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Inversion Formulas arising in Inverse Boundary Value Problems

Masaru Ikeaata (3, § 4&)

Department of Applied Physics, School of Engineering
Nagoya University,
Chikusa-Ku, Nagoya 464-01, Japan

1. Results. We formulate two inverse problems, which are ana.logus to the inverse
conductivity problem [10].

‘Notation. © is a bounded domain of R? with smooth boundary 0Q; ds is the stan-
dard measure on 8%; v is the unite outer normal vector field on 8; X = {H/?(6Q)}?
and Y = H%/2(8Q) x H'/2(8Q); B(X, X*) is the Banach space of all bounded linear

maps from X to its dual X* and B(Y,Y™) that of all bounded linear maps from Y’
1
to its dual Y*; Vu is the Jacobian matrix of a vector valued function u = (Z-,) on

Q and SymVu its symmetric part; V2w is the Hessian matrix of a scalar function
won ; a® b = (a;b;) for two vectors a = (a;), b = (b;); e; = (é) ey, = ((1)),

Aln1=e1Qe; Az =e;1 Qe +ex®er; Ay = e ®e; 0, = azz 23 for each
zec.

Let C = (Cijkl(w))i,j,k,lzlﬂ be a fourth-order tensor field over  with components
Cijri € L*(Q). We denote by C(z)A the 2 x 2 -matrix (Zk,l Cijri(z)ar) for each
z € Q and 2 X 2-matrix A = (ay). We call C an elasticity tensor field if

Ciju = Criij = Cuiy
hold for each ¢,7,k,l = 1,2 and there exists a positive number é such that
x)A A= Z C,-jkl(:c)aklaij > 5IA12

holds for almost all z € Q and all real symmetric 2 x 2- matrix A = (@ij).
For each elasticity tensor field C we define L, which is a second order system of
partial differential operators acting {H*(Q)}?, via

(L& {Caul2)3s) ae (¥ 1ON?
Fou= ( ¥ 72 {Con(e) 3 ) o <u2) ¢ Lo

The associated Dirichlet-to-Neumann map II¢ € B(X, X*) is defined by

Hc(p) = {C(z)SymVu}lv|oq, ¢ € X,
where u € {H*(Q)}? is the unique solution to
Lcu=0 in £
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ulon = ¢.

[lc(p)ds is the force exerted across ds which deforms Q into Q + u.
On the other hand, for each elasticity tensor field M we define Lyy, which is a
fourth-order partial differential operator acting on H?({), via

2 2
w

0
L = ———— 2(Q).
MW =3 e Migu(e) 5w € ()

The associated Dirichlet-to-Neumann map II}; € B(Y,Y™*) is defined by

i = (UM Q) e,

where w € H%(£) is the unique solution to

Lyw=0 in

(i)lasz:fﬁ,
v

M, (w) =M()Vw- v Qv,M,(w) = M(z)Viw - v @,

2 [ 72
Zazﬂ 2)V*W)ap}va, T = ( e )

(@) is the external force applied to 9Q which deforms §2 into the graph of w;
M, (w) is the bending moment; the first component of II};(¢) is the vertical reaction
at oQ.

This talk is concerned with the following:

Inverse Problems.

I. Determine C from Ilg;

II. Determine M from II,.

The elasticity tensor field is said to be isotropic if there exist A, u € L*(Q), which
are called the Lamé parameters, such that

C(z)A = A(z)Trace(A)I> + 2u(z)A

holds for almost all z € © and all real symmetric 2 x 2-matrix A. Since isotropic
C uniquely determines its Lamé parameters we write C(, ,) and I, ,) instead of C
and Ilg, respectively.

The first problem for isotropic C was taken up by the author [2], Akamatsu-
Nakamura-Steinberg(1], Nakamura-Uhlmann [8]. In particular, Nakamura-Uhlmann
(8] proved that if A and p are smooth on Q0 and sufficiently close to constants, then
II(),.) uniquely determines (A, x). In [9] they treated the problem of determnnng
D“Claq, |a| =0,1,--- from IIc modulo smoothing operators on 952, where C is not
necessary isotropic and restricted to being in a class of anisotropic elasticity tensor
fields, respectively.
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The second problem for isotropic M was taken up by the author [3]. In [3] it is
proved that if the Lamé parameters A, u of M are smooth and sufficiently close to
constants on £, then II7, ) together with D*Xlaq, |a| = 0,1 and DPulaq, 18] =
0,1, 2,3 uniquely determine (A, x).

In this talk first we shall point out that I and II are equlva.lent to each other on
the simply connected §2; second we consider the Fréchet derivative dlIc and dII},; at
anisotropic C and M, respectively; we shall study a relationship between them and
give a characterization of the injectivity of dll¢c by the Stroh eigenvalues of C.

For each elasticity tensor field C denote by [C] the symmetric 3 x 3-matrix

Ciiin Cuz Cug
[C]=| Ci211 Ci212 Ca2
Ca211 Ca212 Ca

We can define the transform C* of C characterized by

[C]™! = PJ[C*|JP

where
0 0 1 1 00
J=[o0o -1 0|,P=]0 2 0
1 0 0 0 0 1

For the detail of the properties of this transform we refer the readers to [5] and
[6]. It follows from the definition that (C*)* = C and (C(y,,))* = C(a+,ue) With
A= _m’ ur = 4“ We prove in §2 '

Theorem 1[6, Theorem A]. Let Q be simply connected. Then

As a corollary we have immediately
Corollary 2. Let Q be simply connected. Then

H(/\x,#l) ='H()\z,l12) - H(/\ N = H(/\‘.#z)

1M

This connects the work done by Nakamura-Uhlmann [8] to that done by the author
[3]. Theorem 1 shows the equivalence of I and II on any simply connected €.

The following is a linearized version of Theorem 1.

Theorem 3[6, Theorem C]. Let £ be simply connected and M = C*. Then
kerdIlc is topologically linear isomorphic to kerdIl}; under the relative topology
from L>(Q). ’

In the theorem stated below it is not assumed that €2 is simply connected.

Theorem 4[6, Theorem D). Let C be homogeneous and M = C*. Then,

kerdIlc = 0 <= kerdIl}; = 0 <= D(Pm) #0

where D(Ppy) is the discriminant of the polynomial

= (2)o () () ()



there is an explicit formula of the left inverse of dII},.

This is proved under Cy312 = Ci222 = 0 in [5] and therin we wrote down explicitly
the left inverse of dIlc for such C with D(Pg-») # 0; the author does not have the
explicit formula of the left inverse dII¢ for general C with D(Pg+) # 0; the roots of
the algebraic equation Pc«(7) = 0 are called the Stroh eigenvalues of C(see [5]).

In the next section we will give the proofs of Theorems 1 ~ 4.

2 Proofs.Throughout this section (-),; stands for partial differentiation with respect
to z; for each j =1,2.
Proof of Theorem 1. We study the relationship between three function spaces

Pc={ue H(Q,C?)|Lcu=0 in Q},

50—1 = {S € Lz(Q, Sym(Cz))I Zsaﬁ,ﬁ = 0, Z(C_ls)lg‘vlz = (C_18)11,22+(C—15)22,11 in
' B

Ac- = {w e H*(Q,C)|Lc- =0 in Q).

We can easily check that the map
f:Pcd>ur—s=CSymVu € Sg-:

is well defined. On the other hand, for the check of the well definedness of the map

g: Ac- dwr—s=-JVwJ € Sg-1,J = ((1) _01>,

we needs the following
Lemma 1[6, Lemma A]. For any function w, put

s =—J'ViwJ'
Then
> sapp =0
B
and )
(C™18)11,22 + (C7'8)22.11 — 2(C7'8)12,12 = Leww.
We claim
Lemma 2[6, Lemma B]. Let Q be simply connected. Then both f and g are

surjective.

The proof of this lemma is based on two facts stated below.
Let E = (E;j(z))i,j=1,2 be a second-order symmetric tensor field on Q. Then if

22 + Ea2.11

(e s

2E1212 = Eq
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holds, there exists a vector valued function u such that
E = SymVu,
and vice versa; the equation
| ’ Z Sap,s =0
' B
is equivalent to
d(SlidIBg - Slgdml) = 0, d(521dmg - Sggdibl) = 0.

Now we can glve the proof of Theorem 1. Applying Green s theorem to Ilg, = Ilc,
and using Lemma 2, we obtain that

g, =1c,
fee—
Vu; € Pc; /(C1 — C2)SymVu, - SymVuydzr =0
Q
=
Vs; € Sg-1 /(C;1 — C71)s; - spdz = 0.
i Q
Here we note that for any H = (Hjjuni(z)) satisfying Hijri = Hyuj = Hpgji there
exists a unique HT such that
[HT] = J[H]J.

Then we have
2 2
Hs; -s, = HTV"'UJl - Vow,

for s = —J’Vzij’. Furthermore, we see that
(cHt=cC~

Therefore Ilc, = Ilc, is equivalent to

Vw; € Acy /{(C;l)T —(C™H1} V2w, - Viwadz = 0
Q

Vw; € Ac; /(C; - C})V%w,; - VZwadz =0
Q ,
f——g
Mg, = g, Q.E.D.

Since the proof of Theorem 3 can be done in the same way we omit the proof.
Proof of Theorem 4. At first we prove



Proposition 1 [4, Theorem A.] Let M be homogeneous. Then
kerdIl}; = O <= D(Pm) # 0;
there is an explicit formula of the left inverse of dIl}; for such M.
By this proposition we see that the set of all homogeneous elasticity tensor fields is
divided into two groups. This classification just coincides with that done by Lgkhnit-

skii[7]. , ‘
Proof of Proposition 1. We can write Py(7) in the form

Masss (7 — @) (1 — &)(7 — B)( — B)
with some «, § satisfying Im a-Im [ > 0. Hence
D(Py) #0 <= a # [3
and Ly can be factorized as follows:
M33220,050505.
Hence if Pp(z) = 0, the function
exp{—ic(z1 + zz2)} (c€C)
is a solution of Lyw = 0.

= .
Assume o # (3. Let € € R? \ {0} and

{Zl, 22} = {a’a}, {aaﬁ}’ {aaﬂ}’ {ﬂaﬁ}’ {an@}> {E’B}'

Then
E¢(z;21,22) 1= ezp{—iw(ml + 2322)}
Z9 — 21

is a solution of Lyyw = 0 and

—ig-€

E¢(z;21,22)Ee(z; 20,21) = e

holds. Let dII3;(H) = 0. This is equivalent to
/ H(z)V3u-Vvdz =0
Q

for any u,v; the solutions of Lyyw = 0 in Q. Substitue E¢(z; 21, z2) and E¢(z; 22, 21)
for u,v. Then we obtain

SAH(¢) =0

125



126

where ” . . )
1 a+a@ a‘+6; ad aa'3+a‘a' o?a?
1 a+f o*+B of of +a’B o’ |
g |1 atp a? +ﬂ~ of af’>+a’B o?p*
11 B+8 ﬂo'*',@ BB BB +B°8 BB |’
1L a+p @ +p2 ap ap’+a’f @p
1 a+f @*+p ab ap +a’f @B
HAy; - An |
HA;; - A
= | HAp - Agy
AH(¢) = HApz - A |’
I;IAl')'Agg
HAj3; - Az
and
f(g)= [ = H(a)do (¢ €R?)
Q
Since

det S =~{(a~@)(a~F)e—p)@-B)@~F)FE A ([4 Lemma 4],

we can conclude AH(¢) =0 and it is possible to write down the left inverse of dIl};(H)
explicitly. The result is as follows. Put

. 22)) = (22 — zl)z 2
CGlaal) =g e e

D(¢; {21,22}) = C(§; {21,22})/ dHfVI(H) (;Jan ) (;’ulan ) ds
. o9 5 100 3eloa
for w = E¢(z; 21, 22) and v = E¢(z; 22, 21). Then
D(O; {2, 2}) i= Jim D(6 {z1,22))
exists and the left inverse of dII}, is given by the following formula:
AH(¢) =S7'D(¢)

where

()=



Let Im z # 0. We note that the identity

Viw = 1

T (O5wdn + (-0:05wAy, + Slwdy) (14, 1.13)

holds for any scalar function w where

e (1)

This yields

where |

(3]

1 2 1
o= z z+zZ Z },
22 227 %

HA;; - A7 HAy, - Ay HAp - Ap
HA =

HA,,- A2 HA»- Aoz S Sym(Ra).
HA3; - Aas

Now assume z = a = §. If we take H such that

3y 0 0 z? z
c{HA)o=| 0 0 0 |(<=HA=2Re{dp| -2z -2z |}
0 0 &p 1
with some @ satisfying D%p

= 0 for |a| = 0,1, 2 on 81, integration by parts tells us
that '

/ H(z)V?u: Vivdz = —-—-1——‘/(8290
Q Q

(z - 2)*

™o

uwdZv + 83p02ud2v)dz
2
= Eg—;)—‘l / (3z903z3§u3z6§v + %E@;Bfu@;@fv)dm =0,
- Q

where 8202y = 8282v = 0 in Q. Since Ly = Ma2228282, ‘we have H € kerdIl;,.
Q.E.D. |

In [4, Proposition A], we gave how to find such ¢ appeared above for each H €
ker dII}; when Q is simply connected.
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Proposition 2 [5, Theorem B.] Let C be homogeneous. Then
D(Pc.) =0 = kerdllc # 0.
Proof. By assumption, we can write Pg-(7) in the form
Claa (7 = 2)2(7' - 7)2

with Im 2z # 0. Then we can show that

_ Bp 0 0
K,:={H|oc'(HA)o=| 0 0 0 |,D%|pa=0 for |a|=0,1,2} C kerdllc
0 0 8% ’

and

kerdIlc C kerdIlg..

These are proved as follows.
First we show

H € kerdllc

if and only if

/ H(z)SymVFcw; - SymVFcwsrde = 0
Q

for any w; = (wj,w?) satisfying Le-w; = 0 in Q(j = 1,2), where

LcFc = FcLlg ~ Le-1,.

Second we write C in terms of z in the form.

C~ C,(0) ([5, Proposition 3]),

where )
t.-

—st
2(6 - 1)

2
4t(1 -0+ %)
-8
1

AC,(6) ~

b

2

&

t=2z-% 45 <h<1
=2z-Z,s=2+3%,— .
it

Note that we ignored the nonzero constant multiplication factor.
Third we show that for any w = (w?, w?), the factorization

SymV Few ~ 82udl, — =8,8:(u 4+ v) A}, + 82vA,, ([5, Proposition 5))

N =



holds where Lo , )

(u) ( T 2—0—%)(2 Z)
\ ~ s? s3 - /]
v _(Z_O_H '—(6-—747) azwz »

(2)=(3 2) ()

Fourth we show that H € kerdIl¢ is equivalent to

O2u 2/
/ o' (HA)o | —18,87(u+v) | - | —18,8:(x' +v') dz =0 ([5, Proposition 6])
@ 8%y v’

for any u,u’,v,v’; the solutions of Lg-w = 0 in Q. From this we obtain immediately
K, C kerdllc. Finally put « = v and 4’ = v'. Then we obtain ker dIl¢ C kerdIIg..
Q.E.D.

Proposition 3 [6] Let C be homogeneous. Then
D(Pc*) # 0 = kerdllc = O.
Proof. Take a open ball B such that @ C B. Then.

kerdllc(on Q) C kerdllc(on B)

by zero extension of H € kerdllc(on $2) outside Q. Since B is simply connected,

Theorem 2 and Proposition 1 imply
kerdllc(on B) = kerdIIg.(on B) = O

and hence kerdlIlc = O on . Q.E.D.
This completes the proof of Theorem 4.
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