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Abstract

Many papers and books on the fractional calculus have been reported by the
author already. In this article, the set {4} of fractional calculus operator A4 is
discussed. And it is shown that the set {4} is an Abelian product group for the
function fe# ={f|0%|f,|<w,veR} ,and for continuous index v .

Moreover, " {4} isa group acting on a set # where v is the continuous
index " is shown, in Chapter 1.

In Chapter 2, the inverse of Nishimoto's integral transformation is discussed.
Inverse of Goursat's transformation and that of Cauchy's one are discussed as special
cases of that of Nishimoto's transformation.

In Chapter 3, some applications of the author's fractional calculus to a generalized
higher order ordinary differential equation (homogeneous and nonhomogeneous) are
shown.

Chapter 1. On ﬁ:e fractional calculus operator A7

§0. Introduction (Definition of Fractional Calculus)

(1) DrermutioN. (by K. Nishimoto) ([1]3, [11] Vol. 1)
Let D={D, Q}, C={g, g} ,

C be a curve along the cut joining two points z and —o0+iIm(z),

¢ be a curve along the cut joining two points z and co-+iIm(z),

D be a domain surrounded by C, Q be a domain surrounded by C.
(Here D contains the points over thé curve C).

Moreover, let f=/f(z) be a regular function in D (ze D),

I'(v+1) 74(9)

fv=(f)v=c(f)v= 2Ini C(C_z),_,.l

. (vgZ7), M

Nem=lim (f), (meZ"), @)

v+ —m

where —n<arg((—z)<n for C,  O<arg((—z)<2n for c,
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{%xz, zeC, veR, TI; Gamma function,

then (f), is the fractional diflerintegration of arbitrary order v (derivatives of order v for
v>0, and integrals of order —v for v<0), with respect to z, of the function f if | (f),] < co.

Note 1. See Figs. 1 and 2 for the jntegral curves C and C, and the domains D and D
respectively. : h ¥ - *

Note 2. More generally, if /(2) is regular except the singular points in a finite (or infinite)

. n\.meer and there are no these singularitics inside C and on C, then f,(z) can be defined again
with the above definition.

Note 3. 1If f(z) is a many valued regular function, we will define /f(2) for the 'principal

—1 D D
— o0+ iIm(z) —-z z 0 - ilm(z)
c ¢
Fig. 1. Fig. 2.

values of f(2).

Note 4. For the complex v, we consider the principal value of it, and f, (Re(v)>0) is

the fractional derivative of order Re(v), and f, (Re(v)<0) is the fractional integral of order
—Re(v), if | f,]<o00.

However, as a matter of convenience, we will assume that ve R in this paper.

Note 5.

dV
v

SD)=—

f(z) and f_,(2)= f f(2)(dz)*  for v>0,

where ve R.

Note 6. Formula (1) is a complex integral transformation of Mellin type.

Note 7. Notations

C: set of a complex number R: sect of-a real number
Z: set of an integer (contains zero) R*: set of a positive real number
Z* (=N): sct of a positive integer R~ sct of a negative real number
Z7 . sct of a negative integer

(1) The set & ) _
We call the function f=f(z) such that| f,| < co in D as fractional differintegrable functions
by arbitrary order v and denote the set of them with a notation & = {f“ Sol<o,ve R},

Then we have - i< = feF (in D).

(I11)  Unification of integrations and differentiations

Notice that the definition (in the above description) for our fractional calculus means the
unification of integrations and differentiations. That is, the formula (1)—having (2)—we can
unify the integrations of arbitrary order and the differentiations of arbitrary order.
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§1. On the fractional calculus operator A4

THEOREM 1. Let fractional calculus operator (Nishimoto's operator) /™ be

e r(v+1) > » P [Refer to] o |
with < 2mi f (e )v+l v&Z) §0. (1) ( )
N "= lim N (meZ*), @

and define the binary operation o as
NP o N = NN f= NNS) (o, feR), , (3)
then the set
(#7)= (4| veR)

is an Abelian product group (having continuous index v) which has the inverse transform operator
(W) t=N"" to the fractional calculus operator N, for the function f such that
feF={f|0x|f,|<c0,veR)}, where f=f(z) and ze C. (viz. — o0 <v<o0).

(For our convenience, we call 47 o 4™ as product of &% and A4™)

Proof. Letv,a, ff,ye R in the following.
(i) Closure; Since we have

NN = NN )= N, = (fa)p-ﬁ,+p-JV“+”f—JV’f (5)
where a+ f=ye R, by the index law ([11] Vol. 1, pp. 41-45 & [12] pp. 52-54), if
Nf=[%0, : (6)

hence we have formally
NN =Nt = NV e (N} M
from (5), for fe.ﬁ'.
Note 1. We have

mv=m7(z>=(F (““)f = )m)f(C)

F(OH-I)J f(C)iif (D) =1 ®)
(-2
for fe.
_rg+1) Jo(m)
Note 2. ([f);= o J; (11-——2)_”“.(1’7 ()]
=I‘(/3+l)F(a+l)J d J dn
(2ni)? Ok c C=m** -2 o
F -1 d
(‘H[“ )J (Cf(c)1+c,,+l=ﬂ+,,=#““‘f, (1

where | I'(ot+ 8-+ 1)/T(e+ DI(B+1)| < o0, if feZ. ([11] Vol. 1).



(i) Associative law; Since we have
NUNPN) [= N NP )= Ny g =on )y = s pay =NV
and - , |
WIOH =K = [Dyg=erp iy =AY
by the index law, if f, * f,4,%0. Therefore we obtain formally
NN PN = (NN YN = =Y e ()

from (12) and (13), for fe%.
(i) Unit element; Since we have

HH Y= N = o= = A
and KON =N = =L, =N,
if fe #. Therefore we obtain

NN = NN =N

from (15) and (16), hence formally

' NN O = N ON =N
from (17). Therefore, we have formally

NO=1le{N}.
That is, #9=1 is the unit clement of the set (A7} for fed.
(iv) Inverse clement; Since we have
N K= NN =K =]

and NN = NN N=HN =],

if 7 =f,%0and &/~ =f_,%0 respectively.
Therefore, we have formally :

N TN = NN =N =],

(12)

13)

(14)

(15)
(16)

(7

(18)

(19)

(20)
@n

(22)

from (20) and (21). That is, # = and A" are inverse element each other for f € 4. Moreover,

let (#)~! be the inverse clement to the element A, then
(A TN =N =1
Thercfore, we have
N = (N
from (22) and (23), for fe #. And hence, we can see that
| | (W) D) =) =
from (24). '

(23)

(24)

(25)

Notice that (#™*)™'=u""", then in our fractional calculus the inverse transform integral
to A" is given by (1) itself having —v instead of v. This fact is a very symbolic matter in our

fractional calculus operator.
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{v) Commutative law; Since we have

i NN = NN ) =Ty +a : (26)
NN = NN ) =fosg 27

if 7%=/, %0 and #’f=f, %0 respectively, therefore, we I;avc formally
NN =N PN" | 28)

from (26) and (27), for fe .

(vi) Continuity of index v; Next, because ve R, namely — oo <v<oo, then {#} is a set
of A" which has continuous index v if fe . Hence the set {4} has infinite elements A4
in number. :

By the above exposition (i)~ (vi), we have this theorem clearly.

Note 1. " Itisclear that /7 > f A" (v0). That is, only A/ has mathematical meaning.
Note 2. Inspite of &=/, =0, il we calculate as ,
NN f=NPFef 29)
formally, we can omit the condition A=/, 0. (See Note 3.)
Note 3. I we set f=z" (meZ*U{0}), we have #°f=/,=0 (a§Z) (Sec Lemuna 2.),

however, when we calculate as formally

I'(—m+ao) __.
—_— 2z

./V"./V"z"'=f”(JV“z"')=.Af”(e"‘"“ ) (meZ*, a§2Z) (30)

I'(—m)
— —lnam”ﬂzm-f¢=e—in(a+ﬂ)‘r('—-’"—*.a).F(—-’n’{?a*}'[})zm_a_ﬂ (31)
I'(—m) I'(—m) I'(—m+a)

—emimernCMAOAD) oy param, (32)

I'(—m)

the index law holds.

Therefore, if we calculate as

N BN o™= ot Pgm (inspite of A *z™=0) (33)

formally, we can omit the condition A=/, %0.

Therefore, by the above exposition (i)~(vi) and Note 2, we may have this thcorem
clearly, for the function fe # ={f||/,|< o0, ve R}. (When we calculate as Note 3.)

Note 4. Trom now we call the sct {4} ={A4"|ve R} as “Fractional Calculus Opcrator
Group for f'€ %™ and denote this by “F.0.G.” for our convenience. That is, “F.0.G.” is an

Abelian product group for fe€# which has continuous index v”.

§2. The set {4} and action group
(I) We have the following definition for action group ([22]. pp. 4042, and pp. 113-133).

DermiTioN.  Let G={g} be a group, and A={a}x be a set. When the niap from
GxA={(g,a)|geG,acd} to A={a |ae A} satisfies the properties



(1) gl‘f(gza)=(91'°gz)a forall g,,9,€G, ae 4,
(i1) loa=a forall aeA, '

we say “G is a group acting on a set 4. Then we call G as “action group”.
Obeying this definition, we have the following theorem.

THEOREM 2. The “F.0.G. {A*}" is an *“ Action product group which has continuous mdex

V" for the set &.
Proof. Let G= {47}, A= and a=feF in the definition, we have then
NN )=(WNPHf  forall NP, Ne{N"}, fe,
and HNOf=1f=f forall fe#

Therefore, we can sec that the set {4} of our fracuonal calculus opcr'xtor N7 s “‘a

group acting on a set "

In more detail, “{JV”} is an Abelian group acting on a set #. That is, “the set {7} is
an Abelian action product group for the set #”, and for contmuous index v,

Chapter 2. Inverse of Nishimoto’s integral transformation, inverse of
Goursat’s transformation and that of Cauchy’s one

§1. A complex integral transformation and its inverse

Tueorem 1. Let lehunoto s complex integral tramfonnatton be
I l+1 4
R Q)=o) J - S )i _X=F), W

Jfor a given constant pe R, then the inverse to I(z) is given by

I'(—p+1) Hz)
2mi c (=0~

where f({) is a regular function in D and 03| I(z)|<oco. (For the integral contour C and the

domain D of formula (1), see the definition in §0. And when p=—n(neZ™*) in (1), refer to
§0. (2). For the integral contour C and the domain D of formula (2) see the Fig. 1" and Fig. 2'.)

N~ HF(2)} =

D D
= +

—~o0+ilm(() { {

—— 0 +ilm({)

C - C
= -+

Fig. 1. ' " Fig. 2"
Proof.  Substitute (1) into the right hand side of (2), we have then

] CD(—p+ DI+ [ dz )
R.H.S. of (2)= !
of i) J oo L el 3)

@
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_I(=p+ DI+ 1) S '
T ey ch i J = =D @

Putting z—{=w and n—{=p=de" (3, peR. p=argp and 5%0) we have then

n—z=(—{)—(@—)=p—w.
Next set w=pu (u=w/p=(1/0)e " "w, | $|<n/2), then we have (for C= )

1 ) (0+) 1 »
(,I___z)n+l(z_c)—-,,.|.ldz: . (p_w)l""lw"“+ldw (5)
0+) ) '
_.._J u—(—u+l)(1_u)—(n+1)du (6)
e~ ¢
1 [H
_J R T (G PR 77) ™)
P
1 2ni :
(for —Re(u+1)<Re(—u)<0). 8)

p F(—;L—l—l)I"(/z-H)
Substituting (8) into (4), we obtain

1
= [ LD gy LSO gy, )
2711 Cr7—-C i Jn—{
In case of n/2<|¢|<n, we have (for C= g)
1 ©+) 1
1z = 1 : 10
L(n——z)"“(z—cr"*“ L (p—wy T 1o
1 f©+)
== u” RN )T gy (an
P Jewe-i¢ ’
1 (o ' '
=_J TR O ) I 7 (for n/2<|p|<n) (12)
1 2mi
(for —Re(u+1)<Re(—p)<0). (13)

" P T(=p+DIG+D)

Substituting (13) into (4), we obtain (9) again.
Therefore, we have

I'(—p+1 F(z
= )f D de=/0), (14
—{)
that is,
N"YF@)=/(0), (15)
when
O} =Fz), (1)

for 0| [(z)| < c0.



TucoreM 2. We have formally

NTIN=NN"1=1 16y
for F(z)%0, ’
where F(Z) =R{/ ()} . . M)
Proof. We have . -
NHI@)) =N"HR{SON =N RSD), . (17)
since FO)=R{/Q)}. (F@=0) (1)
Therefore, we have formally
N-1N=1 (18)
from (15) and (17).
Next we have
NSO} =R{N"Y{A2)}}=NN""'H2z), (19)
since '
JO=R"YHF=2)}. (F2)x0) (15)
Therefore, we have formally
NN~"1=1 ' (20)

from (1) and (19). Hence we obtain (16) from (18) and (20) formally, under the condition.
Note. Notice that N{/(()} =/, =I(z). (Refer to §0.(1) and (2))

§2. Inverse of Goursat’s transformation and of Cauchy’s one

() Inverse of Goursat’s transformation

CoroLLarY 1. Let a complex integral transformation be

n{r(() =t ”cﬁ (Cf QO —r, W
Jor a given constant ne Z*, then the inverse to I(z) is given by
- I(—n+1), I(z)
N™HF(z2)} =
N™HFz)} T #(Z—C)‘"“dx, (see §0. (2)) @)

under the same conditions with that of Theorem 1, where $ means a complex contour integration
along a closed simple Jordan curve which surrounds z for formula (1) and { for formula (2).

Proof. When pu=n (neZ*) we have

ra+) [ O

i Je((—2)" " a4

N{SO)} =

SO v
1 = (") Zz)= U
4(( 2y C=/"2) 1"({) | 3
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from §1. (1), if f({) is a regular function in D.
And we have :

iy T(=n+1) Fz) r(— n+1) F(2)
N {F(Z)}-— i C(" C)-—n +1 dz= Fﬁ(z )-—n+l

o (T(=p+1) (N |
_,l,lin,.( o L(Z—C)"”Hd‘) (5)>

from §1. (2), having u=n (ne Z*).
Formula (1) is Goursat’s transformation, hence formula (2) is inverse Goursat’s

transformation.

4

(I1) Inverse of Cauchy’s transformation

CORQLLARY 2. Let a complex integral transformation be
1 {
pEFA(9) =—7(ﬁ—f(—)di =f(z)=F(), (6)
2ni J {—z

then the inverse to I(z) is given by
Iz
N1 )}~—————t}g ® 42 ™

under the same conditions with that of Theorem 1.

Proof. Set p=0 in Theorem 1.
Formula (6) is Cauchy’s transformation, hence formula (7) is inverse Cauchy’s transforma-

tion. o
Chapter 3. Fractional calculus method to extended linear ordinary
differential equations of Fuchs type
§1. Solutions to a Nishimoto’s lincar third order ordinary differential equation of Fuchs type

In a previous paper the following theorems were shown by the author [ 8].

THEOREM A.. IffeF andf_,;0, then the generalized nonhomogeneous linear third order
ordinary differential equation of Fuchs type

L{op(z),a,b,c,d, A, B, C, 2]

1 1
=‘/’3'”'*“/’2'(’1”1+g)+(l’1'{’1()““1)'5‘”2‘*"1.’/1}'{‘(19"1('1—1)3‘92=f (vx0) Q)]

has a particular solution of the form
/ 1 _
p= <( gt e"(:)) .e l’(:)) , (2)
v -1 JA=-2

v=0(z)=(zc —a)(zd — b}, (3)
g=g(z)=22A+zB+4C, G

where



- P(2)=(g/v)-,, (5)

p=¢(2)(ze C), f=f(z) (an arbitrary given function), and a, b, ¢, d, A, B, C and 1 are given
constants.

THEOREM B. The generalized homogeneous linear third order ordinary differential equation
of Fuchs type

L[¢p(2),a,b,c,d, 4,B,C,A]1=0 (vx0) , 6)
has solutions of the form
p=K(e™"),_,, M
where P(z) is the one shown by (5) and K is an arbitrary constant.

THrorem C. If fe & and f_ 0, then the fractional (Iij]’ez'izztegl'aled Junctions
1
v =<<f-l-—-e””) -e‘“”) K"z (0%0) ®)
v -1 A-2

satisfy the generalized nonhomogeneous differential equation (1). Where P(z) is the function shown
by (5), and K is an arbitrary constant.

Note. Letting

24 .
i= ZAI‘ZB"‘C: q + r (z%_a_,—l—)‘)’ (9)
v (zc—a)(zd—Db) zc—a zd—b c d
we obtain
p=A/cd (cd%0), (10)
2
q=(A'f—-+Ba+Cc)/(ad—-bc) (adxbc), an
c
b2
r=—<A-~d—+Bb+Cd)/(ad-bc) (adxbc) . (12)
Hence it follows that
P(z)=(—g—> =pz+log{(zc —a)¥* - (zd — by} (13)
V/-1

from (9). Therefore we have
o=((f-ze"(zc—a) I - (zd = D)) _ | -eP*+(zc—a) "V (zd — b)), _, (14)

for cdx0, adxbc, from (2), where p, ¢ and r are the ones shown by (10), (11) and (12)
respectively.

§2. Extension of the Theorems A, B and C [9]

With the help of Nishimoto’s fl'acliox1zll calculus ([11]~[12]) we can derive the following

theorems for more generalized lincar higher order ordinary differential equation than the one
which are shown in §1.
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THeoreM 1. If fe&F and f.,%0, then the extended nonhomogeneous differintegral®

equation of Fuchs type (sce Note 3 for*)
L{¢(z),m, m;a,b,c,d; A, B, C; 1]

=(Pm.u+kzl (pm—k{G(Xw k)vk+G('Lk—l)gk"l}_*.(pm—n—l.G(}" n)gn;‘—'f (1)5?0) (I)

has a particular solution of the form
L —Pm‘ '
o=({foa—re™) e .
v -1 A-m+1

v=0(z, n)=2z"cd—2z""Y(bc+ad)+2""2ab ,
g=g(z,n)=z"A+2""'B+2z""2C,
P(z)=(g/v)-,  (v%0),
T(A+1)
F(A+1—=k)rk+1)°

where

G(A, k)=

@

©))
“
®)

©

meZ, (n-2)eZ*u{0}, ze C, po=p=o(z), f=f(2) is known (an arbitrary given function), and

a, b, d A B, Cand A are given constants.
Proof. Letting
P=wW,,

(1) becomes

Q)

wm-l—l.u+ Z wm-—-kil-l{G(A'a k)vk+G(}': k_ I)gk—l} + u’m-—n—l-i—).(;(z's ")gn =f (U&Eo) . (8)
’ k=1

Here we have

(wm * v)/l = Z G(A" k) Wit a—iUk
k=0

and
n+1

(Wi 'g)a=kZ G(A, k)wm—1+l—kgk=kzl G, k=)W s 2-10k-1
=0 =

_since
(‘vlrl.z")l= Z G(l: k)‘vm-i-}l—k(z")k (HEZ+U{O})
k=0
(by the gencralized Leibnitz rule),
Substituting (9) and (10) into the left hand side of (8), yields
(“’m.v)).+(wm—- 1 'g)lzfa

hence g 1
Wyt w, ’_‘=f—;_'—“ .
v v -

®

(10)

(1

(12)

(13)



Set
Wy—=u=u(z), (149
we have then
g 1
uyfur—=f_,—. (15)
v v
A particular solution to this linear first order ordinary differential equation is given by
u:(f_l~_l_-e(g/")-l> .e"(ﬂ/u)—l N (16)
v -1

“Thus we obtain (2) from (16), (14) and (7).
Inversely, substituting (2) into the left hand side of (1), we obtain

LHS. of ()=, 10+ Y. #y43-1{G(, Ko+ G k= D)oy} + 13- G m)g,  (17)
k=1 .

n
=kZO‘G(/L )y 4a—g Ukt ty " Gi)

=(urvtugl ' (18)
=<f—4'——1—-'€"(’)-e_”(”'l)*i‘(f_l'-—l-e”(‘)\) .(_Pl(z))e-l’(z)_v
v v -1
+ <f_l-——l~e"(”) A.e—l’(z)_g) | (19)
v -1 R
=(f—x)x
0 | (20)
since
P(z)=(g/v)-, (vx0). (5)

This Theorem 1 is an extended one from Theorem A.

Note 1. Here we used the notations v, and g, instead of (v(z, n))y, and (g(z, n),
respectively for the sake of our convenience.

For the notation (f(z}, 2,)),,,, (Which means a fractional and partial diflerintegration of
arbitrary order v,, with respect to z,, of the function f=f(z,, z,)) refere to ([11], Vol. 3) and
([121pp. 160-163) for cxample.

2. Remember that v and g contain n respectively in (2).

3. For mzn+1, (1) is a differential equation,
forn+1>m>0, (1) is a differintegral equation, and
for m£0, (1) is an integral equation, '
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