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1. Introduction

" In this paper we shall describe recent topics on the compressible Euler equation and

the relativistic Euler equation for the multidimensional case. The compressible Euler -

equation for an isentropic gas in R" is given by

p:+Z (pu;) =0,
(1.1)

(pu;)f + Z W (puiwj + bip) = pfi, (1=1,2,---,n)
j=1 "7

with the equation of state ‘
(1.2) - p=adp,

where the density p, velocity u =' (u;, ua,- -+, u,) and pressure p are functions of x € R"
and ¢ > 0, while f is a.given external force and a > 0 and v > 1 are given constants.

This is a typical example of conservation laws and has attracted many mathematicians.
In particular, for the one dimensional case ( n=1 ), the Cauchy problem for (1.1) with
(1.2) has been studied extensively.

On the other hand, little is known for the case n > 2. No global solutions are known
to exist, but only local classical solutions, in the full generality.

In 1992, we have presented global weak solutions first for the case n > 2. We have
done this, however, only for the case of spherically symmetry with v = 1 in the domain

" outside a unit ball.

However, we could not coutent ourselves since our class of initial data does not contain
stationary solutions. In 1993 we have shown that if we use a non-uniform mesh chosen
carefully, Glimm’s method still works and gives global weak solutions for the initial data
in the class containing the stationary solutions. We shall explain these results and related
topics in section 2. It was observed in [13] that these stationary solutions are qtable if
initial data are sufficiently close to these solutions.

For the case v > 1, our method can’t be applied. T. Makino and S. Takeno have
proved, by using »(~()1npensated'(-01111)ac-tuéss method, the existence of temporally local
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weak solution for (1.1) with spherical symmetry in [2]. Recently we have known that
Glimm and Chen have succeeded to prove the existence. of global wealk solution for (1.1)
with spherical svmmetry. For viscous barotropic gas M. Okada and T. Makino [10] have
proved the existence of global solutions.

Next, let us consider the relativistic Euler equation describing a motion of perfect fluid
in special relativity. The relativistic Euler equation for an isentropic gas in the Minkowski
space-time is given by ‘

o [p2+p 1 D 200 [(pP+p oy
— — - — —— ] =0,
at < 2 w- 2 + Z 817,f > uw- .

(1 3) & = e i=1 Cz - 2
' a (pt+p v 3.0 (pP+p wu .
== — - - s+ 0;p) =0, (1 =1,2,3),
ot ( C.-z 1— % +j§ alfj Cg — :_5_ + 3§D ( )

with the equation of state
(1.4) | p=oa’p,
where the density p, velocity u =" (uy, us,u3) and pressure p are functions of = € R3
and ¢ > 0, while ¢ is the speed of the light and ¢ is the speed of the sound which are
conqtanrs According to the relativistic theory, o never exceeds c. Especially, the case
02 = & is important in the context of the physics. If ¢ — oo, (1.3) reduces to the classical
compressible Euler equation (1.1). v

In 1993, Smoller and Temple [11] have constructed uniformly bounded weak solu-
tions for 1 dimensional case by using Glimm's method. After constructing approximate
solutions, they have showed that the variation of log p is monotone decreasing.

In 1994, T.AMakino and S.Ukai [3] have proved, by using Lax’s theorem, the existence of
the local classical solutions for (1.3). Recently we have constructed global weak solutions
for (1.3) with spherical symmetry. we shall explain this result in section 3.

2. Global weak solution for the compressible Euler equation

In this section we shall present our recent results on the compressible Euler equatlon
with spherical symmetry. We look for solutions of the form

x
(2.1) p=pt]x]), @= ] - u(t, |x]).
Then, denoting r = |2, (1.1) with f = 0 becomes

1 n—1 ) =0
(2.2) M+ 17‘—‘(' pu) =0,

pluy +uww.) +p. =0.

This equation has a singularity at r=0. To avoid the difficulty caused by this singularity,
we simply deal with the boundary value problem for (2.2) in the domain 1 < 7 < 0o ( the
exterior of a sphere) with the boundary condition wu(t, 1) = 0, which is identical, under
the assumption (2.1), to the usual boundary condition ii- & = 0 for (1.1) where 7 is the
unit normal to the boundary.

Put p = 1"~ p. Then we get from (2.2)



pr+ (pu) =0,

f D 2 ~y—1
(2.3) "t d - a*+p, _a*y(n=1)p7
! T pRepe=De=h T e ple==2)

Introduce the Lagrangian mass coordinates
(2.4) r=t. €= /l W) dr
Then € > 0 as long aé p>0for r > 1, and (2.3) is reformulated as
pr + pPue =0,

g ayn=1)p"
proir=2 T pnp(n=1)(y=2)

2.5
(2:3) Uy +

Put v = 1/p and note that the inverse transformation to (2.4) is given by

€

(2.6) t=r =1+ / ot C)dC.
0

Tlien after changing 7 to t and £ to x, (2.5) is written as

v — Uy = 0,
(2.7) ' “ + (a'-’) 1 Ca®y(n = 1wty
21

o) pe=De=D T D=2

where r is now defined by » = 1 + f; v(¢,()d(. Now we restrict ourselves to the case
v = 1. Then (2.7) becomes '

vy — u, =0,

(2.8) a?\ K
" <l> S 1+ et g)de”

where I = ¢(n — 1). Let us consider the initial boundary. value problem for (2.8) in
t > 0,2 > 0 with the following boundary and initial conditions.

(2.9) u(0, ) = wp(x), v(0,r) = vo(x), forz > 0,
(2.10) u(t,0) =0, fort > 0.

Theorem 2.1. Suppose that ug(x) and vo(x) are of bounded variation, and that vo(z) >
by > 0 for all x > 0 with some positive constant éy. Then (2.8), (2.9) and (2.10) have a
global weak: solution.

This theorem can be proved by following Nishida’s argument [9] based o Glimm's method
[1]. For the detail, see [4]. Note that the principal part of (2.8) coincides exactly with
the one-dimensional compressible Euler equation, but this coincidence does not occur for
v > 1.

91



92

Remark 1.  Note that it is not obvious that this result also implics the existence of
global weak solutions of (1.1). If solutions in Lagrangian coordinate are smooth °
functions, we can show that u and p deduced from these solutions satisfy (1.1) by using
the chain rule. But if solutions are weak solutions, we must be more careful. In [8] K.
Mizohata lias proved that weak solutions in Lagrangian coordinate are weak solutions in
Eulerian coordinate at least they are spherically symmetric and that vice versa. Instead
of using the chain rule, we use the fact that the Lagrangian transformation is a
bi-Lipschitz homeomorphism to prove that (u, p) is also weak solution of (1.1). This is
the main idea of Wagner [4]. He has showed the equivalence for the Cauchy problem in
one space dimension. In 8], IX. Mizohata has given the detailed proof of this equivalence -
for the more general case.

Remark 2. IX. Mizohata has extended this result to the case in which the
gravitational force f = —pA[/r? appears in the right-hand side of the second equation of
(2.2). For the detail, see [7]. '

It is clear that the equation (2.2) admits the stationary solutions
p = p=constant >0 ,u = 0. The corresponding stationary solutions for (2.8) are
1
(2.11) t= ——————r, u=0.

D (1 + %.‘L‘) "
For these stationary solutions, we have inf v = 0, i.e., v is not bounded away from zero.
Now, if we attempt to enlarge the class of the initial data of Theorem 2.1 so that it
includes these stationary solutions, we readily encounter a difficulty in construction of
the approximate solutions used in Glimm'’s method, [1], that is, the mesh lengths Az
and At should be chosen so that Ax/At > «/infv in view of the Courant-Friedrichs-
Lewy condition, whereas this could not be possible as long as the mesh is supposed to
be uniform. In [5] we have showed that if we use a non-uniform mesh chosen carefully,
Glimm's method still works and gives global weak solutions for the initial data in the
class containing the stationary solutions (2.11).
More precisely, we deal with the initial data «° and »° satisfying the following condi-
tions:
o I'U()’ N T.""r.ll-() R T."”.l’o S Co y
(2.12) bo
(14 x)t-e
where C, 6y and € are positive constants independent of * and 0 < ¢ < 1. By using a
non-uniform mesh method, we have succeeded to enlarge the class of the initial data so
that it includes these stationary solutions. For the detail, see [5].

< wola),

Theorem 2.2. If uy and vy satisfy (2.12). then the initial-boundary value problem (2.8),
(2.9) and (2.10) admit o global weak solution (u,v).

3. Global weak solution for the relativistic Euler equation
In this section we shall present our result on the relativistic Euler equation with
spherical symmetry. Similarly we look for solutions of the form

(3.1) p=plte]), @= iy u(t,|x)).

K



where r =

7+ 23 + 3. Then (1.3) hecomes

(3.2)

A 1-% 7
.

We again simply deal with the boundary value problem-for (3.2) in the domain 1 < r < >
(outside a unit ball) with the boundary value condition u(t,1) = 0 to avoid the singularity
caused at the origin. Introduce Lagrangian coordinate

(3.3) | | x= / o2 Jdr
1
where (e 22
¢+ o°)u”
3.4 J=14 5—5-.
(3:4) + c(c? — u?)
Putting o ,
) 1 5t (2 + o%)c? R
5 W=— V=“Tu= ——u, q=Tp.
(3.5) T 7 U PR U, g=T7°p
Then (3.2) becomes, '
W, — V. =0,
(3.6) , o2 _ ga_z
Yt e . Jr

where 1 is now defined by r = 1 + Jy Wdx. Let us consider the initial boundary value
problem for (3.6) in ¢t > 0, + > 0 with the following initial and boundary conditions.

(3.7) - q(0,2) = qlx), u(0,x) = w(zx), >0,

(3.8) v(t,0) =0 .

Our main result is as follows.

Theorem 3.1. Suppose that log qo(x) and log z i‘ :Lo(:z:)

()
there exists a global weak solution for (3.6), (3.7) and (3.8) satisfying

are of bounded variation. Then

(3.9) || <ec, ¢>0.

We shall briefly explain the outline of proof. First, consider Riemann problem for the
homogeneous equation corresponding to (3.6) which is given by

W, = 1. 0,

(3.10) , 2N\
Vot <J'~’W>J, =0

Then we can show that all shock curves for (3.10) have the same figure in the plane of
Riemann invariants. Fortunately, their figure is similar to the figure of shock curves of

)

93



94

the classical case. This fact was also discovered by Smoller and Temple [11] for the one
dimensional case of (1.3). We construct approximate solutions via the Glimm'’s difference
scheme. More precisely, we construct our approximate solutions of the form

{solution of Riemann problem for (3.10)} + {inhomogeneous term} x t .

Next we estimate the total variation of the approximate solutions. We do it by analyzing
the waves in the plane of Riemann invariants z; and =, where they are given by

2 + o2 c+u

s = log - lo ,
(3.11) L=rloga+ 2gc _gc—u

e 10(+c2+0210 c+u -

2 84 20¢ gc—u'

Using the geometry of shock waves, we estimate the variation of log¢. This is the main
idea of Smoller and Temple [9]. But in our case, we must be more careful since there is
an inhomogeneous term in (3.6). To obtain our desired uniform estimates, we use the
transformation
ev — W

(3.12) u = ctanhw = ¢ ———

. ev +e v,
Instead of estimating u itself, we estimate w. Fortunately, it follows that

c+u
o
c—u

(3.13) = 2w .

The transformation (3.12) plays a crucial role in our paper. Using (3.12) and (3.13), we
can obtain uniform estimates of the approximate solutions and thus we can construct
global weak solution. For the detail, see [6].

4. Concluding remarks

Conservation laws are important nonlinear PDEs since many problems in science have
conserved quantities. Especially, the Euler equation of gas dynamics is a typical example
of it and many mathematician have studied it. Consequently, much of interesting theory
of conservation laws have been discovered by studying the Euler equation.

But although there are many results for the one dimensional case, there are few results
for the multi-dimensional case. In this case it is indeed difficult to obtain desired uniform
estimates for a system of conservation laws. If we look for the solutions with spherical
symmetry, the problems become a one-dimensional problem and thus we can use one-
dimensional methods and theory. But in this case we encounter a singularity at the
origin. Unfortunately we do not yet succeed to deal with this singularity. To avoid this
singularity, we considered the problems outside a unit ball. We thus obtained, by using
one-dimensional methods and our new methods, several results for the multi-dimensional
case.

We hope that by considering the problems with spherical symmetry, we can find
solution to the problem for the general multi-dimensional case. ”
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