Some relations between invariants of cyclotomic \mathbf{Z}_p -fields

Takashi ICHIKAWA (市川 尚た)
Department of Mathematics
Faculty of Science and Engineering
Saga University, Saga 840, Japan

Abstract

In this paper, we show a basic inequality of Riemann-Hurwitz type for certain invariants (connected with the λ -invariants) of cyclotomic \mathbf{Z}_p -fields. As its application, if the Vandiver conjecture holds for p, then we have an upper bound of the λ -invariants of some cyclotomic \mathbf{Z}_p -fields containing $\exp(2\pi\sqrt{-1}/p)$.

Introduction

For a cyclotomic \mathbf{Z}_p -extension K of a number field K_0 with μ -invariant 0, let X_K (resp. \overline{X}_K) be the Galois group over K of its maximal abelian p-extension which is unramified (resp. unramified outside places dividing p) over K. We introduce some invariants of K/K_0 : let λ_K (resp. $\overline{\lambda}_K$) be the \mathbf{Z}_p -rank of X_K (resp. of the \mathbf{Z}_p [[Gal (K/K_0)]]-torsion submodule of \overline{X}_K), and put $\lambda_K^- = \lambda_K - \lambda_{K\cap \mathbf{R}}$. In [5], Kida proved a Riemann-Hurwitz formula for λ^- of cyclotomic \mathbf{Z}_p -extensions of CM type, and this follows from a similar formula for $\overline{\lambda}$ of totally real cyclotomic \mathbf{Z}_p -extensions which is shown in [8]. Recently, in [6] and [9], Nguyen Quang Do and Wingberg proved a Riemann-Hurwitz formula for $\overline{\lambda}$ of general cyclotomic \mathbf{Z}_p -extensions under some assumptions which seemed to cannot be checked easily. We note that the results of [6] and [9] do not deduce immediately a formula for λ because the relation between λ and $\overline{\lambda}$ is not clear. The aim of this paper is to show a basic inequality of Riemann-Hurwitz type for certain invariants of cyclotomic \mathbf{Z}_p -extensions which deduces an inequality for λ .

Under the influence of genus theory, we consider an invariant

$$\lambda_K' = \dim_{\mathbf{F}_p}(X_K/pX_K).$$

Then it is easy to see that $\lambda_K' \geq \lambda_K$ and that $\lambda_K' = \lambda_K$ if and only if X_K is a free \mathbb{Z}_p -module. We will show that if K contains $\zeta_p = \exp(2\pi\sqrt{-1}/p)$ and L/K is a Galois p-extension unramified at all infinite places such that there is no unramified extensions between their intermediate fields, then

$$\lambda'_L - 1 \leq [L:K](\lambda'_K - 1) + \sum_{v} (e(v/K) - 1),$$
 (1)

where v runs through all finite places of L, and e(v/K) denotes the ramification index of v over K which will be well-defined and is equal to the local degree of v over K. In particular, if p does not divide the class number of $\mathbf{Q}(\cos(2\pi/p))$ and K is the cyclotomic \mathbf{Z}_p -extension of $\mathbf{Q}(\zeta_p)$, then we have

$$\lambda_L - 1 \leq [L:K](\lambda_K - 1) + \sum_{v} (e(v/K) - 1).$$
 (2)

When p is odd and $L = K(p^{1/p^k})$, we show that X_L is a cyclic $A_q = \mathbf{Z}_p[[\operatorname{Gal}(L/\mathbf{Q})]]$ module annihilated by an element Φ of A_q which is a deformation of the sum of
the p-adic L-functions, and that if (2) is an equality, then $X_L \cong A_q/(A_q\Phi)$. When p = 2, we give examples of real quadratic extensions L/K such that (1) is an
equality (on the other hand, if the Greenberg conjecture [2] holds for L, then λ_L is always equal to 0).

1

Throughout this paper, we put $\zeta_n = \exp(2\pi\sqrt{-1}/n)$ $(n \in \mathbb{N})$, and we consider any field as a subfield of \mathbb{C} . For a prime number p, we call K a cyclotomic \mathbb{Z}_p -field if K is a finite extension of the unique \mathbb{Z}_p -extension of \mathbb{Q} . Then any finite place of \mathbb{Q} has finitely many extensions in K, and K becomes a \mathbb{Z}_p -extension of a number field finite over \mathbb{Q} which we denote by $K = \bigcup_{n \geq 0} K_n$. For a cyclotomic \mathbb{Z}_p -field $K = \bigcup_{n \geq 0} K_n$, let X_K be a \mathbb{Z}_p -module which is the projective limit of the p-ideal class groups of K_n $(n \geq 0)$ with respect to the norm maps, and let \widetilde{K} (resp. \widetilde{K}_n) be the maximal unramified abelian p-extension of K (resp. K_n). Then $\widetilde{K} = \bigcup_{n \geq 0} \widetilde{K}_n$, and hence by class field theory, $X_K \cong \operatorname{Gal}(\widetilde{K}/K)$. We define $\mu_K = 0$ if X_K is a finitely generated \mathbb{Z}_p -module.

Let K be a cyclotomic \mathbb{Z}_p -field, and let L be a finite extension of K. Then we can take $K = \bigcup_{n \geq 0} K_n$ and $L = \bigcup_{n \geq 0} L_n$ such that $[L_n : K_n] = [L : K]$ for any n.

For a place v of L, we denote by $e(v|L_n/K_n)$ (resp. $f(v|L_n/K_n)$) the ramification index (resp. the relative degree) of $v|L_n$ over K_n , and let $g(v|L_n/K_n)$ be the number of places v' of L_n satisfying $v'|K_n = v|K_n$. If L is Galois over K, then for sufficiently large n, L_n is Galois over K_n and hence

$$e(v|L_n/K_n) \cdot f(v|L_n/K_n) \cdot g(v|L_n/K_n) = [L_n : K_n].$$

Proposition 1. Assume that $K \ni \zeta_p$ and that L/K is a Galois p-extension. Then for any place v of L, $\lim_{n\to\infty} e(v|L_n/K_n)$ and $\lim_{n\to\infty} g(v|L_n/K_n)$ exist, and $\lim_{n\to\infty} f(v|L_n/K_n) = 1$.

Proof. It is enough to show this proposition for finite places. From the assumption, there exists a sequence of field extensions:

$$K = M^0 \subset M^1 \subset \cdots \subset M^k = L$$

such that M^{i+1}/M^i (i=0,...,k-1) is a cyclic extension of degree p. Then for each $i, M^{i+1} = M^i(\sqrt[p]{\alpha_i})$ for some $\alpha_i \in (M^i)^{\times}$. Put $M_n^0 = K_n$ and $M_n^{i+1} = K_n(\sqrt[p]{\alpha_0}, \sqrt[p]{\alpha_1},...,\sqrt[p]{\alpha_i})$ for i=0,...,k-1. Then there exists $N \in \mathbb{N}$ such that for any $n \geq N$, $[L_n:K_n] = [L:K]$ and $\alpha_i \in (M_n^i)^{\times}$. Hence $((M_n^i)_v)$: the completion of M_n^i by v)

$$\lim_{n\to\infty} g(v|M_n^{i+1}/M_n^i) = \begin{cases} 1 & \text{if } (M_n^i)_v \not\ni \sqrt[p]{\alpha} \text{ for any } n \\ p & \text{otherwise.} \end{cases}$$

Therefore,

$$\lim_{n\to\infty}g(v|L_n/K_n) = \prod_{i=0}^{k-1}\lim_{n\to\infty}g(v|M_n^{i+1}/M_n^i)$$

is well-defined.

We will show the rest of the statement. First we assume that v does not divide p. Then the completion L_v of L by v is a discrete valuation field, and hence $\lim_{n\to\infty} e(v|L_n/K_n)$ (resp. $\lim_{n\to\infty} f(v|L_n/K_n)$) is equal to the ramification index (resp. the relative degree) of L_v/K_v . Moreover, the latter is equal to 1 because the residue field of K_v is the unique \mathbb{Z}_p -extension of a finite field. Second we assume that v divides p. Then the p-power degree of $e(v|K_n/K_0)$ tends to infinity as $n\to\infty$, and hence there exists $N'\geq N$ such that one can take v-units $\beta_i\in M_n^i$ satisfying $M_n^{i+1}=M_n^i(\sqrt[p]{\beta_i})$ for any $n\geq N'$ and i=0,...,k-1. Let k_n^i be the residue field of M_n^i at v, and put $\overline{\beta_i}=\beta_i \operatorname{mod}(v)$. Then for any $n\geq N'$ and i=0,...,k-1, $k_n^{i+1}=k_n^i(\sqrt[p]{\overline{\beta_i}})=k_n^i$ because k_n^i is a finite field of p-power order. Therefore,

$$\lim_{n \to \infty} f(v|L_n/K_n) = \prod_{i=0}^{k-1} \lim_{n \to \infty} f(v|M_n^{i+1}/M_n^i) = 1,$$

and hence

$$\lim_{n\to\infty} e(v|L_n/K_n) = \frac{[L:K]}{\lim_{n\to\infty} g(v|L_n/K_n)}.$$

2

Let K, L, and v be as in Proposition 1. Then we call $\lim_{n\to\infty} e(v|L_n/K_n)$ the ramification index of v over K, and denote this by e(v/K). If e(v/K) > 1, then we call L/K is ramified at v. Let $P_f(L)$ (resp. $P_f(L_n)$) be the set of finite places of L (resp. L_n), and let R(L/K) (resp. $R(L_n/K_n)$) be the set of places of L (resp. L_n) ramified over K (resp. K_n). By Proposition 1, for sufficiently large n, the restriction $v \mapsto v|L_n$ of places of L induces a bijection

$$R(L/K) \cap P_f(L) \cong R(L_n/K_n) \cap P_f(L_n),$$

and hence $R(L/K) \cap P_f(L)$ is a finite set. It is shown by Iwasawa [3, Theorem 3] that if L is a p-extension of a \mathbb{Z}_p -field K with $\mu_K = 0$, then $\mu_L = 0$. As for the λ' -invariant, we have the following results.

Theorem 1. Let K be a cyclotomic \mathbb{Z}_p -field such that $K \ni \zeta_p$ and $\mu_K = 0$, and let L/K be a cyclic extension of degree p such that $R(L/K) \neq \emptyset$ and $R(L/K) \subset P_f(L)$. Then

$$\lambda'_{L} - 1 \leq p(\lambda'_{K} - 1) + \sum_{v \in P_{f}(L)} (e(v/K) - 1).$$

Proof. Put $\Gamma = \operatorname{Gal}(L/K)$, and let γ be a generator of Γ . Let \widetilde{L} (resp. \widetilde{L}_n) be the maximal unramified abelian p-extension of L (resp. L_n), and put $G = \operatorname{Gal}(\widetilde{L}/K)$, $X_L = \operatorname{Gal}(\widetilde{L}/L)$. Let $R(L/K) = \{v_0, v_1, ..., v_s\}$, and for each i = 0, ..., s, let \widetilde{v}_i be a place of \widetilde{L} dividing v_i with inertia subgroup I_i of G. Put $G_n = \operatorname{Gal}(\widetilde{L}_n/K_n)$ and $X_{L,n} = \operatorname{Gal}(\widetilde{L}_n/L_n)$, and let $I_{i,n}$ be the inertia subgroup of G_n at \widetilde{v}_i . Since for sufficiently large n, $[L_n : K_n] = p$ and L_n/K_n is totally ramified at v_i , the injection $I_{i,n} \hookrightarrow G_n$ induces an isomorphism $I_{i,n} \widetilde{\hookrightarrow} G_n/X_{L,n}$. Therefore,

$$I_i = \lim_{\longleftarrow} I_{i,n} \cong \lim_{\longleftarrow} G_n/X_{L,n} = G/X_L = \Gamma,$$

and hence $G = X_L I_i$ (i = 0, ..., s). For each i, let $\sigma_i \in I_i$ maps to γ , and $a_i \in X_L$ satisfying $\sigma_i = a_i \sigma_0$. Put $S = \gamma - 1$ and

$$\nu = 1 + \gamma + \gamma^2 + \dots + \gamma^{p-1} = \{(1+S)^p - 1\}/S$$

which act on X_L . Since $\sigma_i^p = 1$ and $\sigma_i^p = \nu(a_i)\sigma_0^p$, $\nu(a_i) = 0$. Let M be the sub \mathbb{Z}_p -module of X_L generated by $a_1, ..., a_s$. Since \widetilde{K}/K is the maximal unramified

abelian subextension of \widetilde{L}/K , $\operatorname{Gal}(\widetilde{L}/\widetilde{K})$ is the closed subgroup of X_L generated by SX_L , I_0 , and $a_1, ..., a_s$. Therefore,

$$X_K = G/\operatorname{Gal}(\widetilde{L}/\widetilde{K}) \cong X_L/(M + SX_L),$$

and hence

$$0 \longrightarrow M/(M \cap SX_L) \longrightarrow X_L/SX_L \longrightarrow X_K \longrightarrow 0$$

is exact. Let $b_j \in X_L$ $(j = 1, ..., \lambda_K)$ satisfying

$$X_K = \sum_{j=1}^{\lambda_K'} \mathbf{Z}_p \overline{b}_j \ (\overline{b}_j = b_j \ \text{mod}(M + SX_L)).$$

Then

$$X_L/SX_L = \sum_{i=1}^s \mathbf{Z}_p a_i + \sum_{j=1}^{\lambda_K'} \mathbf{Z}_p b_j.$$

Since $S\nu = 0$ on X_L and $\nu(a_i) = 0$,

$$X_{L} = \sum_{k=0}^{p-2} \sum_{i=1}^{s} \mathbf{Z}_{p} S^{k}(a_{i}) + \sum_{l=0}^{p-1} \sum_{j=1}^{\lambda'_{K}} \mathbf{Z}_{p} S^{l}(b_{j}).$$

Therefore,

$$\lambda'_L - 1 \leq (p-1)s + p\lambda'_K - 1 = p(\lambda'_K - 1) + (s+1)(p-1).$$

Theorem 2. Let K be a cyclotomic \mathbb{Z}_p -field such that $K \ni \zeta_p$ and $\mu_K = 0$, and let $K = M^0 \subset M^1 \subset \cdots \subset M^k = L$ be a sequence of cyclic extensions of degree p such that $R(M^{i+1}/M^i) \neq \emptyset$ and $R(M^{i+1}/M^i) \subset P_f(M^{i+1})$ for any i = 0, ..., k-1. Then

$$\lambda'_L - 1 \le [L:K](\lambda'_K - 1) + \sum_{v \in P_f(L)} (e(v/K) - 1).$$

Proof. We will show this theorem by the induction on k. Assume that there exist cyclotomic \mathbb{Z}_p -fields $K \subset M \subset L$ such that

$$\lambda'_{M} - 1 \leq [M:K](\lambda'_{K} - 1) + \sum_{v' \in P_{f}(M)} (e(v'/K) - 1),$$

and that L/M is a cyclic extension of degree p with $\emptyset \neq R(L/K) \subset P_f(L)$. Then by Theorem 1 and the above inequality,

$$\lambda_L' - 1 \leq [L:K](\lambda_K' - 1) + p \sum_{v' \in P_f(M)} (e(v'/K) - 1) + \sum_{v \in P_f(L)} (e(v/M) - 1).$$

By Proposition 1, $P_f(M)$ is a disjoint union of its subsets $P_1(M)$ and $P_2(M)$ consisting of finite places of M ramified in L and splitting in L respectively. Hence

$$\sum_{v \in P_f(L)} (e(v/K) - 1) = \sum_{v' \in P_1(M)} (pe(v'/K) - 1) + p \sum_{v' \in P_2(M)} (e(v'/K) - 1),$$

and

$$\sum_{v' \in P_1(M)} (pe(v'/K) - 1)$$

$$= p \sum_{v' \in P_1(M)} (e(v'/K) - 1) + (p - 1)|P_1(M)|$$

$$= p \sum_{v' \in P_1(M)} (e(v'/K) - 1) + \sum_{v \in P_f(L)} (e(v/M) - 1).$$

Therefore,

$$\lambda'_L - 1 \le [L:K](\lambda'_K - 1) + \sum_{v \in P_f(L)} (e(v/K) - 1).$$

3

In what follows, let K be the cyclotomic \mathbb{Z}_p -extension of $\mathbb{Q}(\zeta_p)$. Then by a result of Ferrero-Washington [1], $\mu_K = 0$. Let h_p^+ denote the class number of $\mathbb{Q}(\cos(2\pi/p))$.

Theorem 3. Assume that p does not divide h_p^+ , and let $K = M^0 \subset \cdots \subset M^k = L$ be a sequence of cyclic extensions of degree p such that $R(M^{i+1}/M^i) \neq \emptyset$ and $R(M^{i+1}/M^i) \subset P_f(M^{i+1})$ for any i = 0, ..., k-1. Then

$$\lambda_L - 1 \leq [L:K](\lambda_K - 1) + \sum_{v \in P_f(L)} (e(v/K) - 1).$$

Proof. This follows from Theorem 2 and the result of Iwasawa which says that X_K is a free \mathbb{Z}_p -module (cf. [7, Theorem 10.16]).

Corollary 1. Assume that p does not divide h_p^+ , and let v_p be the unique place of K dividing p. Let L/K a cyclic extension of degree p such that $R(L/K) \neq \emptyset$ and $R(L/K) \subset P_f(L)$, and let N and I be the endomorphisms of the unit group U_L of L defined by $N(a) = a^{1+\gamma+\cdots+\gamma^{p-1}}$ and $I(a) = a^{\gamma-1}$ $(a \in U_L)$ respectively, where γ is a generator of Gal(L/K). Then

$$\frac{|\operatorname{Ker}(N)/\operatorname{Im}(I)|}{|\operatorname{Ker}(I)/\operatorname{Im}(N)|} \geq \begin{cases} p & \text{if } v_p \text{ is unramified in } L \\ 1 & \text{if } v_p \text{ is ramified in } L. \end{cases}$$

Proof. Put

$$p^{m} = \frac{|\operatorname{Ker}(I)/\operatorname{Im}(N)|}{|\operatorname{Ker}(N)/\operatorname{Im}(I)|}.$$

Then by a result of Iwasawa [4, Theorem 6],

$$\lambda_L - 1 = p(\lambda_K - 1) + (m+1)(p-1) + \sum_{v \in P'_I(L)} (e(v/K) - 1),$$

where $P'_{f}(L)$ is the set of finite places of L not dividing p. Hence

$$m \leq \begin{cases} -1 & \text{if } v_p \text{ is unramified in } L \\ 0 & \text{if } v_p \text{ is ramified in } L. \end{cases}$$

4

In this section, assume that p > 2, and put $L = K(p^{1/p^k})$ for $k \in \mathbb{N}$.

Proposition 2. The Galois extension L/K is of degree p^k , and there exists a unique place of L dividing p which is totally ramified over K.

Proof. For $n \geq 0$, let C be the completion of $\mathbf{Q}(\zeta_{p^n})$ by the unique place of K dividing p. Then by Proposition 1, to prove this proposition, it is enough to show that $C(p^{1/p^i}) \neq C(p^{1/p^{i+1}})$ for any i = 0, ..., k-1. On the contrary, assume that $C(\sqrt[p]{\alpha}) = C(\alpha)$ ($\alpha := p^{1/p^i}$) for some i. Then $\mathbf{Q}_p(\sqrt[p]{\alpha})/\mathbf{Q}_p(\alpha)$ is an abelian extension because $C(\alpha)/\mathbf{Q}_p(\alpha)$ is an abelian extension. Since $\sqrt[p]{\alpha} \notin \mathbf{Q}_p(\alpha)$, $\zeta_p \in \mathbf{Q}_p(\alpha)$, and hence $p^i = [\mathbf{Q}_p(\alpha) : \mathbf{Q}_p]$ is divisible by $p-1 = [\mathbf{Q}_p(\zeta_p) : \mathbf{Q}_p]$, which is a contradiction.

Corollary 2. Assume that p does not divide h_p^+ . Then $\lambda_L \leq p^k \lambda_K$.

Proof. This follows from Theorem 3 and Proposition 2.

Put $\Delta = \operatorname{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q})$, and regard Δ as a subgroup of $\operatorname{Gal}(K/\mathbf{Q})$ by the Teichmüller character $\omega : \mathbf{F}_p^{\times} \to \mathbf{Z}_p^{\times}$ and the isomorphisms $\Delta \cong \mathbf{F}_p^{\times}$, $\operatorname{Gal}(K/\mathbf{Q}) \cong \mathbf{Z}_p^{\times}$ induced from the Galois action on $\{\zeta_{p^n}\}_{n\in\mathbb{N}}$. For each i=0,1,...,p-2, put

$$\varepsilon_i = \frac{1}{|\Delta|} \sum_{\delta \in \Delta} \omega^{-i}(\delta) \cdot \delta \in \mathbf{Z}_p[[\mathrm{Gal}(K/\mathbf{Q})]],$$

and for each i = 3, 5, ..., p - 2, let $L_p(s, \omega^{1-i})$ denote the p-adic L-function with character ω^{1-i} . Let γ and q be the elements of $Gal(L/\mathbb{Q}(\zeta_p))$ given by $\gamma(\zeta_{p^n}) =$

 $\zeta_{p^n}^{p+1}, \ \gamma(p^{1/p^k}) = p^{1/p^k} \ \text{and} \ q(\zeta_{p^n}) = \zeta_{p^n}, \ q(p^{1/p^k}) = \zeta_{p^k} p^{1/p^k} \ (n \ge 0) \ \text{respectively.}$ Then under the correspondences $\gamma \leftrightarrow 1+T$ and $q \leftrightarrow 1+S$, $\mathbf{Z}_p[[\operatorname{Gal}(L/\mathbf{Q}(\zeta_p))]]$ is isomorphic to the quotient ring Λ_q of $\mathbf{Z}_p[[T,S]]_{\mathbf{n.c}}$ (: the non-commutative power series ring over \mathbf{Z}_p with variables T and S) by the relations $(1+T)(1+S) = (1+S)^{p+1}(1+T)$ and $(1+S)^{p^k} = 1$. Therefore, $A_q = \mathbf{Z}_p[[\operatorname{Gal}(L/\mathbf{Q})]]$ satisfies

$$A_{q} = \bigoplus_{i=0}^{p-2} \varepsilon_{i} \mathbf{Z}_{p}[[\operatorname{Gal}(L/\mathbf{Q}(\zeta_{p}))]] \cong \bigoplus_{i=0}^{p-2} \varepsilon_{i} \Lambda_{q}.$$
 (3)

From the injection $\iota: \operatorname{Gal}(K/\mathbf{Q}) \to \operatorname{Gal}(L/\mathbf{Q})$ given by $\iota(\sigma)(p^{1/p^k}) = p^{1/p^k}$ $(\sigma \in \operatorname{Gal}(K/\mathbf{Q}))$, we can regard $\mathbf{Z}_p[[\operatorname{Gal}(K/\mathbf{Q})]]$ as a sub \mathbf{Z}_p -algebra of A_q . Let \widetilde{L} be the maximal unramified abelian p-extension of L, and let $\tau \in \operatorname{Gal}(L/\mathbf{Q})$ act on $X_L = \operatorname{Gal}(\widetilde{L}/L)$ as $\tau(x) = \widetilde{\tau}x\widetilde{\tau}^{-1}$ $(\tau \in \operatorname{Gal}(L/\mathbf{Q}), x \in X_L)$ where $\widetilde{\tau} \in \operatorname{Gal}(\widetilde{L}/\mathbf{Q})$ is a lifting of τ . Then this action is well-defined, and hence we can regard X_L as a left A_q -module.

Theorem 4. Assume that p does not divide h_p^+ . Then there exist $\Phi \in A_q$ and $z \in X_L$ which satisfy the following:

- (a) $A_q \ni \alpha \mapsto \alpha z \in X_L$ induces a surjective A_q -homomorphism $A_q/(A_q\Phi) \to X_L$.
 - (b) If we put $\Phi = \sum_{i=0}^{p-2} \varepsilon_i F_i$ $(F_i \in \Lambda_q)$ under the isomorphism (3), then

$$F_{i|_{S=0,T=(1+p)^{s}-1}} = \begin{cases} 1 & (i=0,1,2,4,...,p-3) \\ L_{p}(s,\omega^{1-i}) & (i=3,5,...,p-2). \end{cases}$$

Moreover, if $\lambda_L = p^k \lambda_K$, then the above homomorphism $A_q/(A_q \Phi) \to X_L$ is an isomorphism.

Proof. Put $\Lambda = \mathbf{Z}_p[[T]]$ and $A = \mathbf{Z}_p[[\operatorname{Gal}(K/\mathbf{Q})]]$. Then under the correspondence $\gamma \leftrightarrow 1 + T$, $\mathbf{Z}_p[[\operatorname{Gal}(K/\mathbf{Q}(\zeta_p))]]$ is isomorphic to Λ , and hence

$$A = \bigoplus_{i=0}^{p-2} \varepsilon_i \mathbf{Z}_p[[\operatorname{Gal}(K/\mathbf{Q}(\zeta_p))]] \cong \bigoplus_{i=0}^{p-2} \varepsilon_i \Lambda.$$
 (4)

By Proposition 2 and the proof of Theorem 1, $X_K \cong X_L/SX_L$. Let $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ act on X_K as $\sigma(x) = \tilde{\sigma}x\tilde{\sigma}^{-1}$ ($\sigma \in \operatorname{Gal}(K/\mathbb{Q}), x \in X_K$), where $\tilde{\sigma} \in \operatorname{Gal}(\widetilde{K}/\mathbb{Q})$ is a lifting of σ . Then this action induces an action of A on $X_K \cong X_L/SX_L$ compatible with the A_q -module structure of X_L . By a result of Iwasawa (cf. [7, Theorem 10.16]), there exist $\phi \in A$ and $z_0 \in X_K$ such that $A \ni \alpha \mapsto \alpha z_0 \in X_K$ induces an A-isomorphism $A/(A\phi) \cong X_K$, and that if we put $\phi = \sum_{i=0}^{p-2} \varepsilon_i f_i$ ($f_i \in \Lambda$) under

the isomorphism (4), then $f_i \notin p\Lambda$ and

$$f_i|_{T=(1+p)^{s}-1} = \begin{cases} 1 & (i=0,1,2,4,...,p-3) \\ L_p(s,\omega^{1-i}) & (i=3,5,...,p-2). \end{cases}$$

Let z be an element of X_L such that $z \mod(SX_L) = z_0$. Then by Nakayama's lemma, $A_q \alpha \mapsto \alpha z \in X_L$ is a surjective A_q -homomorphism. Since $\phi(z) \in SX_L$, there exists $\Phi \in A_q$ such that $\Phi(z) = 0$ and $\Phi \equiv \phi \mod(SA_q)$, and hence we have a surjective A_q -homomorphism $A_q/(A_q \Phi) \to X_L$. For each i, let F_i be the element of Λ_q such that $\varepsilon_i \Phi = \varepsilon_i F_i$ under (3). Then $\Phi = \sum_{i=0}^{p-2} \varepsilon_i F_i$ and $F_i \equiv f_i \mod(S\Lambda_q)$. Hence $A_q/(A_q \Phi)$ is a \mathbf{Z}_p -module with $p^k \lambda_K$ generators $S^a \varepsilon_i T^b$ $(0 \le a < p^k, 0 \le i < p-1, 0 \le b < \operatorname{rank}_{\mathbf{Z}_p}(\Lambda/\Lambda f_i))$. Therefore, if $\lambda_L = p^k \lambda_K$, then the homomorphism $A_q/(A_q \Phi) \to X_L$ is an isomorphism.

5

In this section, we assume that p=2 and study the λ' -invariants of certain cyclotomic \mathbb{Z}_2 -fields.

Theorem 5. Let $p_1, ..., p_t$ be primes such that $p_i \equiv 5 \mod(8)$ (i = 1, ..., t), and put $m = p_1 \cdots p_t$ and $L = K(\sqrt{m})$. Then $\lambda'_L = t - 1$.

Proof. Since K/\mathbf{Q} is totally ramified at 2 and $\mathbf{Q}(\sqrt{m})/\mathbf{Q}$ is unramified at 2, $L/\mathbf{Q}(\sqrt{m})$ is totally ramified at any place of $\mathbf{Q}(\sqrt{m})$ dividing 2. Let I_0 be the ideal class group of $\mathbf{Q}(\sqrt{m})$ denoted as an additive group. Then the canonical homomorphism $X_L/2X_L \to I_0/2I_0$ is a surjection. By genus theory, $I_0/2I_0 \cong \mathrm{Gal}(\mathbf{Q}(\sqrt{p_1},...,\sqrt{p_t})/K)$, and hence $\lambda_L' \geq t-1$. Since each p_i generates $1+4\mathbf{Z}_2 \cong \mathrm{Gal}(K/\mathbf{Q})$, p_i is unramified and remains prime in K. Hence L/K is only ramified at p_i (i=1,...,t). Therefore, by Theorem 2,

$$\lambda'_L - 1 \le [L:K](\lambda'_K - 1) + \sum_{v \in P_f(L)} (e(v/K) - 1) = t - 2,$$

and hence we have $\lambda'_L = t - 1$.

Corollary 3. For each $n \geq 0$, let K_n/\mathbb{Q} the unique subextension of K/\mathbb{Q} with Galois group $\mathbb{Z}/2^n\mathbb{Z}$. Let m be as above, and let I_n be the ideal class group of $K_n(\sqrt{m})$. Then $|I_n/2I_n| = 2^{t-1}$.

Proof. Since $K(\sqrt{m})/\mathbf{Q}(\sqrt{m})$ is totally ramified at any place of $\mathbf{Q}(\sqrt{m})$ lying above 2,

$$|I_0/2I_0| \le |I_n/2I_n| \le |X_{K(\sqrt{m})}/2X_{K(\sqrt{m})}|$$

Therefore, by Theorem 5, we have $|I_n/2I_n| = 2^{t-1}$.

References

- 1. B. Ferrero and L. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395.
- 2. R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
- 3. K. Iwasawa, On the μ -invariants of \mathbf{Z}_{l} -extensions, in "Number theory, algebraic geometry and commutative algebra" pp.1-11, Kinokuniya, Tokyo, 1973.
- 4. K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Math. J. 33 (1981), 263-288.
- 5. Y. Kida, *l*-extensions of CM-fields and cyclotomic invariants, *J. Number Theory* 12 (1980), 519-528.
- 6. T. Nguyen Quang Do, K_3 et formules de Riemann-Hurwitz p-adiques, to appear in K-theory.
- 7. L.C. Washington, "Introduction to cyclotomic fields", Graduate Texts in Mathematics 83, Springer-Verlag, 1982.
- 8. K. Wingberg, Duality theorems for Γ -extensions of algebraic number fields, Compositio Math. 55 (1985), 333-381.
- 9. K. Wingberg, On the maximal unramified extension of an algebraic number field, J. reine angew. Math. 440 (1993), 129-156.