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The error term function for the mean square of the Riemann
zeta-function $\zeta(s)$ in the strip $-<\sigma(={\rm Res})<1$ , defined by

$E_{\sigma}(T)= \int_{0}^{T}|\zeta(\sigma+it)|^{2}dt-\zeta(2\sigma)T-(2\pi)^{2\sigma- 1}\frac{\zeta(2-2\sigma)}{2-2\sigma}T^{2- 2\sigma}$ ,

was first in$\alpha oduced$ by the author[28] in 1989, so it has relauvely
short history. However, much subsequent researches have
followed after [28], and now, we can draw the basic picmre of the
behaviour of this funcuon. OriginaUy, the function $E_{\sigma}(T)$ was
introduced as the malogue of the error term funcuon $E(T)$ on the
line $\sigma=\frac{1}{2}$ , which is defined by

$E(T)= \int_{0}^{T}|\zeta(\frac{1}{2}+it)|^{2}dt-T(\log\frac{T}{2\pi}+2\gamma-1)$

(where $\gamma$ denotes Euler’s constant). Now we have almost all
results on $E_{\sigma}(T)$ , which are namrally expected to be obtained
anal th
to be rather difficult. sn other words, the first step of research
of $E_{\sigma}(T)$ is now $go\vec{m}g$ to be completed. Therefore, it seems that
this volume is a place appropriate to $su\ovalbox{\tt\small REJECT} ze$ the results which
have been obtained, md discuss the problems which should be
chaUenged.
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First we list up the results proved by the author[28].

(A) The explicit formula of Atkinson-type for $E_{\sigma}(T)$ $(- < \sigma<\frac{3}{4})$ .

(B) $\cdot E_{\sigma}(T)=qT^{1/\langle 1\star 4\sigma)}\log^{2}T)$ $( \frac{1}{2}<\sigma<\frac{3}{4})$ .

(C) $\int_{2}^{T}E_{\sigma}(t)^{2}dt=c_{1}(\sigma)T^{5/2- 2\sigma}+O(T^{7/4-\sigma}\log D$ $( \frac{1}{2}<\sigma<\frac{3}{4})$ .

(D) $E_{\sigma}(T)=\Omega(T^{3/4-\sigma})$ $( \frac{1}{2}<\sigma<\frac{3}{4})$ .

(E) The obseivation of the singular behaviour of $E_{\sigma}(T)$ on the
lin$e$ $\sigma=\frac{3}{4}$ .

The formula (A) can be proved analogously to the original
argument of Atkmson[l]. The results (B) and (C) can be deduced
from (A), by applying the methods of $Juola[14]$ and Heath-Brown
[5], respectively. The result (D) is a direct corollaiy of (C). The
resmction $-< \sigma<\frac{3}{4}$ comes from the criterion of the convergence
of Oppenheim’s Voronoi-type formula, and the new phenomenon
(E) was discovered in connection with this resmcuon.

AU of these results $(A)-(E)$ have been improved in subsequent
researches. First of $aU$, it is obviously unsatisfactory that there is
the resmction $-< \sigma<\frac{3}{4}$ . The region $\frac{3}{4}\leq\sigma<1$ was first cultivated
by Motohashi[37](1990), who proved that the esomate (B) holds
for any $\sigma$ satis$\mathfrak{h}^{r}\dot{u}lg\frac{1}{2}<\sigma<1$ . (The $arOcle[37]$ is unpublished,
but the contents of [37] are included in Ivi\v{c}’s lecmre note[8]. $)$

Next, in Chapters 2 md 3 of the lecmre note mentioned above,
Ivi\v{c} canied out a detailed smdy of $E_{\sigma}(T)$ . In Chapter 2, Ivi\v{c}
first presented the detailed proofs of the above $(A)-(D)$ md the
result of Motohashi[37], and then, he med to give funher
improvements on upper-bounds of $E_{\sigma}(T)$ $(- <\sigma<1)$ , by combinin$g$

the idea of Motohashi [37] with the theory of exponent pairs.
The main theorm is Theorem 2.11 of [8], and, as corollaries, the
following estimates are deduced:
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(1.1) $E_{\sigma}(T)<<\tau^{1-\sigma}$ $(- <\sigma<1)$ ,

(1.2) $E_{\sigma}(T)<<T^{(51-56\sigma)/65+\epsilon}$ $( \frac{1}{2}<\sigma\leq\frac{3}{4})$ ,

(1.3) $E_{\sigma}(T)<<T^{(57-60\sigma)/62+\epsilon}$ $( \frac{1}{2}<\sigma\leq\frac{11}{12})$ .

However, the author pointed out that there is $m$ error in the proof
of Theorem 2.11 in [8]. This gap has essenuaUy been recovered
quite recently by Ivi\v{c}-Matsumoto [13], in which the correct proofs
of the above $(1.1)-(1.3)$ are given. We $wi\mathbb{I}$ discuss the details
later.

In Chapter 3 of [8], Ivi\v{c} introduced the fmction

$G_{\sigma}( \tau)=\int_{2}^{T}(E_{\sigma}(t)-B(\sigma))dt$ $(- < \sigma<\frac{3}{4})$ .

Here, $B(\sigma)$ is the quanoty which appeared in Ivi\v{c}’s this research,
and independently, in the joint research[31,II] of Meurman and
the author. At flrst this qumtity was introduced as the following
complicated expression:

$B( \sigma)=\zeta(2\sigma-1)\Gamma(2\sigma-1)\int_{0}\infty\{\frac{\Gamma(1-\sigma-iu)}{\Gamma(\sigma-iu)}+\frac{\Gamma(1-\sigma+iu)}{\Gamma(\sigma+iu)}-2u^{1-2\sigma}\sin$(no)$\oint u$

$+ \frac{\pi(1-2\sigma)\zeta(2-2\sigma)(2\pi)^{2\sigma-1}}{\Gamma(2\sigma)\sin(\pi\sigma)}$

((3.3) of Ivi\v{c}[8]), but now it is known that

$B(\sigma)=-2\pi\zeta(2\sigma-1)$

(see Appendix of $Matsumoto- Meurman[31,II]$ ). In Chapter 3 of
[8], Ivi\v{c} developed a detailed smdy of $G_{\sigma}(T)$ , and, as a
consequence, he proved

(1.4) $E_{\sigma}(T)\approx\Omega_{f}(T^{3/4-\sigma})$ $( \frac{1}{2}<\sigma<\frac{3}{4})$ .

Here we recall the memng of notations. The notauon
$f(x)=\Omega_{+}(g(x))$ $($ resp. $f(x)=\Omega_{-}(g(x)))$ means that there exist a
consmt $c>0$ and a sequence $\{x_{n}\}$ with $X_{n}arrow\infty$ , such that
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$f(x_{n})>cg(x_{n})$ $($ resp. $f(x_{n})<-cg(x_{n}))$ holds for any $n$ . The notation
$f(x)=\Omega_{f}(g(x))$ means that both $f(x)=\Omega_{+}(g(x))$ and $f(x)=\Omega_{-}(g(x))$

are valid, md $f(x)=\Omega(g(x))$ mems $|f(x)|=\Omega_{+}(g(x))$ .
Obviously $Ivi\acute{c}^{\iota}s(1.4)$ gives $m$ improvment on (D).

In the same chapter of Ivi\v{c}’s lecmre note, the esumate

(1.5) $G_{\sigma}(T)=O(T^{5/4-\sigma})$ $( \frac{1}{2}<\sigma<\frac{3}{4})$

is proved((3.39) of [8]), which clarifies the meaning of ffie
quantity $B(\sigma)$ . In fact, ffom this esontate and the definition of
$G_{\sigma}(T)$ , it mediately follows that

(1.6) $\int_{2}^{T}E_{\sigma}(t)dt=B(\sigma)T+\alpha\tau^{5/4-\sigma})$ $(- < \sigma<\frac{3}{4})$ .

This formula implies that in a sense, $B(\sigma)$ is a “mem value’t of
$E_{\sigma}(T)$ (as $Matsumoto- Meurmm[31,II]$ pointed out independently).
IncidentaUy, Ivi\v{c} also proved $G_{\sigma}(T)=\Omega_{f}(T^{5/4-\sigma})$ in [8], hence with
(1.5), he completely determned the order of $G_{\sigma}(T)$ .

The aim of Matsumoto$- Meumm^{I}s$ paper$[31,II]$ , which we
mentioned above several times, is to improve the error esumate
in (C). Put

$F_{\sigma}(T)= \int_{2}^{T}E_{\sigma}(t)^{2}dt-c_{1}(\sigma)T^{s/2-2\sigma}$ $(- < \sigma<\frac{3}{4})$ .

Then, the main result of $[31,\Pi]$ is

(1.7) $F_{\sigma}(T)=O(T)$ $( \frac{1}{2}<\sigma<\frac{3}{4})$ ,

which obviously improves (C). In Sept. 1989, a symposium on
malytic number theory was held at Amalfi, Italy, md both
Meurman and the author attended there. In a private
conversauon at Amalfi, Meurman showed $m$ interest in the
author’s work[28]. Therefore, after remrng to Japan, the
author sent him a repnnt of [28]. In his response Meurman
suggested ffie possibihty of improving (C) by using ffie method of
his paper[33]. This was the starong point of the joint research of
Meuran and the author, and when Ivi\v{c} visited Japan at the end
of 1990, the estimate $F_{\sigma}(T)=O(T\log^{4}T)$ , slightly weaker than (1.7),
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had been obtained. The author gave a talk on this result at Nihon
University, in front of Ivi\v{c}. This is the result mentioned in the
Notes of Chapter 2 of Ivi\v{c}[8].

The improved form (1.7) is proved in Matsumoto-Meurman
$[31,\mathbb{I}]$ . In the same paper, the conjecture

(1.8) $F_{\sigma}(T)\sim B(\sigma)^{2}T$ $(- < \sigma<\frac{3}{4})$

is proposed, and if this conjecmre would be $mle$, then (1.7) would
be best-possible. See also [29][30]. The basis which supports
the conjecmre (1.8) is not so fum, but for exmple, the followmg
heuristic argument is possible. From (C) we have

$\int_{2}^{T}(E_{\sigma}(t)-a)^{2}dt\sim c_{1}(\sigma)T^{5/2-2\sigma}$

for any real $\alpha$ . Let

$A_{\sigma}(D= \int_{2}^{T}(E_{\sigma}(t)-a)^{2}dr-c_{1}(\sigma)T^{5/2- 2\sigma}$ .

One namral candidate for $\alpha$ which $\ovalbox{\tt\small REJECT} zesA_{\sigma}(D$ is $B(\sigma)$ , the
“mean value” of $E_{\sigma}(T)$ . Putmg $a=B(\sigma)$ , and nomg (1.6), it
follows that

$A_{\sigma}(D= \int_{2}^{T}\int_{2}^{T}+B(\sigma)^{2}(T-2)-c_{1}(\sigma)T^{5/2-2\sigma}$

$=F_{\sigma}(7)-2B(\sigma)\{B(\sigma)T+\alpha\tau^{5/4-\sigma})\}+B(\sigma)^{2}T$

$=F_{\sigma}(D-B(\sigma)^{2}T+O(T^{5/4-\sigma})$ ,

th
opimion that the conjecmre (1.8) is plausible, but the mith is sm
in $m$ st.

2

When Ivi\v{c} was staymg at Japan in 1990, he stressed that a
$\dagger lui\dot{u}fled$ approac$h^{}$ to mean value theory in the smp $\frac{1}{2}\leq\sigma\leq 1$ is
desirable. His talk at Paris[9] is also based on the same principle.
A $l\dagger$uiufied approach$l$ ’ should include the cases of $\sigma=\frac{1}{2}$ and $\sigma=1$ .
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The case $\sigma=\frac{1}{2}$ is classical, md has been smdied extensively from
$1920s$. It is easy to show that

$\lim_{\sigmaarrow 1/2}E_{\sigma}(T)=E(T)$

( $(2_{:}3)$ of [8]). On the other hand, a deep smdy of ffie case $\sigma=1$

was first canied out by a $j$oint work of Balasubramanian, Ivi\v{c} and
Ramachandra$[2](1992)$ ; they proved the asymptotic formula

$\int_{1}^{T}1\zeta(1+it)1^{2}dt=\zeta(2)T-\pi\log T+R(\tau)$

with $R(T)=O((\log T)^{2/3}(\log\log T)^{1/3})$ , md also obtmed mem value
results on $R(T)$ . The hmit of $E_{\sigma}(T)$ $(as \sigmaarrow 1)$ is connected
with $R(T)$ by the fonnula

$\lim_{\sigmaarrow 1- 0}\{\zeta(2\sigma)T+(2\pi)^{2\sigma-1}\frac{\zeta(2-2\sigma)}{2-2\sigma}(T^{2- 2\sigma}-1)\}=\zeta(2)T-\pi\log T$ ,

as is shown in Ivi\v{c}[9]. On various related mean values on the
lin$e\sigma=1$ , see Ivi\v{c}[ll], Nakaya[40] [41], md Balasubraimanian-
Ivi\v{c}-Ramachandra[3].

The $re\ovalbox{\tt\small REJECT} g$ smp $\frac{3}{4}\leq\sigma<\iota$ is most difficult to study. In
the previous section we already mentioned that Motohashi’s
method[37] gives a tool of obrg upper-bounds of $E_{\sigma}(T)$ for
$\frac{3}{4}\leq\sigma<1$ . However, in order to develop $f\iota inher$ smdies , it is
strongly desirable to prove Atkmson-type explicit formula in this
stnp. This was done by $Matsumoto- Meurman[31_{2}III](1993)$ .
The basic idea of the proof in $[31,m]$ is also $\infty lained$ in [30].

Moreover, in $Matsumoto- Meurmm[31,III]$ the mean square of
$E_{\sigma}(T)$ for $\frac{3}{4}\leq\sigma<1$ is smdied, and

(2.1) $\int_{2}^{T}E_{3/4}(t)^{2}dt=c_{2}T\log T+q\tau(\log T)^{1/2})$ ,

(2.2) $\int_{2}^{T}E_{\sigma}(t)^{2}dt=\alpha\tau)$ $t\frac{3}{4}<\sigma<1)$

are proved. It is to be noted that, to prove such sharp results as
(1.7), (2.1) and (2.2), we need the following three tools. First, the
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“averaging $\dagger$ ’ idea of Meunnm [33]; the same idea was also
invented, independently, by Motohashi $[$34,$N][36]$ . Second,
Preissmann’s technique[43] of using Montgomery-Vaughm’s
inequality; this idea was originaUy $in\alpha oduced$ by Preissmann[42].
Ivi\v{c} also gave the same result as in [43] (independently, but
inspired by [42] $)$ in his talk at Vancouver symposium in 1989, and
in his lecmre note ((2.100) of [8]).

$\cdot$

The third tool is ffie mean
value theorem of $D\ddot{m}chlet$ polynomials.

A digressive talk. Preissmam[43] was published in 1993, but
the preprint had akeady been completed around 1988. This
delay is because [43] was submitted to J. Number Theory, and was
left there (on editor’s desk?) three years long. FinaUy
Preissmam found mother place to publish. It is $we\mathbb{I}$-known
that J. Number Theory causes mmy srilar $\alpha oubles$ . For
exmple, Matsumoto$- Meurmm[31,II]$ was submitted to J. Number
Theory in March 1992, but there was no correspondence from the
editors. Memmm wrote a letter of inquiry in March 1993, but
no mswer again. And finaUy, as the response to the author’s
recent inquiry(November 1993), they replied $\dagger$We have no record
of your paper”.

We can obseive that (2.1) and (2.2) establish clearly the
singular property of $E_{\sigma}(T)$ on the line $\sigma=\frac{3}{4}$ , which was first
pointed out by the author[28]. In fact, the coefficient

$c_{1}( \sigma)=\frac{2(2\pi)^{2\sigma-3/2}\zeta^{2}(3/2)}{5-4\sigma\zeta(3)}\zeta(\frac{5}{2}-2\sigma)\zeta(\frac{1}{2}+2\sigma)$

of the main term in (C) is divergent when $\sigmaarrow\frac{3}{4}-0$ , and on $\sigma=\frac{3}{4}$

the figure of the main term is changed as, in (2.1).

We do not know how to extend the conjecmre (1.8) to the
region $\frac{3}{4}\leq\sigma<1$ . In [30] we mentioned onidly the possibihty
that the asymptouc relation

$\int_{2}^{T}E_{\sigma}(t)^{2}dt\sim cT$
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may hold for $\frac{3}{4}<\sigma<1$ , but at present nothing is known in this
region except (2.2).

Motohashi gave a different proof of Preissmmn’s result[43],
from the viewpoint of additive divisor problem. This proof is
mentioned in the Notes of Chapter 2 of Ivi\v{c}[8]. In a pnvate
letter to the author, Motohashi presented the opinion that
Montgomery-Vaughan’s inequality gives upper-bounds only,
while the stmdpoint of addiuve divisor problem can give the
argument which may clarify the imer stmcmre of $F_{\sigma}(T)$ . In
fact, the latter standpoint is namraUy connecting with spectral
malysis (see Jud la’s arucle in the present Proceedings).
Therefore, Motohashi has suggested that spectral malysis will be
useful in the smdy of $F_{\sigma}(T)$ (md the corresponding object in the
strip $\frac{3}{4}\leq\sigma<1$ ). But in my case, it seems that there remains a
long way to the conjecmre (1.8) md the real figure of $F_{\sigma}(T)$

hidden beIund it.

3

In the above menuoned works$[34,N][36]$ , Motohashi
established the connection between the Riemmn-Siegel-type
formula of $\zeta^{2}(s)$ (due to Motohashi hmself) md Atkmson’s
formula. And consequently, he proved the $\dagger$ smoothed$\uparrow$ ’ version of
Atkmson’s formula. His argument includes $m$ altemative proof
of (a slight improvement $of\gamma$ the original formula of Atkmson. He
suggested one more Rerent proof of Atkmson’s formula in [39].

On this occasion we mention some other various versions md
generalizations of Atkmson’s method. An analogy of Atkinson’s
formula near $\sigma=\frac{1}{2}$ was considered by Laurm\v{c}ikas[26]. Let $l_{T}$

be real 2 tends to infimity monotonicaUy when $\tau$ tends to infin$ity$.
In [26], Launn\v{c}ikas proved the Atkmson-type formula for the
integral

$\int_{0}^{T}|\zeta(\sigma_{T}+it)|^{2}dt$ $( \sigma_{T}=\frac{1}{2}+\Gamma_{T}^{1})$ .

If we fix a $\tau$ , his result is notlung but the formula proved by the
author[28], and acmaUy his error $es0mmaate\alpha\log^{2}T$) is weaker
than ffie author’s $\alpha\log T$). However, in a private communication
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to the author, Launn\v{c}ikas wrote that his error term cm be made
as $\alpha\min(\ell_{T}/2,\log T)\log T)$ , hence in case $\ell_{T}\cong const.$ , it cm $b$

reduced to $O(\log T)$ . (Note that his result is proved under the
additional condition $l_{T}\leq c\log T.$ ) His main concem is ffie case
$f_{T}arrow\infty-$ as $rarrow\infty$ , because the motivauon of his work lies in his
researches on the $value- dist\dot{n}bution$ of $\zeta(s)$ .

Generalizauons of Atkmson’s method to $D\ddot{m}chlet$ $L$-funcuons
were studied by Meunnan md Motohashi in the middle of $1980s$.
Meuran[32] proved the Atkmson-type formula for

$\sum_{\chi m}J_{q^{0}}^{T}|L(\frac{1}{2}+it,\chi)|^{2}dt$,

where $L(s.\chi)$ is the Dmchlet L-funcuon associated with the
$D\ddot{m}chlet$ character $\chi$ , md the summation mns over $aU$

characters $\chi$ of modulus $q$ . Motohashi$[34,II][34_{2}III]\alpha eated$

the mem square of individual L-functions (The details are given
in [35] $)$ . Recently, Launn\v{c}ikas[27] obtained an analogue of
Meurm’s result[32] near the criucal lin$e$ .

Motohashi$[34_{2}I]$ discovered that Atkmson’s method cm be
modified so as to be useful for the smdy of the sum $\chi mdq\sum 1L(s,\chi)1^{2}$

,

md this idea has been developed and deepened by Katsurada-
Matsumoto[17][18] md Katsurada$[16_{2} I\prod[16,\Pi\prod$ (The results
proved in $[16_{2}I\mathbb{I}]$ are amounced in Katsurada[15]; see also his
summarizing $ar\mathfrak{a}cle[16_{2}N])$ . In this case Atkinson’s method is
effective not only in the critical smp, but also on the whole plane.
For instance, one of the results in [18] is the asymptotic expansion
of $\sum_{\chi m\alpha 1q}|L\langle 1.\chi)|^{2}$ with respect to $q$ , which is far better than the

former results (going back to Paley md Selberg; the hitherto best
result was due to Zhang). Katsurada-Matsumoto[19] [20][21]

found that ffie same method cm be applied to the (discrete and
also conmuous) mean squares of Humitz zeta-funcuons $\zeta(s,\alpha)$

with respect to the parameter $\alpha$ . For the details, see
Katsurada’s arucle in the present Proceedings.

Motohashi’s very important works (partly with Ivi\v{c}) on the
fourth power mean of $\zeta(s)$ and additive divisor problem can also
be regarded as a variant of Atkinson’s method (see his expository
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paper[39] $)$ . In $1980s$, there were two main $s$treams in mem
value theory of $\zeta(s)$ ; Atkmson’s $meffiod_{2}$ and applicauons of
Kuznetsov’s $\alpha ace$ formula. Motohashi’s theory is a splendid
combinauon of these two pnnciples. RecenUy, in the ffame of
his theory, Motohashi considered mean squares of other types of
$D\ddot{m}chlet$ senes. See [38] and his arucle in the presmt
Proceedings.

Motohashi nouced that the criucal propeny of the lme $\sigma=\frac{3}{4}$

also appears in the fomh power moment simation. See also
Ivi\v{c}[12].

Lastly in this secuon, we mention Kiuchi$\iota_{S}$ recent results, in
which some singular simauon again appears on the line $\sigma=\frac{3}{4}$ .
The mean square of the error tem in the approrimate funcuonal
equauon of $\zeta^{2}(s)$ was first considered by Kiuchi-Matsumoto[25]

(1992), and then smdied further by Kiuchi[22], Ivi\v{c}[10] and so on.
(Note that these works are based on Motohashi’s aformentioned
work on the Riemam-Siegel-type formula for $\zeta^{2}(s).)$ Recently,
Kiuchi[23] discovered that ffie main teim of this mean square
changes its figure at $\sigma=\frac{3}{4}$ , in the same mamer as in the case of
$E_{\sigma}(T)$ . (Quite recently, the author reflned the result of Kiuchi[23]

in case $-<\sigma\leq 1$ , which in parucular includes the proof of the fact
analogous to the conjecmre (1.8). $)$

Kiuchi’s another paper [24] considered the malogue of $Ivi\acute{c}’s$

result[7] on the integral

$\int_{0}^{T}E(t)^{2}|\zeta(\frac{1}{2}+il)|^{2}dt$

in case $-<\sigma<\iota$ , and obseived the possibihty that the shape of the
asymptotic formula may change on the lin$e\sigma=\frac{s}{8}$ . Is it tme that
such singular propmes of $E_{\sigma}(T)$ appear at $\sigma=\frac{5}{8},$ $\sigma=\frac{7}{8}$ , md at
my rauonal points whose denomnators are powers of 27 And
does it imply the chaouc property of the behaviour of $E_{\sigma}(T)$ , and
therefore, the behaviour of $\zeta(s)$ ? Obviously it is too early to
discuss such questions senously. But these observauons might
tell us that, from the viewpoint of mean value theorems, we now
catch the first sign of the abyss of zeta-fmction theory, which
may be infinitely deep.
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4

In the classical case of $\sigma=\frac{1}{2}$ , the best known $\Omega- res$ults for
$E(D$ are due to Hafner- Ivi\v{c}[4], which assert

(4. 1) $E(T)=\Omega_{+}(T^{1/4}(\log T)^{1l4}(\log\log T)^{(3+\log 4)/4}\exp(-c_{3}\sqrt{\log\log\log T}))$

(4.2) $E(D=\Omega_{-}$ $(T^{1/4}\exp$( $c_{4}(\log\log T)^{1/4}$(loglog log $T)^{-3/4}$ )$)$ .

How about $E_{\sigma}(T)^{7}$ We already menuoned that in the stnp
$-< \sigma<\frac{3}{4}$ , Ivi\v{c} improved the $author^{i}s$ result (D) to $ob\varpi in(1.4)$ .
On the lme $\sigma=\frac{3}{4}$ , it immediately follows from (2.1) that

(4.3) $E_{3/4}(D=\Omega(\sqrt{\log T})$ .

To obtain $s\alpha onger\Omega$ -results, a namral way is Qying to develop
the argument malogous to that of Haffier-Ivi\v{c} in the smp
$-< \sigma<\frac{3}{4}$ . As for $\Omega_{-}$ -case this method indeed works well, md we
cm prove

(4.4) $E_{\sigma}(T)=\Omega_{-}(T^{3/4-\sigma}\exp$ ( $c_{s}(\sigma)(\log\log T)^{\sigma-1/4}$(loglog $\log T)^{\sigma-5/4}$)$)$

$( \frac{1}{2}<\sigma<\frac{3}{4})$

(Ivi\v{c}-Matsumoto[13]). If we formaUy subsutute $\sigma=\frac{1}{2}$ into this
result, then it coincides with (4.2), so we cm say that (4.4)

completely corresponds to Hafner- Ivi\v{c}’s result.
The simple analogue of Haffier- Ivi\v{c}’s argument is not

successful for $\Omega_{+}$ -case. Nevertheless, Matsumoto-Meurman
$[31,III]$ succeeded to prove

(4.5) $E_{\sigma}(T)=\Omega_{+}(T^{3/4-\sigma}(\log T)^{\sigma-1/4})$ $( \frac{1}{2}<\sigma<\frac{3}{4})$ .

Putting $\sigma=\frac{1}{2}$ formaUy in this result, we obtain slightly weaker
result than (4.1), but the difference is just a power of log log $r$ ;
hence we may say that (4.5) is almost equivalent to the analogue
of (4.1). Thus we have both $\Omega_{+}$ and $\Omega_{-}$ -results which supersede
Ivi\v{c}’s (1.4).
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Since Ivi\v{c} knew the result (4.5) in the preprint of $[31,III]$ , he
claimed repeatedly in his letters that $m$ improvement of $\Omega_{-}-$

result is surely possible too, md it should be done by Meurmm or
the author. This pressure of Ivi\v{c} was the initial driving force of
the $\Omega_{-}$ -part of the joint research[13].

In the region $\frac{3}{4}<\sigma<1$ , we have no $\Omega$ -result. Meurmm has
the opimion that it is quite difficult to obtain any $\Omega$ -result in this
region. On the lme $\sigma=\frac{3}{4}$ , the only $\Omega$ -result we have known is
(4.3). Is it possible to improve this to obtain, for example,

(4.6) $E_{3/4}(D=\Omega_{f}(\sqrt{\log T})$

or such7 When a symposium on number theory was held at
Lillaf\"ured, Hungaiy, in June 1993, in a private discussion with
Ivi\v{c}, the author mentioned the problem of proving (4.6), as an
example of remaining problems which may be accessible.
However, frankly speakmg, the author has no new idea of
attackin$g(4.6)$ . The only tIung the author can say now is that
(4.6) is probably rather easier thm any $\Omega$ -result in $\frac{3}{4}<\sigma<1$ ,

which seems to be extremely difficult.

5

Besides the proof of $\Omega_{-}$ -result (4.4), Ivi\v{c}-Matsumoto[13]
carnes out a smdy on upper-bounds of $E_{\sigma}(T)$ . As we menuoned
earlier, this corrects the argument in Ivi\v{c}’s lecmre note[8], and
gives correct proofs of $(1.1)-(1.3)$ (md indeed better esomates).

The basic prmciple is the same as in $Ivi\acute{c}[8];$ combining the idea of
Motohashi[37] with the theory of exponent pairs. Let $(\kappa,\lambda)$ be
$m$ arbitrary exponent pair. The following two general estimates
are proved in the first version of Ivi\v{c}-Matsumoto[13].

THEOREM A. $Ler \frac{1}{2}<\sigma<1$ , and assume
(5.1) $\sigma\leq\min\{1+\frac{\kappa-\lambda}{2},\frac{1+\lambda}{2}-\frac{\kappa}{4}\}$.
TBeii $tbeeS\mathfrak{a}rare$

(5.2) $E_{\sigma}(T)\ll T^{(1-2\sigma+\kappa+\lambda)/(2\lambda+1)+\epsilon}$

Aolds.
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THEOREM B. $Ie \tau\frac{3}{4}\leq\sigma<1$ , an$d$ assume
(5.3) $1+(\kappa-\lambda)/2=\sigma$ .
TBen $tAe$ esOmate
(5.4) $E_{\sigma}(T)\ll T^{(2\lambda-1)/(4\sigma+4\lambda-2\kappa-3)+\epsilon}$

holds.

Remark 1. Theorem A is a $|co\Pi iected^{\dagger l}$ version of Theorem
2.11 of Ivi\v{c}[8]. However, a referee of Ivi\v{c}-Matsumoto[13]
suggested a way how to recover the original $s$tatement of
Theorm 2.11 of [8]. A revised version of [13] is now in
preparation.

Remark 2. Under the condiuon (5.3), we have
$2\lambda-1=\lambda+(\lambda-1)=(-2\sigma+2+\kappa)+(\lambda-1)=1-2\sigma+\kappa+\lambda$

and
$4\sigma+4\lambda-2\kappa-3=2(2\sigma-2-\kappa+\lambda)+2\lambda+1=2\lambda+1$ ,

therefore the exponent of $\tau$ in (5.4) is equal to the exponent in
(5.2).

If $(\kappa,\lambda)$ satisfies $\lambda=\kappa+\frac{1}{2}$ , then

$( \kappa_{0},\lambda_{0})=(\kappa+(\frac{1}{2}-\kappa)(\triangleleft\sigma-3), \frac{1}{2}+\kappa-\kappa(4\sigma-3))$ $( \frac{3}{4}\leq\sigma<1)$

is also an exponent pair, and Theorem $B$ can be applied because
$1+(\kappa_{0}-\lambda_{0})/2=\sigma$ . The consequence is

THEOREM C. If $\frac{3}{4}\leq\sigma<1$ and $(\kappa,\lambda)$ satisfies $\lambda=\kappa+\frac{1}{2}$ , ffien

(5.5) $E_{\sigma}(T)<<T^{4\kappa\langle 1-\sigma)/\langle 1+4\kappa-*\sigma)+\epsilon}$ .

Remark 3. The $\tau^{\epsilon}$ -factors in the above theorems are $aU$

replaced by certain powers of $\log T$ in [13], but here we omit this
point for simplicity.

Applyin$g$ Theorem A to the famous exponent pair $( \frac{9}{x}+\epsilon,\frac{37}{56}+\epsilon)$

of Bombieri-Iwaniec-Huxley-Watt, we obtain (1.2). Applying
Theorem $C$ to the same $e\Psi onent$ pair, we obtain
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(5.6) $E_{\sigma}(T)\ll T^{9(1-\sigma)/(23-*r)+\epsilon}$ $( \frac{3}{4}\leq\sigma<1)$ .

The esomates (1.2) and (5.6) combined clearly improve (1.1).
The $esm$nate (1.2) can be improved if we use the $e\varphi onent$ pair
$( \frac{89}{s70}+\epsilon,\frac{89}{570}+\frac{1}{2}+\epsilon)$ , obtained recenUy by HuXley[6]. In [13], an
esOmate better than (1.3) is also proved.

The esomate

(5.7) $E_{\sigma}(T)\ll T^{2\langle 1-\sigma)/3+\epsilon}$ $( \frac{1}{2}<\sigma<1)$ ,

far stronger than (1.1), is also included in $7heorems$ A-C. This
coniesponds to the classical esomate $E(D<<\tau^{1/3+\epsilon}$ for $\sigma=\frac{1}{2}$ .
The consequence (5.7) is not included in the first version of [13],
but it was $s$tated md proved in the author’s talk at Kyoto
Symposium, Oct. 1993. To prove (5.7) we merely note that
applying Theorem A to the classical pair $( \frac{1}{14},\frac{11}{14})$ (the usefulness of
this pair was first suggested by Meumm), we have

$E_{\sigma}(T)<<T^{\langle 13-14\sigma)/18+\epsilon}$ $( \frac{1}{2}<\sigma\leq\frac{9}{14})$ ,

hi tr an
is covered by (1.2) and (5.6).

Some other choices of pairs, such as $( \frac{1}{30},\frac{2\text{\’{o}}}{30})$ , give better
esOmates for $\sigma$ near -. In fact, various choices of exponent
pairs would give various estrates of $E_{\sigma}(T)$ , and some of which
would improve the above esumates in some rmge of $\sigma$ . The
referee of [13] suggested a way of choosing a senes of pairs, which
gives good esumates when $\sigma$ is near 1. It is also possible to
give slight improvements, by using the theory of two-dimensional
exponent pairs. However, as usual, obtainable results are far
from the $esm$nate which is expected to be $mle$. We cm
conjecmre

(5.8) $E_{\sigma}(T)\ll\{\begin{array}{l}T^{3/4-\sigma+\epsilon}(\frac{1}{2}<\sigma<\frac{3}{4})T^{\epsilon}(\frac{3}{4}\leq\sigma<1)\end{array}$

supported by $\Omega$ -results $((1.4),etc.)$ . If we assume the very
$s\alpha ong$ conjecmre that $( \epsilon,\frac{1}{2}+\epsilon)$ would be an exponent pair for
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my $\epsilon>0$ , then (5.8) would follow from Theorems A md C. But
the latter conjecmre would even lead the Iindel\"of hypothesis
$\zeta(\frac{1}{2}+tt)<<(1+|t|)^{\epsilon}$ , md so it is almost hopeless to obtain a proof of it
in the near fumre. The conjecmre (5.8) corresponds to the
classical (md is believed to be quite difficult) conjecmre

$E(D<<T^{1/4+\epsilon}$

on the lin$e\sigma=\frac{1}{2}$ . It is to be noted that (5.8) again indicates the
critical propeny of the line $\sigma=\frac{3}{4}$ , on which the behaviour of
$E_{\sigma}(T)$ changes.

Sometres it is observed that the two estinate$sE(D<<\tau^{\theta+\epsilon}$

and $\zeta(\frac{1}{2}+it)<<(1+|t|)^{\theta/2+\epsilon}(\theta>0)$ can be obtained in srilar
mamers. It is namral to expect that the same connecuon may
exist between $E_{\sigma}(T)$ and $\zeta(\sigma+it)$ $(- <\sigma<1)$ . This is just a
phenomenon, and not an established principle; but if we $mst$ this
obseivation, we can formulate the conjecmre, corresponding to
(5.8), that

(5.9) $\zeta(\sigma+it)\ll\{\begin{array}{l}(l+|t|)^{3/8-\sigma/2+\epsilon}(\frac{1}{2}<\sigma<\frac{3}{4})(1+|t|)^{\epsilon}(\frac{3}{4}\leq\sigma<1)\end{array}$

md these estimates would give the real order of the magnimde of
$\zeta(\sigma+it)$ . The latter half of the conjecmre means that

(5.10) $\mu(\sigma)=\{\begin{array}{ll}\frac{3}{8}-\frac{\sigma}{2} (\frac{1}{2}<\sigma<\frac{3}{4})0 (\frac{3}{4}\leq\sigma<1),\end{array}$

where

$\mu(\sigma)=\lim_{tarrow}\sup_{\infty}\frac{\log^{1}\zeta(\sigma+it)1}{\log t}$ .

It is probably Ivi\v{c}[12] who first stated this conjecmre explicitly.
The conjecmre (5.8) on $E_{\sigma}(T)$ is supported by $\Omega$ -results,

while (5.10) has no such reinforcing fact. Moreover, the Lindel\"of
hypothesis implies

(5.11) $\zeta(\sigma+it)*(1+1t1)^{\epsilon}$ $( \frac{1}{2}\leq\sigma<1)$ ,
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hence (5.10) contradicts with the Lindel\"of hypothesis, therefore
with the Riemam hypothesis. Nevertheless, it is perhaps not a
wise way to throw over (5.10) immediately. It may be
peritted to say that the certainty of the Lindel\"of hypothesis
(5.11) in case $\frac{1}{2}\leq\sigma<\frac{3}{4}$ is not so complete as in case $\frac{3}{4}\leq\sigma<1$ .
When the author gave a talk on the contents of Matsumoto-
Meurman$[31,m]$ at G\"otmgen, Germany, in Sept. 1992, $JuOla$

raised a question, in which he mentioned the possibihty that $\zeta(s)$

may acmaUy have zeros on the lme $\sigma=\frac{3}{4}$ , and consequently it
may follow that $\mu(\frac{1}{2})\geq\frac{1}{8}$ . In a different context, Motohashi[39]

also presents a doubt about the Riemann hypothesis, from the
viewpoint of mean value theory.

After the author’s talk at Kyoto Symposium, EUiott said
(probably as a joke) “Now the Riemann hypothesis is more famous
than the conjecmre (5.10). But 2000 years later, the Riemann
hypothesis will be a conjecmre of 2100 years ago, and (5.10) of
2000 years ago, so there $wiU$ be no big difference!’\dagger We may
interpret that this opmion of Elhott includes the conjecmre that
the Riemam hypothesis will not be settled in the comng 2000
years. If this conjecmre would be $mle$, it would also be a long
$ume$ later when one knows whether (5.10) is tme or not. Since
the author is not so bold as to discuss mathematics of the 40th
cenmry, it is better to stop here.
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