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Integral representation and tangential limits for
monotone BLD functions

LEBRFREMER kE %34  (Yoshihiro M1zuTa)

1 Introduction

Our first aim in this paper is to establish an integral representation for BLD functions
u in the half space R} = {z = (21, ..., Zn—1,Z») : n > 0}, n 2 2, such that

/R:: IV™u(z)[Pdz < oo,

where V™ denotes the gradient V iterated m times. Our representation is an extension
of Sobolev’s integral representation for infinitely differentiable functions with compact
support. We give a fine limit result for BLD functions on R’} and then apply the result
to the study of tangential limits for monotone BLD functions on R%.

The notion of monotone functions is an extension of monotone functions on the
one dimensional space R!. Harmonic functions together with solutions in a wider class
of nonlinear elliptic equations are monotone in our sense; of course, the coordinate
functions of quasiregular mappings are monotone.

For v 2 1, £ € OR” and a > 0, consider the set

T,(&a) = {z = (21,...,2,) ERY : |z — " < az,}.

If . hergrl o u(z) = £ for every a > 0, then u is said to have a 7)-limit £ at &; u is said
z—¢,2€Ty(¢,a

to have a nontangential limit at £ if it has a 73-limit at £&. We say further that u has a
Too-limit £ at £ € ORY if
lim u(z) =4
z—§,2€Ty(¢,a)
for every v > 1 and a > 0 (cf. [14]).

If u is a monotone function on R7% with finite Dirichlet integral, then we shall show
that u has a finite T,,-limit at every boundary point except for a set £ C dR%} with
C1.(E) = 0; see Section 3 for the definition of capacity.

The nontangential case for harmonic functions has been dealt by many mathe-
maticians (cf. Beurling [1], Carleson [2], Gavrilov [4], Wallin [24] and the author [11]).
Miklyukov [10] discussed the nontangential limits for quasiregular mappings with finite
Dirichlet integral. Recently, Manfredi and Villamor [7] have proved the existence of
nontangential limits for monotone functions on the unit ball. The present tangential
limit result for harmonic functions was obtained by Cruzeiro [3].



71

It is well-known (through an application of change of variables) that, the coordi-
nate functions of bounded quasiconformal mappings defined on R%} have finite Dirichlet
integral. Our theorem then assures the existence of tangential limits for bounded quasi-
conformal mappings, and thus it gives an affirmative answer to the open problem given

by Vuorinen [23, 15.16].

2 Integral representation

For a multi-index p = (p1, ..., ) and a point z = (21, ..., 2,), define
llul =M1+t

H!=M1!X"'Xﬂn!,

B Bl L b
' =z X oo x zhn

' 6 L a B a Hn
b= — = | —
r=(z) =) )

If  is an infinitely differentiable function on R™ with compact support, then it is

represented as
D#
D*p(y)dy
= T o [, e

Jpl=m

and

with constants a,. This is known as Sobolev’s integral representation and is an extension
of the representation

1) =~y [ =) ds

in the one-dimensional case.
To represent general BLD functions in the integral form, we use the kernel functions

ku(z) =

IZI"
and
k“(II,‘ - y)) ‘ yE B(O’ 1))

kyz,y) = g
e (2, Y) ko(z —y) — Z ;T[DV]C 1(—v), y € R* — B(0,1).

izt

We need the following estimates of the kernel functions.
LEMMA 2.1. If |z — y| < |z|/2, then

kue(2, 9)| & M[J|™" + |z = y|™7"].
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- LemMa 2.2. If |y| £ |z|/2, then

(2, )| S Mlalym"

LEmMMA 2.3. If |y| > 1 and |y| > 2|z|, then

e, 9)| S Ml g™,

LEMMA 2.4. Let £ be the integer such that

£§m~ﬁ<£+l.
p

For f € LP(R™) and |u| = m, set

Upi() = [ ki, 9)f(3)dy.
Then ||D*U, |l, £ M||f||, for any multi-index v with length m.

In fact, we first note by Lemma 2.3 and Hdélder’s inequality that

. 1/p’
™ ()l dy < ( J |y|P'<m-"—‘-1>dy) 1£1l, < oo,

/{y:|y|>2R} v:|y|>2R}

where 1/p+ 1/p' = 1. Hence if |z| < R, then U, ,f is of the form

Uﬂ,lf(m) = /

028) ku(z — y)f(y)d;/ + v(z),

where v is an infinitely differentiable function on B(0, R). Further, we see that
D*(Uuif) = (D%k, ) * f+ A, f

for |v| = m, where A,, is a constant and the convolution on the right-hand side is
defined as singular integral. Thus we apply the well-known singular integral theory to
obtain the required assertion.

THEOREM 2.1 (cf. [17, Theorem 9.2]). Let u be a function in L%,

loc

(R™) such that
D*u € LP(R™) whenever |u| = m;

in this case, we write u € BL,,(L?(R")). If£ is the integer such that £ £ m—n/p < £+1,
then there exists a polynomial P of degree at most m — 1 such that

u(z) = ). /Rn ku(z,y)D*u(y)dy + P(z) a.e. on R™.

lul=m



PROOF. Denote by U the sum on the right-hand side. In view of Lemmas 2.1, 2.2
and 2.3, we infer that

[ ez, )l D u(y)ldy

is well-defined for almost every z and is locally integrable on R”. If ¢ € C °°(R”) then
we show that

([ tucte y)D”“(y)dy) D"+ o(z)dz = [ ( [ kuela, 5) D"+ o(2)ds ) D*uly)dy
whenever |v'| = || = m. For this purpose, consider |
| /c(j)(x) = mu[le + (1/j)2]—-n/2

and define Ic(J ) by the same construction as k, s from k,. Now, if || = |"| = m and
Y E C°°(R") then we apply Fubini’s theorem to obtam

/(/ kyo(z,y) D u( )dy) D+ <p(m)dm

= lim (/ K9z y)D“u(y)dy) D"+ o(z)dz
300 D
= lim ( (J) (z,y) D" " (m)dm) D*u(y)dy
j=o0
= lim [ (=1 [ D"kP(z 1) D" p(a)dz ) D*u(y)dy

= lim (~1)" [ D"kP) ([ Doy + 2) D uly)dy ) dz
= lim (-1)" / D"'kY)(2) (/ D*o(y + Z)D”"U(y)dy) dz

= lim (—1)"‘/ (/ D"'kff)(z)D“w(y+ z)dz) D*"u(y)dy

J—o0
= lim [ ([K9(e - 9D (z)dz) D" uly)dy

- / (] ku,z(:v,y)D”’+“<P(x)d$) D" u(y)dy

Consequently,

[ @D plz)ds = ( a [ u,,(m,y)DV'“so(m)dz) D" u(y)dy

Il
\
bv

y)dy
S / u(y) D" p(x) dy

73
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Thus we see that u — U is a polynomial of degree at most 2m — 1. Since D*(u —U) €
LP(R™), D*(u —U) =0, or u — U is a polynomial of degree at most m — 1.

Next we are concerned with extension properties for BLD functions on the upper
half space R%. Let Ay,..., A;p41 be a unique solution for the linear system

' Ao+ Ay + -er Amtr = 1,
(—1))1 + (—Q)Ag + M + (—m—,l))\m.u = 1,
(1) + (=22 4+ s+ (mm =1 =,
L D™ 4+ (2™ + s+ (mm= D)™ = L

For a function u € BL,,(L?(R%)), we define
u(z) if z, > 0,
Eu(z) = ¢ m+1

> Nu(zy, oy Tn1, —j2a) if 7, <0,
~

and for each multi-index p = (u4, ..., ttn)

u(z) if z, > 0,
E,u(z) = m+1

Z (=7 Au(z1, ey Tpe1, —J2,) if z, <O.

i=1 -

If u is in addition ACL on R%, theﬁ Eu is deﬁﬁed to be ACL on R" and
D*(Eu) = E,(D"u)
whenever |p| = 1. Repeating this process, we find that
D*(Eu) = E,(D*u)  whenever |u| £ m.
Thus it follows that Eu € BL,,(LP(R")).

THEOREM 2.2. If u is a function in BL,,(LP(R%)), then there exists a polynomial
P of degree at most m — 1 such that

u(z)= Y a, /Rn k,,,l(A:z:,y)E,,D"u(y)dy+P(a:)_ a.e. on R}

[ul=m

3 Fine limits of BLD functions

Let G be an open set in R". For a set E, we consider the relative capacity

Crmp(E; G) = inf ||f]},,



where the infimum is taken over all nonnegative measurable functions f on R"™ such
that f = 0 outside G and

Unf(z) = / |z —y|™ ™ f(y)dy 21  forevery z € E.

It is easy to see that C,, ,(; G) is a countably subadditive, nondecreasing outer capacity.
Note further that in case mp 2 n, S

Crp(E;RY) =0
for every set Ej; that is, Cp, ,(R™;R") = 0. Thus we write C,, ,(E) = 0 simply if
Cmp(ENG;G) =0  for every open set G.

It is not difficult to show that if C,, ,(E; G) = 0 for some bounded set G, then C,, ,(E) =
0.

LemMMa 3.1. If C,, ,(E) = 0, then there exists a nonnegative measurable function
f € L?(R™) such that U,,f = oo on E and

(3.1 fo L+ 1™ F(5)dy < .

Conversely, if
E, ={z e R":U,f(z) = oo}

for a nonnegative function f € LP(R") satisfying (3.1), then Cp,,(E1) = 0.
Note here that U,, f ,i.roo on R™ if and only if (3.1) holds.

LEMMA 3.2. Let mp=n and f € LP(R™). If

17!
E, = {£ € ORY : limsup (log -—) / |f(y)[Pdy > 0},
0 r B(o,r)

r—

then C,, ,(E2) = 0, where B(z,r) denotes the open ball centered at z with radius r (see
Meyers [8], [9]).

THEOREM 3.1. Let mp = n and f be a nonnegative function in L?(R™) satisfying
(3.1). If € € 6RY — (E1 U E3), then there exists a set E({) & R% such that

(3.2) B lim Umf(z) = Umf(g)

z—£{,z€RL-E(§)

and E is (m, p)-semithin at &, that is,

(3.3) lim (log %)M Con o (E(€) N B(E, r); B(E, 2r)) = 0.

r—0
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ProoF. Write U,,, f(2) = ui(z) + uz(z), where

w(z) =

z—y|™™" dy,
/RR_B(W_£| . |z -yl f(y) y

|z — y™ " f(y)dy.

'U;g("l?) =

/B(x,lx—fllz)

If y € R* — B(z, |z — €|/2), then |
€=yl S 1€ — 2|+ |z —yl < 3z —yl,
so that Lebesgue’s dominated convergence theorem implies that
lim uy(2) = Unf(&)-
For each positive integer j, consider
B(j) = {o : 27 S |a — €] < 27*, ua(a) > 0517},

where {a;} is a sequence of positive numbers such that lim a; = oo,

J—+o0

lim a7~ | Pdy =0
hm a7 [ sy | £ (y)|Pdy

e
and . } |
Yo [, VPd s> [ 1P

where G; = {z : 27771 < |z — €| < 2%}, If 2 € E(j), then B(z,|z — £|/2) € G; and

thus ,
i < [ e —ol" f(a)dy.

2

Hence it follows that '
Cral B3 G S 05 [ 17 W)IPdy.

Now define "
| B©) = U B0

Then we have

i Cm,p(E(j)3 Gj)

s=k

>, [, 1Py

6 / p
v VP

Crmp(E(€) N B(€,275*1); B(§,27"7))

A

HA

A



which shows that
lim £ (B(€) 0 B(E,274); BE 277 = 0.

We see readily that this is equivalent to (3.3), and hence E(€) has all the required
properties.

We say that u is (m, p)-quasicontinuous on an open set D if for any given ¢ > 0 and
a bounded open set G € D, there exists an open set w & G such that C,, ,(w; G) < € and
u is continuous as a function on G — w. f u € BL,,,(L (D)) is (m, p)-quasicontinuous
on D, then u is said to be a BLD function on D. Note that for each u € BL,,,(Z%,.(D)),
there exists a BLD function on D which is equal to u almost everywhere on D.

In view of Theorem 2.2, u € BL,,(L?(R?)) is represented a.e. on B(0, R) N R} as

uz)= ¥ a [ k(o= y)EDu(y)dy + ()

ul=m ~ JBO2R)
for some v € C°(B(0, R)). Hence Theorem 3.1 gives the following.

CoROLLARY 3.1. Let mp = n and u be a BLD function in BLm(LP(R’}r)) Then
there exists a set £ & BR" with the following propert1es
(i) Cm,,(E) = 0.
(ii) For each £ € OR — E, there exists a set E(£) & R} satisfying (3.3) for which

lim u(z) exists and is finite.
z—§,z€R}—E(§)

4 Monotone functions
We say that a continuous function u on R? is monotone (in the sense of Lebesgue) if

max u=max u and min 'y = min
G aG G aG

hold for any relatively compact open set G in R, where G = G U 0G (see Vuorinen
[22], [23]). If f is monotone on (0, 00) and £ € 8R" then it is clear that the function

u(e) = £z~ )

is monotone on R”. Harmonic functions, (weak) solutions in a wider class of (non)linear
elliptic partial differential equations and the coordinate functions of quasiregular map-
pings are monotone (see e.g. Gilbarg-Trudinger [5], Heinonen-KilpelGinen-Martio [6],
Reshetnyak [19], Serrin [20] and Vuorinen [23]). »

The key of proving our theorem mentioned above is the following result.

77
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'THEOREM 4.1 (cf. [7, Remark, p.9] and [23, section 16]). If u is monotone on
B(z,r).and n—1 < p < n, then

ju(z) ~u()lP € M [ Vu(a)lPds

whenever y € B(z,r/2), with a positive constant M independent of r.

PROOF. Assume that u is monotone on B(z, r), and take y € B(z,r/2). Without
loss of generality, we may assume that u(z) < u(y). If r/2 < ¢t < r, then by monotonicity
there exist y(t) € dB(z,t) and z(t) € dB(z,t) such that

u(z(t)) £ ulz) < u(y) < w(y(?))-
In view of Sobolev’s imbedding theorem, we see that

[u(e(®) = u(u(O)F S ME=0D [ 19 u(2)Pds ().

By integration over the interval (r / 2,7), we obtain

o) =) [, e m [ ( Lo ¥ u(z)l”dS(z)) )

which proves the required inequality.

5 T,-limits
We begin with an estimate of C) ,-capacity of balls.

LEMMA 5.1. Let { € ORY and z € R}. If mp = n, then

Comp(B(z,20/2); B(€, 2]z — &])) ~ [log(2|z — &]/za)]' 7"

ProoF. Let f(y) = |z —y|™™ for y € B(§, 2|z — €|) — B(z,2,/2) and f(y) = 0
elsewhere. If z € B(z,z,/2) and y € B(z, z,/2), then |z—y| £ |z—z|+]|z—y| £ 2|z —y|,
so that

z—y|™" d 22"‘_"/ | |z =y dy 2 Mlog(2|z — n)-
/I ™" f(y)dy 2 o slomthBlaafny 2 Y @Y 2 Mog(2lz — £/z.)

Hence it follows that
Crp(Ba2a/2; B Az ~€)) < [ ()M log(2le - €l/a)dy
S Mllog(2le — €l/za) ™.



Conversely, take a nonnegative measurable function g such that ¢ = 0 outside
B(&,2|z — €]) and Usng 2 1 on B(z,2,/2). Then i ‘ :

1 : 1 :
g A——— dz £ —/——— / z—y|™ g a’y) dz
|B(z, 2,/2)| /B(z,2n/2) = |B(z,z./2)| B(x,zn/2)(3(€,2lx-£l)l vl ®)
1
—_— z—y|™ "dz d:
/B(s,zlx—el) (IB(w, z,/2)| B(m»/z)l vl )g(y) Y
< M z, + |z — y|)™ "g(y)dy
= M o ppeney(n H 2 W)

A

Mlog(2|z - gl/xn)]llp’“9”p>

which proves that

Conp(B(2,24/2); B(E, 2]z — €])) 2 Mlog(2|z — £]/2.)]'.

THEOREM b5.1. .Let u be a monotone BLD function on R’ which belongs to
BL(L"(R%)). Then there exists a set E & OR"} such that Cy,(E) = 0 and u has
a finite T, -limit at every boundary point £ € R} — E.

ProOF. For £ € R — (E1 U Ey), take a set E(€) as in Corollary 3.1. Since u is
monotone on R7,

(5.1) jue) — )" S M [ grad u(z)"ds

whenever y € B(z,ya:n/Q), where z = (z1,...,z,) € R%. If z € T, (£, a), then Lemma 5.1
implies that B(z, z,,/2)— E(€) is not empty, so that there exists y(z) € B(z, z,/2)— E(€)
(when z,, is small enough). Then we see from (5.1) that

el (@) = uly(@))]

Hence it follows that

im u(z) = lim u(y(z)),
f‘*f,xe:n/(f;a) ( ) .’L’—FE,.’L‘GTﬁy(E,a) (y( ))
so that the limit on the left exists and is finite. Thus E' = F; U E; has all the required
properties, with the aid of Lemmas 3.1 and 3.2.

CoRroOLLARY 5.1. Every coordinate function of bounded quasiconformal mappings
on R} has a finite To,-limit at every boundary point except for a set E C OR% such
that Cl,n(E) =0.
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6 Remarks

REMARK 6.1. According to [15, Remark 5], for given v > 1 and a > 0 there exists
a harmonic function v on R} with finite Dirichlet integral such that

(i) u has a nontangential limit at the origin.

(i) limsup u(z) = oo  for every ¥ > v and d’ > a.
z—0,2€T,1(0,0")—7,1(0,a)

This shows that the existence of nontangential limits may not always imply that of
tangential limits.

REMARK 6.2. By applying the same spirit as the construction of u in Remark 6.1,
‘we give one more example of such w. '
For 21 = (27,0, ...,0) € OR" and 0 < r; < 27771, consider the sets

' . _ (2—n)/n
B; = [B(a:(J),2"J"2s]-) - B(x(’),rjsj)] - R], where s; = *(log 2} )
s

Suppose {r,} is chosen so small that
1 1-n
6. log —— .
(6.1) x (los5r) <o
if this is the case, B = R N B(z\", r;) is called C},-thin at the origin in the sense
J
of [13]. Taking a sequence {a;} of positive numbers such that

lim a; = oo

J—o0
and

1 1-n
6.2 n (10g L
(6.2) Z a; (log ZJrJ-) < 00,

J

we now define

1\
log —2J——) |20) — ¢ when y € B;,

a; (
fly) = "
0 elsewhere,

and

’U.(CL') = /R." lz;n:yylz f(y)dy> = (371, ey mn)a y= (yl> ey yn)

Then, as in [13, Proposition], we can prove :
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(i) uis a harmonic function on R% with finite Dirichlet integral.
(i) u has a nontangential limit at the origin.

(iii) }1,125 u(z? +(0,...,0,7;)) = oo.

To show (i) and (ii), we note by (6.2) that

[ forasuy o (losg] <o

29r;
and

u0) = [ (~g)lol ")y
MZ a; (log 5%) B oIm /B,- (‘—yn)|z(j) — y|™'dy

HA

1 —n+1
< MZ a; (logij.—;j) < 00.
j

2

Finally we see that for z € R7} n B(z, r)),
1\ : :
u(z).2 Ma; | log — / (|z — 29) + ) "r " Ydr 2 Ma;,
- 217«] TS5
which implies that

lim  u(z) = oo.
z—0,x€B

REMARK 6.3. Let w be a positive nonincreasing continuous function on the interval
(0, 00) such that

) |
(6.3) / w(t) "M D=14t < oo,
0

If u is a monotone function on R satisfying
(6.4) | /R Vu(2)["w(|z])dz < oo,
+

then we can show that u has a finite T.,-limit at the origin. v
In this case, 0 ¢ (F; U E) and thus apply Theorem 5.1. We also refer to [16] for
harmonic functions.

REMARK 6.4. Let w be a positive nonincreasing continuous function on the interval
(0, 00) for which (6.3) does not hold. Then there exists a monotone function u on R%
satisfying (6.4) such that u fails to have a finite T-limit at the origin.
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In fact, letting ,
)= [ w(@y ey,

T

we may consider the function

u(z) = log(f(|=])/f(1))

for |z| £ 1; define u(z) = 0 otherwise. Then note that u(0) = oo and

[Vu(z)| = 1f'(=])/f(I=])],

so that
[ (V) rallehds = M [ 170) 0w
= M [ F) =S
= M > 17 dt < 0o.
(1)
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