imG,/X1.=G/X, =T,
and hence G = X I; (i=0,...,8). For each ¢, let 0; € I; maps to v, and q; € X
satisfying o; = a;09. Put S =y —1 and

v o= 1+y+72 449 = {(1+SF-1}/S

which act on X;. Since 0;? =1 and ¢,° = v(a;)oo?, v(a;) = 0. Let M be the sub
Z,-module of X, generated by ay,...,a,. Since K /K is the maximal unramified



abelian subextension of L/K, Gal(L/ K) is the closed subgroup of X, generated
by SX;, Iy, and ay, ..., a,. Therefore,

Xx = G/Gal(L/K) = Xi/(M + 5Xy),
and hence
"0 — M/(MOSXL) —_— X[,/SXL b XK — 0

is exact. Let b; € X, (j = 1,..., X satisfying

Ak
Xg = Zzpbj (bJ = bj mod(M + SXL)).

-1

Then

A'

X /SX, = Zz a,+§:Zb

=1
Since Sv =0 on X, and v(a;) =0,
p—1 Xk

zizswa.) + Y3 7,50,

k=0 1=1 1=0 3=1

Therefore,

Mo—=1 < (p=1)s+pXg—1 = p(Ax — 1)+ (s+1)(p—1).

Theorem 2. Let K be a cyclotomic Zy-field such that K 3 G and pk - 0,

and let K = M° C MY C --- C M* = L be a sequence of cyclic extensions
of degree p such that R(M'“/M') # @ and R(M*/M*) C Py(M**?) for any
1=0,...,k—1. Then

N=1 < KN —D+ X (e(u/K)—1).
vGP,(L)
Proof. We will show this theorem by the induction on k. Assume that there
exist cyclotomic Z,-fields K C M C L such that
Mi=1 < [M:KJ(Me—=D+ Y. (e(v'/K) - 1),
'EP;(M)

and that L/M is a cyclic extension of degree p with § # R(L/K) C Pf(L) Then
by Theorem 1 and the above inequality,

M—1<[L:KlMNe=D+p X (@/K)=1)+ X (e(v/M)-1).

v'€Py(M) vEPy(L)
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By Proposition 1, Ps(M) is a disjoint union of its subsets P;(M) and P,(M)
consisting of finite places of M ramified in L and splitting in L respectively.

Hence
Y (e(w/K)=1)= Y (e(v/K)-D+p Y (e(v'/K)—1),
v€EPy(L) _ v'eP (M) v'ePy (M)
and |
> (pe(v'/K)=1)
v'€P1 (M)
= p Y, (e(v'/K)-1)+(p— 1)|P(M)|
v'€P (M)
=p 3 (e(/K)-1)+ > (e(v/M)-1).
v'€P (M) vEPy(L)
Therefore,
-1 < [L:KQx =D+ X (e(v/K)—1).
vEPy(L)
3.

In what follows, let K be the cyclotomic Z,-extension of Q((;). Then by a
result of Ferrero-Washington [1], ux = 0. Let h; denote the class number of

Q(cos(2/p)).

Theorem 3. Assume that p does not divide h}, and let K = M° C --- C
M* = L be a sequence of cyclic extensions of degree p such that R(M**'/M*) # @
and R(M**1/M*) C Py(M*™*?) for anyi=0,...k — 1. Then

Ap—1 < [L: K]k =)+ ). (e(v/K)-1).
vEPy(L)
Proof. This follows from Theorem 2 and the result of Iwasawa which says
that Xk is a free Z,-module (cf. [7, Theorem 10.16]).

Corollary 1. Assume that p does not divide h}, and let v, be the unique place
of K dividing p. Let L/K a cyclic extension of degree p such that R(L/K) # 0
and R(L/K) C Ps(L), and let N and I be the endomorphisms of the unit group
Uy of L defined by N(a) = a**7* "+ and I(a) = a*! (a € UL) respectively,
where v is a generator of Gal(L/K). Then

|Ker(N)/Im([)| { p if v, is unramified in L

|Ker(I)/Im(N)| = | 1 if v, is ramified in L.



Proof. Put
_ [Kex(1)/Im(N)]

— |Ker(N)/Im(I)|"
Then by a result of Iwasawa [4, Theorem 6],

m

A =1 = pAg—=1)+(m+)p-1D+ > (e(v/K)-1),
N vEP(L)

where P{(L) is the set of finite places of L not dividing p. Hence

m < -1 if'v,, is unramified in L
- 0 if vy is ramified in L.

4
In this section, assume that p > 2, and put L = K(pll"k) for k € N.

Proposition 2. The Galois extension LK is of degree p*, and there exists
a unique place of L dividing p which is totally ramified over K.

Proof. For n > 0, let C be the completion of Q((») by the unique place of
K dividing p. Then by Proposition 1, to prove this proposition, it is enough to
show that C(p'/?") # C(p'/*™") for any i =0, ...,k — 1. On the contrary, assume
that C(¥a) = C(a) (a := p'/?") for some i. Then Q,(¥/a)/Q,(c) is an abelian
extension because C(a)/Q,(c) is an abelian extension. Since ¥a ¢ Q,(a),
¢ € Q,(a), and hence p' = [Q,(a) : Q] is divisible by p — 1 = [Q,(() : Qpl,

which is a contradiction.
Corollary 2. Assume that p does not divide ht. Then Ay < p*Ak.
Proof. This follows from Theorem 3 and Proposition 2.

Put A = Gal(Q({,)/Q), and regard A as a subgroup of Gal(K/Q) by the
Teichmiiller character w : F¥ — ZX and the isomorphisms A = F), Gal(K/Q) =
ZX induced from the Galois action on {(y»}nen- For each i = 0,1,...,p — 2, put

1 —- ’
&= 2 wT(8) -8 € Z,[[Gal(K/Q)],
1Al
and for each i = 3,5,...,p — 2, let L,(s,w'™) denote the p-adic L-function with
character w'™. Let 7y and ¢ be the elements of Gal(L/Q((,)) given by y(Gn) =
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Gn?*1, A(p'7) = p/** and g(Gn) = Gn, q(pM7*) = Grp!?" (n 2 0) respectively.
Then under the correspondences ¥ <+ 1+ T and g « 1+ S, Z,[[Gal(L/Q())]] is
isomorphic to the quotient ring A, of Z,[[T, S]n.c (: the non-commutative power
series ring over Z, with variables T and S) by the relations (1+ T)(14+ S) =
(14 Sy**}(1+4T) and (1+ S)*" = 1. Therefore, A, = Z,[[Gal(L/Q)]] satisfies

p—2 r=2

4y = @z [CaL/QAGN] = Deits )
=0 =

From the injection ¢ : Gal(K/Q) — Gal(L/Q) given by i(o)(p'/?") = p'/#*
(¢ € Gal(K/Q)), we can regard Z,[[Gal(K/Q)]] as a sub Z,-algebra of A,. Let L
be the maximal unramified abelian p-extension of L, and let 7 € Gal(Z/Q) act on
Xp = Gal(L/L) as 7(z) = 7a7! (7 € Gal(L/Q),z € X) where 7 € Gal(L/Q)
is a lifting of 7. Then this action is well-defined, and hence we can regard X as
a left A,-module.

Theorem 4. Assume that p does not divide h}. Then there exist ® € A,
and z € X which satisfy the following:

(a) Ag D a — az € X, induces a surjective A -homomorphism A,/(A,P) —
Xr. ’

(b) If we put ® = T2 &;F; (F; € A,) under the isomorphism (3), then

1 (i=0,1,2,4,...p—3)

E —0.T= sy = : .
IS 0,T=(1+p) .1_ { LP(S, wl"') (z = 3, 5, ey — 2)

Moreover, if A\, = p*)k, then the above homomorphism A,/(A,®) — XL is an
1somorphism.

Proof. Put A = Z,[[T]) and A = Z,[[Gal(K/Q)]}. Then under the correspon-
dence vy « 14 T, Z,[[Gal(K/Q(())]] is isomorphic to A, and hence

p—2 r—2
A = @eBlGlK/QG)] = et @

By Proposition 2 and the proof of Theorem 1, X & X1 /SX|. Let 0 € Gal(K/Q)

act on Xk as o(z) = 526" (0 € Gal(K/Q),z € Xk), where & € Gal(K/Q) is a
A lifting of 0. Then this action induces an action of A on X = X /SX}, compatible
with the A,-module structure of X;. By a result of Iwasawa (cf. [7, Theorem
10.16]), there exist ¢ € A and z € Xk such that A 3 o — azy € Xk induces an
A-isomorphism A/(A¢)= Xk, and that if we put ¢ = Y22 & f; (fi € A) under

=0



the isomorphism (4), then f; & pA and

1 (i=0,1,2,4,..,p—3)

N ] = :
fuI‘—(1+P) 1 {Lp(syw]_‘) (i=3,5,---,P“‘2)°

Let z be an element of X such that z mod(SX;) = 2,. Then by Nakayama’s
lemma, A, — az € X, is a surjective Aq—homomorphism. Since ¢(z) € SXy,
there exists ® € A, such that ®(z) = 0 and ® = ¢ mod(SA,), and hence
we have a surjective A,-homomorphism A,/(A,®) — X. For each ¢, let F; be
the element of A, such that ;& = ¢;F; under (3). Then & = Y720 ¢F; and
F,=f; mod(SAq,). Hence A,/(A,®) is a Z,-module with p* A generators S%e,T®
0<a<pf0<i<p—-10<b< ra.nkzp(A/Af,-)). Therefore, if A\ = p* Ak,
then the homomorphism A,/(A4,®) — X[ is an isomorphism.

5

In this section, we assume that p = 2 and study the A'-invariants of certain
cyclotomic Z,-fields.

Theorem 5. Let py, ..., pe be primes such that p; = 5 mod(8) (i = 1,...,1),
and put m=p; ---p; and L = K(/m). Then M, =t — 1.

Proof. Since K/Q is totally ramified at 2 and Q(,/m)/Q is unramified at 2,
L/Q(+/m) is totally ramified at any place of Q(y/m) dividing 2. Let Iy be the
ideal class group of Q(/m) denoted as-an additive group. Then the canonical
homomorphism X1/2Xy — Io/2l, is a surjection. By genus theory, Ip/2ly =
Gal(Q(y/P1, .-, \/Pt)/ K), and hence A} > ¢ — 1. Since each p; generates 1+4Z; &
Gal(K/Q), p; is unramified and remains prime in K. Hence L/K is only ramified
at p; ( = 1,...,t). Therefore, by Theorem 2,

M =1L KOk =)+ Y (e(v/K)=1) =t -2,
vEPy(L)

and hence we have M, =t — 1.

Corollary 3. For each n > 0, let K, /Q the unique subextension of K/Q
with Galois group Z/2"Z. Let m be as above and let I, be the ideal class group
of Kn(v/m). Then |I./21,| = 271 '

Proof. Since K (v/m)/Q(+v/m) is totally ramified at any place of Q(y/m) lying

above 2,

\Io/210| < |1, /21| < | X g(ymy/2X k(-
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Therefore, by Theorem 5, we have |I,/2I,| = 2¢-2.

References

1. B. Ferrero and L. Washington, The Iwasawa invariant y, vanishes for
abelian number fields, Ann. of Math. 109 (1979), 377-395.

2. R. Greenberg, On the Iwasawa invariants of totally real number fields,
Amer. J. Math. 98 (1976), 263-284.

3. K. Iwasawa, On the p-invariants of Zj-extensions, in “Number theory,
algebraic geometry and commutative algebra” pp.1-11, Kinokuniya, Tokyo, 1973.

4. K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations
for number fields, Téhoku Math. J. 33 (1981), 263-288.

5. Y. Kida, l-extensions of CM-fields and cyclotomic invariants, J. Number
Theory 12 (1980), 519-528.

6. T. Nguyen Quang Do, K; et formules de Riemann-Hurwitz p-adiques, to
appear in K-theory. .

7. L.C. Washington, “Introduction to cyclotomic fields”, Graduate Texts in
Mathematics 83, Springer-Verlag, 1982. |

8. K. Wingberg, Duality theorems for I'-extensions of algebraic number fields,
Compositio Math. 55 (1985), 333-381.

9. K. Wingberg, On the maximal unramified extension of an algebraic number
field, J. reine angew. Math. 440 (1993), 129-156.



