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ON THE FUNCTION E,(T)

Kohji MATSUMOTO  ( A4 % ##=)

Department of Mathematics, Faculty of Education,
Iwate University, Ueda, Morioka 020, Japan

The error term function for the mean square of the Riemann
zeta-function ¢£(s) in the strip 3 < o(=Res) <1, defined by

i N _ 20—1@(2-_20;) 2-20
E,(T) = {,1&(o +ir) Pd1 - §(20)T - (2m) T %
~ was first introduced by the author[Z 8] in 1989, so it has relatively
short history.  However, much subsequent researches have
followed after [28], and now, we can draw the basic picture of the
behaviour of this function. Originally, the function E,(T) was

introduced as the analogue of the error term function ET7) on the
line o =1, which is defined by

ET) = ﬂfl EG+inI* dt - T(log% +2y-1)

(where y denotes Euler's constant). Now we have almost all
results on E,(T), which are naturally expected to be obtained
analogously to the case of ET); and the remaining problems seem
to be rather difficult. = In other words, the first step of research
of E (T) is now going to be completed. Therefore, it seems that
this volume is a place appropriate to summarize the results which
have been obtained, and discuss the problems which should be
challenged.
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First we list up the results proved by the author[28].
(A) The explicit formula of Atkinson-type for E (T) ({<o<32).

(B)" E,(T) = O(T""**10g’T) (<o <3).
(C) f:Ea(t)’dt e G @T T + (T logT) (L<o<2).

(D) E(T)=XT>*°) (f<o<2).

(E) The observation of the singular behaviour of E (T) on the
line o-=3.

The formula (A) can be proved analogously to the original
argument of Atkinson[1]. The results (B) and (C) can be deduced
from (A), by applying the methods of Jutila[14] and Heath-Brown
[S], respectively. The result (D) is a direct corollary of (C). The
restriction ;<o <3 comes from the criterion of the convergence
of Oppenheim's Voronoi-type formula, and the new phenomenon
(E) was discovered in connection with this restriction.

All of these results (A)-(E) have been improved in subsequent
researches. First of all, it is obviously unsatisfactory that there is
the restriction {<o<2. Theregion 2=<o<1 was first cultivated
by Motohashi[37](1990), who proved that the estimate (B) holds
for any o satisfying +<o<1. (The article [37] is unpublished,
but the contents of [37] are included in Ivic's lecture note[8].)

Next, in Chapters 2 and 3 of the lecture note mentioned above,
IviC carried out a detailed study of E (7). In Chapter 2, Ivi¢
first presented the detailed proofs of the above (A)-(D) and the
result of Motohashi[37], and then, he tried to give further
improvements on upper-bounds of E (T) (;< o <1), by combining
the idea of Motohashi [37] with the theory of exponent pairs.

The main theorem is Theorem 2.11 of [8], and, as corollaries, the
following estimates are deduced:
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(1.1) E(M < T (f<o<l),
(1.2) E(T)< TC"*'®* (L<gs2),
(1.3) E(T)« T (Loos<i),

However, the author pointed out that there is an error in the proof
of Theorem 2.11 in [8]. This gap has essentially been recovered
quite recently by Ivic-Matsumoto [13], in which the correct proofs
of the above (1.1)-(1.3) are given. We will discuss the details
later. '

In Chapter 3 of [8], Ivic introduced the function

G,(T) = [(E,()-BoNdi  (4<o<3).

Here, B(o) is the quantity which appeared in Ivic's this research,
and independently, in the joint research[31,II] of Meurman and
the author. At first this quantity was introduced as the following
complicated expression: '

B(o) =£20 - 20 - D, { 4 g(;‘:lj)“) + L 1(}(;? :fu';‘) - 2u" sin(no)}du

w(1-20)E(2-20)2x)* "
N I’'(20)sin(o)

((3.3) of Ivic[8)]), but now it is known that
B(o) = -2x£(2o-1)

(see Appendix of Matsumoto-Meurman([31,IT]). In Chapter 3 of
[8], Ivic developed a detailed study of G (T),and,asa

consequence, he proved

(14) E(T)=Q.(T**°) ($<o<2).

Here we recall the meaning of notations. The notation
f(x) =Q, (g(x) (resp. f(x) =2 (g(x))) means that there exist a
constant ¢>0 and a sequence {r,} with x, -, such that



f(x,) >cg(x,) (resp. f(x,) <-cg(x,)) holds for any »n. The notation
f(x) = 2,(g(x)) means that both f(x) = 2 (g(x)) and f(x) = Q (g(x))
are valid, and f(x) = Q(g(x)) means | f(x)|= Q,(g(x)).

Obviously Ivic's (1.4) gives an improvement on (D).

In the same chapter of IviC's lecture note, the estimate

(1.5) GT)=0(T"*") (3<0<3)

is proved((3.39) of [8]), which clarifies the meaning of the
quantity B(o). In fact, from this estimate and the definition of
G,(T), it immediately follows that

(1.6) f:Ea(t)dt = B(O)T + (T*'*™°) (1<o<3).

This formula implies that in a sense, B(o) is a "mean value" of
E (T) (as Matsumoto-Meurman[31,II] pointed out independently).
Incidentally, Ivic also proved G, (T)=Q,(T*'**°) in [8], hence with
(1.5), he completely determined the order of G_(T).

The aim of Matsumoto-Meurman's paper[31,II], which we
mentioned above several times, is to improve the error estimate
in (C). Put | -

F T _ r 2 _ 5/2-20 1 3
( )—LEo(t) dt-c,(o)T (2 <o<3).

Then, the main result of [31,II] is

(17) EM=0T) (;<o0<3),

which obviously improves (C). In Sept. 1989, a symposium on
analytic number theory was held at Amalfi, Italy, and both
Meurman and the author attended there. In a private
conversation at Amalfi, Meurman showed an interest in the
author's work[28]. Therefore, after returning to Japan, the
author sent him a reprint of [28]. In his response Meurman
suggested the possibility of improving (C) by using the method of
his paper[33]. This was the starting point of the joint research of
Meurman and the author, and when Ivic visited Japan at the end
of 1990, the estimate F,(T)= O(Tlog*T), slightly weaker than (1.7),
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had been obtained. The author gave a talk on this result at Nihon
University, in front of Ivic.  This is the result mentioned in the
Notes of Chapter 2 of Ivic[8]. | |

The improved form (1.7) is proved in Matsumoto-Meurman
[31,II]. In the same paper, the conjecture

(1.8) F(T)~ Blo)'T (L<o<?)

is proposed, and if this conjecture would be true, then (1.7) would
be best-possible. See also [29][30]. The basis which supports
the conjecture (1.8) is not so firm, but for example, the following
heuristic argument is possible. From (C) we have

j;T(Ea(t) _a)zdt ~ CI(G)TSIZ_za

for any real a. Let
A(T) = [{(E,(0)- o dt - c,()T** .

One natural candidate for ¢ which minimizes A (7) is B(o), the
"mean value" of E (T). Putting « =B(o), and noting (1.6), it

follows that

A(T) = j;TEa(t)Zdt -2B(o) LTEo(t)dt+ BO)(T - 2) - ¢,(@)T5'*2°

= E(T) -2B(0){B()T + AT*'*~*)} + B(o)’T
= F(T) -B(0)’T +O(T*'*™°),

hence (1.8) is required to minimize the order of T. Ivic has the
opinion that the conjecture (1.8) is plausible, but the truth is still
in mist.

2

When Ivi¢ was staying at Japan in 1990, he stressed that a
"unified approach” to mean value theory in the strip ;<o =<1 is

desirable. His talk at Paris[9] is also based on the same principle.
A "unified approach” should include the cases of =4 and o-=1.



The case o =3 is classical, and has been studied extensively from
1920s. Itis easy to show that

lim_E,(T) = E(T)

((2.3) of [8]). On the other hand, a deep study of the case o =1
was first carried out by a joint work of Balasubramanian, Ivi¢ and
Ramachandra[2](1992); they proved the asymptotic formula:

"1 &1+ it) Pdt = E()T - wlog T + R(T)
1

with R(T) = O((logT)*"*(loglogT)"?), and also obtained mean value
resultson R(T). Thelimitof E(T) (as o— 1) is connected

with R(T) by the formula

20-18(2 - 20)

lim {c(za)r +(27) T 1)} _E@T-mlogT ,
o-41-0 2-20

as is shown in Ivic[9]. On various related mean values on the
line o =1, see Ivic[11], Nakaya[40][41], and Balasubramaman
Ivic-Ramachandraj3].

The remaining strip 2<o<1 is most difficult to study. In
the previous section we already mentioned that Motohashi's
method[37] gives a tool of obtaining upper-bounds of E,(T) for
2<o0<1. However, in order to develop further studies , it is
strongly desirable to prove Atkinson-type explicit formula in this
strip.  This was done by Matsumoto-Meurman(31,1IT}(1993).
The basic idea of the proof in [31,III] is also explained in [30].

Moreover, in Matsumoto-Meurman[3 1,III] the mean square of
E (T) for 2<o0<1 isstudied, and

(2.1) f: E, ,(t)dt = c,TlogT + O(T(logT)'"?),
(22) [EW@d=-0T) (3<o<1)

are proved. It is to be noted that, to prove such sharp results as
(1.7), (2.1) and (2.2), we need the following three tools. First, the
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 "averaging" idea of Meurman [33]; the same idea was also
invented, independently, by Motohashi[34,IV][36]. Second,
Preissmann's technique[43] of using Montgomery-Vaughan's
inequality; this idea was originally introduced by Preissmann[42].
Ivic also gave the same result as in [43] (independently, but
inspired by [42]) in his talk at Vancouver symposium in 1989, and
in his lecture note ((2.100) of [8]). The third tool is the mean
value theorem of Dirichlet polynomials. ’

A digressive talk. Preissmann[43] was published in 1993, but
the preprint had already been completed around 1988. This
delay is because [43] was submitted to J. Number Theory, and was
left there (on editor's desk?) three years long. Finally
Preissmann found another place to publish. It is well-known
- that J. Number Theory causes many similar troubles. For
example, Matsumoto-Meurman[31,1I] was submitted to J. Number
Theory in March 1992, but there was no correspondence from the
editors. Meurman wrote a letter of inquiry in March 1993, but
no answer again. And finally, as the response to the author's
recent inquiry(November 1993), they replied "We have no record
of your paper". o

We can observe that (2.1) and (2.2) establish clearly the
singular property of E (T) on theline o =32, which was first

pointed out by the author[28]. In fact, the coefficient

20-3/2 &2 /
2(2m) £ 3/2) E(E - 20)EE + 20)

5-40 A3

c,(0) =

of the main term in (C) is divergent when oc—32-0,andon o=2
the figure of the main term is changed as in (2.1). .

We do not know how to extend the conjecture (1.8) to the
region ¢s<o<1. In [30] we mentioned timidly the possibility

that the asymptotic relation

7; 2
f2 E () dt ~cT



may hold for 2< o <1, but at present nothing is known in this
region except (2.2).

Motohashi gave a different proof of Preissmann's result[43],
from the viewpoint of additive divisor problem. This proof is
mentioned in the Notes of Chapter 2 of Ivic[8]. In a private
letter to the author, Motohashi presented the opinion that
Montgomery-Vaughan's inequality gives upper-bounds only,
while the standpoint of additive divisor problem can give the
argument which may clarify the inner structure of F (7). In
fact, the latter standpoint is naturally connecting with spectral
analysis (see Jutila's article in the present Proceedings).
Therefore, Motohashi has suggested that spectral analysis will be
useful in the study of F,(T) (and the corresponding object in the
strip 2<o0<1). Butin any case, it seems that there remains a
long way to the conjecture (1.8) and the real figure of F,(T)

hidden behind it.

In the above mentioned works[34,IV][36], Motohashi
established the connection between the Riemann-Siegel-type
formula of £*(s) (due to Motohashi himself) and Atkinson's
formula. And consequently, he proved the "smoothed" version of
Atkinson's formula. His argument includes an alternative proof
of (a slight improvement of) the original formula of Atkinson. He
suggested one more different proof of Atkinson's formula in [39].

On this occasion we mention some other various versions and
generalizations of Atkinson's method. An analogy of Atkinson's
- formula near o =3 was considered by Laurincikas[26]. Let ¢,
be real , tends to infinity monotonically when 7 tends to infinity.
In [26], Laurincikas proved the Atkinson-type formula for the
integral '

fj Eop+iNPdt (op=Lt+6).

If we fix a T, his result is nothing but the formula proved by the
author[28], and actually his error estimate O(log’T) is weaker
than the author's O(log7). However, in a private communication

17



18

to the author, Laurincikas wrote that his error term can be made
as O(min(¢,/2,logT)logT), hence in case ¢, =const., it can be
reduced to O(logT). (Note that his result is proved under the
additional condition ¢, = clogT.)  His main concern is the case
£, — o as T - o, because the motivation of his work lies in his
researches on the value-distribution of £(s).

Generalizations of Atkinson's method to Dirichlet L-functions
were studied by Meurman and Motohashi in the middle of 1980s.
Meurman([32] proved the Atkinson-type formula for

T 1 . 2
Y [,1 LG +it,x)I" d,
r4 q9

where L(s,x) is the Dirichlet L-function associated with the
Dirichlet character y , and the summation runs over all
characters y of modulus g. Motohashi[34,1I][34,III] treated
the mean square of individual L-functions (The details are given
in [35]). Recently, Laurincikas[27] obtained an analogue of
Meurman's result[32] near the critical line.

Motohashi[34,I] discovered that Atkinson's method can be
modified so as to be useful for the study of the sum El Ls,x) P,

xmodg
and this idea has been developed and deepened by Katsurada-
Matsumoto[17][18] and Katsurada[16,II][16,III] (The results
proved in [16,I1I] are announced in Katsurada[15]; see also his
summarizing article[16,IV]). In this case Atkinson's method is
effective not only in the critical strip, but also on the whole plane.

For instance, one of the results in [18] is the asymptotic expansion
of El L(1,x)  with respect to g, which is far better than the

xmodg

former results (going back to Paley and Selberg; the hitherto best
- result was due to Zhang). Katsurada-Matsumoto[19][20][21]
found that the same method can be applied to the (discrete and
also continuous) mean squares of Hurwitz zeta-functions &(s,a)
with respect to the parameter a. For the details, see
Katsurada's article in the present Proceedings.

Motohashi's very important works (partly with Ivi¢) on the
fourth power mean of £(s) and additive divisor problem can also
be regarded as a variant of Atkinson's method (see his expository
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paper[39]). In 1980s, there were two main streams in mean
value theory of £(s); Atkinson's method, and applications of
Kuznetsov's trace formula. Motohashi's theory is a splendid
combination of these two principles. Recently, in the frame of
his theory, Motohashi considered mean squares of other types of
Dirichlet series.  See [38] and his article in the present
Proceedings.

Motohashi noticed that the critical property of the line o =
also appears in the fourth power moment situation. See also
Ivic[12].

Lastly in this section, we mention Kiuchi's recent results, in
which some singular situation again appears on the line o =3.
The mean square of the error term in the approximate functional
equation of £*(s) was first considered by Kiuchi-Matsumoto[25]
(1992), and then studied further by Kiuchi[22], Ivi¢[10] and so on.
(Note that these works are based on Motohashi's aforementioned
work on the Riemann-Siegel-type formula for &(s).) | Recently,
Kiuchi[23] discovered that the main term of this mean square
changes its figure at o =2, in the same manner as in the case of
E (T). (Quite recently, the author refined the result of Kiuchi[23]
in case %< o =1, which in particular includes the proof of the fact
analogous to the conjecture (1.8).) |

Kiuchi's another paper [24] considered the analogue of Ivic's
result[7] on the integral

T
[, E@ 1 EE+i) P dt

in case %< o<1, and observed the possibility that the shape of the
asymptotic formula may change on the line o=4£. Isit true that
such singular properties of E, (T) appear at o=%, o=1, and at
any rational points whose denominators are powers of 2?7  And
does it imply the chaotic property of the behaviour of E (T), and
therefore, the behaviour of {(s)? Obviously it is too early to
discuss such questions seriously. But these observations might
tell us that, from the viewpoint of mean value theorems, we now
catch the first sign of the abyss of zeta-function theory, which
may be infinitely deep.
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4

In the classical case of o =1, the best known Q-results for
E(T) are due to Hafner-1Ivi¢[4], which assert

(4.1) ET) =Q (T"*(ogT)" *(loglogT)**'**'* exp(-c,4flogloglogT))

-3/4

(4.2)  ET) = Q_(T"*exp(c,(loglog T)" *(logloglog 1) >'*)).

How about E (T)? We already mentioned that in the strip
7 <o <3, Ivic improved the author's result (D) to obtain (1.4).
On the line o =2, it immediately follows from (2.1) that

(4.3) E, (D =QflogT).

To obtain stronger Q -results, a natural way is trying to develop

the argument analogous to that of Hafner-Ivi¢ in the strip
r<o<%. Asfor Q -case this method indeed works well, and we

can prove

(4.4)  E (T)=9Q_(T** exp(cy(o)(loglog T)°"'*(logloglog T)°"*'*))
| (f<o0<2)

(Ivic-Matsumoto[13]). If we formally substitute o =% into this

result, then it coincides with (4.2), so we can say that (4,4)
completely corresponds to Hafner-Ivic's result.

The simple analogue of Hafner-Ivic's argument is not
successful for Q_ -case. Nevertheless, Matsumoto-Meurman

[31,IIT] succeeded to prove
(4.5) E @)=, °UogT)’ ™" (t<o <3)-

Putting o =4 formally in this result, we obtain slightly weaker
result than (4.1), but the difference is just a power of loglogT;
hence we may say that (4.5) is almost equivalent to the analogue
of (4.1). Thus we have both Q, and Q_-results which supersede
Ivic's (1.4). :
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Since Ivic knew the result (4.5) in the preprint of [31,III], he
claimed repeatedly in his letters that an improvement of Q_-
result is surely possible too, and it should be done by Meurman or
the author. This pressure of Ivic was the initial driving force of
the Q_-part of the joint research[13].

In the region %< o<1, we have no Q-result. Meurman has

the opinion that it is quite difficult to obtain any Q-result in this
region. On theline o =32, the only Q-result we have known is

(4.3). Isitpossible to improve this to obtain, for example,
(4.6) E, (1) =Q,(flogT)

or such? When a symposium on number theory was held at
Lillafiired, Hungary, in June 1993, in a private discussion with
Ivic, the author mentioned the problem of proving (4.6), as an
example of remaining problems which may be accessible.
However, frankly speaking, the author has no new idea of
attacking (4.6). The only thing the author can say now is that
(4.6) is probably rather easier than any Q-resultin <o<1,

which seems to be extremely difficult.
5

Besides the proof of Q_-result (4.4), Ivic-Matsumoto[13]
carries out a study on upper-bounds of E, (T). As we mentioned
earlier, this corrects the argument in Ivic's lecture note[8], and
gives correct proofs of (1.1)~( 1.3) (and indeed better estimates).
The basic principle is the same as in Ivic[8]; combining the idea of
Motohashi[37] with the theory of exponent pairs. Let (x,A) be
an arbitrary exponent pair. The following two general estimates
are proved in the first version of Ivic-Matsumoto[13]. '

THEOREM A. Let ;<o <1, and assume
(5.1) osmin{l+’cnk1+;L K}

2 T2 af
Then the estimate
(5.2) E (T) « TO 204 +P/@hsDe

holds.
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THEOREM B. Let %=<o0 <1, and assume
(5.3) 1+x-A)/2=0.

Then the estimate
(5.4) E(T) « T@A-D o+ 4h-2x-3) +e

holds.

Remark 1. Theorem A is a "corrected" version of Theorem
2.11 of Ivic[8]. However, a referee of Ivic-Matsumoto[13]
suggested a way how to recover the original statement of
Theorem 2.11 of [8]. A revised version of [13] is now in
preparation. |

Remark 2. Under the condition (5.3), we have

2A-1=A+(A-D) =(-20+2+Kk)+(A-1) =1-20+Kx + A
and _

40+4A -2k -3 =2Q20-2 -k +A)+2A +1=2A +1,
therefore the exponent of T in (5.4) is equal to the exponent in
(5.2). '

If (x,A) satisfies A=« +3, then
(Kg.Ap) = (K +(3 —Kk)(do -3), 2 +x —k (40 - 3)) (3<o0<1)

is also an exponent pair, and Theorem B can be applied because
1+(x,~-4,)/2=0. The consequence is

THEOREM C. If $=so<1 and (x,A) satisfies A=x +3, then
(5-5) E (T) <« T4x(l'°)/(l+4"'4'f0)+e.

Remark 3. The T -factors in the above theorems are all
replaced by certain powers of logT in [13], but here we omit this

point for simplicity.

Applying Theorem A to the famous exponent pair (Z + &,Z + ¢)
of Bombieri-Iwaniec-Huxley-Watt, we obtain (1.2). Applying
Theorem C to the same exponent pair, we obtain
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(56) E (1)« T9(1'“)/(?'3'9“)+8 (2so<1).

The estimates (1.2) and (5.6) combined clearly improve (1.1).
The estimate (1.2) can be improved if we use the exponent pair
(& +¢,%5 +1 +¢), obtained recently by Huxley[6]. In [13], an
estimate better than (1.3) is also proved.

The estimate

(5.7) E ()« T*P* (L<o<l),

far stronger than (1.1), is also included in Theorems A-C. This
corresponds to the classical estimate ET) << T''**° for o=4.
The consequence (5.7) is not included in the first version of [13],
but it was stated and proved in the author's talk at Kyoto
Symposium, Oct. 1993. To prove (5.7) we merely note that
applying Theorem A to the classical pair (%,4) (the usefulness of

this pair was first suggested by Meurman), we have
EO(T) <« T(13—14o)/18+s (% <Oos< %)’

which is stronger than (5.7) for t<o=<2. The remaining region
is covered by (1.2) and (5.6). |

Some other choices of pairs, such as (sx,%), give better
estimates for o near ;. In fact, various choices of exponent
pairs would give various estimates of E,(T), and some of which

would improve the above estimates in some range of o. The
referee of [13] suggested a way of choosing a series of pairs, which
gives good estimates when o isnear 1. Itis also possible to
give slight improvements, by using the theory of two-dimensional
exponent pairs. However, as usual, obtainable results are far
from the estimate which is expected to be true. We can
conjecture

3/4-0+¢€ (% <0.<%)

T* G so<l),

(5.8) ET)< {

supported by Q-results ((1.4),etc.). If we assume the very
strong conjecture that (e,++¢) would be an exponent pair for
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any £>0, then (5.8) would follow from Theorems A and C. But
the latter conjecture would even lead the Lindel6f hypothesis
EG+ir) < (1+11 ), and so it is almost hopeless to obtain a proof of it
in the near future. The conjecture (5.8) corresponds to the
classical (and is believed to be quite difficult) conjecture

E(D << Tl/4+s

on the line o=%. Itis to be noted that (5.8) again indicates the
critical property of the line o =2, on which the behaviour of
E, (T) changes.

Sometimes it is observed that the two estimates E(7) «< T™*
and ¢@+it) < (1+1¢)%'*** (©>0) can be obtained in similar
manners. Itis natural to expect that the same connection may
exist between E (T) and (o +it) (<o <1). Thisisjusta
phenomenon, and not an established principle; but if we trust this
observation, we can formulate the conjecture, corresponding to
(5.8), that

1+|t‘)3/8—a/2+£ (%<O'<%)

. ] (
(5.9) 5(0+lt)«{ (1+ 121 Eso<),

and these estimates would give the real order of the magnitude of
&(o +it). The latter half of the conjecture means that

o

(5.10) o ={ 5

1 3
(<0<

(% so<l),
where

) it) |
u(o) = limsup——————logl Clo+it) .
t— logt

It is probably Ivic[12] who first stated this conjecture explicitly.

The conjecture (5.8) on E,(T) is supported by Q-results,
while (5.10) has no such reinforcing fact. Moreover, the Lindelof
hypothesis implies

(5.11) &(o +it) < (1+12)° (3s0<1),



hence (5.10) contradicts with the Lindelof hypothesis, therefore
with the Riemann hypothesis. Nevertheless, it is perhaps not a
wise way to throw over (5.10) immediately. It may be
permitted to say that the certainty of the Lindel6f hypothesis
(5.11) in case <o <2 isnotsocomplete asin case 2<o<l.
When the author gave a talk on the contents of Matsumoto-
Meurman[31,III] at Gottingen, Germany, in Sept. 1992, Jutila
raised a question, in which he mentioned the possibility that £(s)
may actually have zeros on the line o =32, and consequently it
may follow that wi) =%. In a different context, Motohashi[39]

also presents a doubt about the Riemann hypothesis, from the
viewpoint of mean value theory.

After the author's talk at Kyoto Symposium, Elliott said
(probably as a joke) "Now the Riemann hypothesis is more famous
than the conjecture (5.10). But 2000 years later, the Riemann
hypothesis will be a conjecture of 2100 years ago, and (5.10) of
2000 years ago, so there will be no big difference!" We may
interpret that this opinion of Elliott includes the conjecture that
the Riemann hypothesis will not be settled in the coming 2000
years. If this conjecture would be true, it would also be a long
time later when one knows whether (5.10) is true or not. Since
the author is not so bold as to discuss mathematics of the 40th
century, it is better to stop here.
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