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Asymptotic Behavior for Nonlinear Systems of Phase Transitions
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1. Introduction

We consider the following nonlinear system:

Op(u) Ow _ _ . .
pn + 5 T Au = f(t,z) in Q := (0,400,) x Q, (1.1)
ow ' o -
vt B(w)+g(w)du inQ (1.2)
with lateral boundary condition:
Ou
F an(z)u = hy(t,z) on X :=(0,400) x T, (1.3)

and initial conditions:
u(0,+) = uo, w(0,-)=wo in{. (1.4)

Here Q is a bounded domain in RY (N > 1) with smooth boundary ' := 8Q; p is a
monotone increasing and bi-Lipschitz continuous function on R; v is a positive constant;
B is a maximal monotone graph in R X R; ¢ is a smooth function defined on R; ay is a
non-negative, bounded and measurable function on I' such that any > 0 on a subset of I’
with positive measure; f, hy,ug and wy are given data.

For simplicity problem (1.1)-(1.4) is denoted by (CP). This is a simplified model for
a class of solid-liquid phase change problems, and in this context u represents a function
related to temperature and w a non-conserved order parameter (the state variable charac-
terizing phase). For instance, we have the following examples:

(1) Stefan problem with phase relaxation, in which f is the subdifferential of the indicator
function of the interval [0,1] and g = 0. This case was discussed as a melting problem
with supercooling and superheating effect in [12,5].

(2) Phase-field model with constraint, in which £ is the same as in (1), p(uv) = u, g(w) =

w® — cw with a positive constant ¢, and a diffusion term —x A w is added to the left
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side of (1.2). This is a phase-field model with constraint 0 < w < 1 and was discussed
in [6,9,11]. We may consider system (1.1)-(1.4) as an approximation of this problem
with small x > 0.

Furthermore we refer to [2,1] for papers dealing with similar problems.

In this paper, we discuss the large-time behavior of the solution {u,w}. In fact, under
the condition that f(¢,z) — f°(z) and An(¢,z) — h(z) in an appropriate sense as
t — 4oo, it will be shown that as ¢ — 400, u(t,-) and w(¢,-) converge to a solution
{u®,w*} of the corresponding steady-state problem

—Au® = f*(z) inQ,

2. Existence and uniqueness result for (CP)

Problem (CP) is discussed under the following assumptions (A1)-(A6):
(A1) p: R — Ris an increasing and bi-Lipschitz continuous function.

(A2) f is a maximal monotone graph in R X R such that for some numbers o,,0* with
—00 < 0, < 0" < 400 _
D(B) = [ox,07;
note in this case that R(f3) = R, so that there is a non-negative proper l.s.c. convex
function 8 on R whose subdifferential 08 coincides with 8 in R, and in the context

of solid-liquid system we can consider that w = o, (resp. ¢*) indicates the pure solid
(resp. liquid) phase and any intermediate value w indicates a state of mixture.

(A3) ¢g: R — R is a Lipschitz continuous function with compact support in R; in this
case note that there is a non-negative primitive § of g.

(A4) f € L (Ry; L2(Q)).

loc

(Ab) hy € W,},’f(R+; L*(T")) with SUP;5g |hN|W1,2(t,t+1;L2(p)) < 4o00.

(A6) uo € L*(Q) and wo € L3(Q) with B(wo) € L1(Q).

We introduce some function spaces and a convex function in order to discuss (CP) in
the framework of abstract evolution equations of the form

U'(t) + 9" (U(1)) + G(U(1) > F(2).



148

Let V := H(Q) with norm
|Z|V = {|VZI%2(Q) +/FCYNlZ|2dF}%’

and denote by V* the dual space of V and by (:,-) the duality pairing between V* and V.
Then, identifying L?(Q) with its dual space by means of the usual inner product

(v,2) :=/Ovzd:z:,

we see that

VcL*Q)cv*

with compact injections.
Let F be the duality mapping from V onto V* which is given by the formula

(Fu,z) = /QV'U -Vzdz + /FanzdF for any v,z € V.
It is easy to see that V* becomes a Hilbert space with inner product (-,-). given by
(v,2)s := (v, F'2) (= (2, F~'v)) for any v,z € V"
Now, consider the product space
X :=V* x L*(Q),
which becomes a Hilbert space with inner product (:,+)x given by
([e1, w1), [e2, wa])x = (€1, €2)x + v(w1,w;) for any [e;,w;] € X (2 =1,2).
Next, given the boundary data hy, choose h: Ry — H'(§) such that for each ¢ > 0

/Q Vh(t) - Vzdz + /F anh(t)zdl = /F hn(t)zdD for all z € V;

note from (A5) that sup;»o |B|w1 2 e;m () < +00.
Also, using k and 8, for each t > 0, define a proper l.s.c. convex function ¢* on X by

/ﬂ p*(e — w)dz + ]Q B(w)de — (h(t), €)
' (U) = if U=I[e,w] € L) x L) with B(w) € L'(Q),
400 otherwise,

where p* is a non-negative primitive of p~'. We denote by d¢* the subdifferential of ¢* in
X and its characterization is given by the following theorem.

Theorem 2.1. (cf. [5,9]) Let t > 0, [e*,w*] € X and [e,w] € D(3¢*). Then [e*,w*] €
0pt([e,w]) if and only if conditions (a) and (b) below are satisfied:
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(0) ¢ = F(p~'(e — w) — h(t)), that is, p~'(e — w) — h(t) € V and
(e7,2) = [ V(o7 (e —w) = h(t) - Vada + [ an(p™(e = w) = h(t))zdl
forallz € V:
(b) there exists a function £ € L*(Q) such that € € B(w) a.e. on Q) and
vt =€ — pNe—w) in L(Q).
Morcover, for Ur = [ef,w?] € 0t (Us) with U = [es,ws] € D(3gY) (i = 1,2),
(Ur = U3, Ur = Ua)x = |(e1 — w1) — (&2 — wa)|120) + (&1 — &2, w1 — wy),

where & € L*(Q) is as any function £ in (b) for each i =1,2.

A weak formulation for (CP) is given as follows.

Definition 2.1. A couple {u,w} of functions v : Ry — V* and w : Ry — L*Q) is
called a (weak) solution of (CP) on R, if the following conditions (w1)-(w3) are fulfilled
for any finite T' > 0:

(wl) p(u) € C([0,T]; V)N WL2((0,T); V) N L*(0,T; LA(Q)),u € L2.((0, T]; H()),

w € O([0, T} 2(@)) 0 WEZ((0, T} L(9)), and B(w) € L}(0,T; L)
(w2) p(u)(0) = pluo) and
((2) + w(2),2) + [ V(u(t) = (1)) Vade + [ anu(t) - h(e))zdl = (£(),2)
for all z € V and a.e. t € [0,T], where the prime ' denotes the derivative in time.
(w3) there exists £ € LZ((0,T); L2(R)) such that £ € B(w) ae. on Qg := (0,T) x 2 and
(6, 7) + (E(8) + o(w(®), 2) = (a(t), )
for all z € L*(R) and a.e. ¢ € [0, 7).

According to Theorem 2.1, (CP) can be reformulated as an evolution equation in X in
the following form:

{ U'(t) + 00" (U(t)) + G(U() 3 f(t), inX, ¢t>0,

U(0) = [p(uo) + wo, wo),

where U(t) = [p(u(?)) + w(t), w(t)], GU(?)) = [0, %g(w(t))] and f(t) = [f(2),0)-
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As to the solvability of (CP) we have:

Theorem 2.2. (c¢f. [6,9]) Assume that (A1)-(A6) hold. Then, for anyT > 0, (CP) admits

one and only one solution {u,w} on [0,T] such that
tho(u) € 2(0,T; V"), thu € L(0,T; HY(©),
() € (0,75 1)), tu € L=(0, T; H'(Q)),

tiw' € LA(0,T; LA(Q)), th(w) € L=(0,T; L}(Q)),
t2¢ € L*(0,T; L*(Q))

where € is the function in condition (w3).

3. Large-time behavior of the solution

Further suppose that there are A € L%(T') and f* € L*(Q) such that
by — b € L(RGIAT)), [ 1 € L2(Re; I2(Q), (3.1)

and consider the steady-state problem (3.2)-(3.3):

— Au® = f*(z) in Q, ag—: + an(z)u™ = hy(z) onlT, (3.2)
B(w*™) + g(w*™) > u>* in Q. (3.3)

We should note that problem (3.2) does not include w*™, and it has a unique solution
u®™ € H'(f) in the variational sense, i.e.,

j V(u® — h*®) - Vzdz +/aN — h®)zdl = (f®,2) forall z €V, (3.4)
where h € H'(Q) such that
/ Vh*  Vzdz + / anh®zdll = / h% zdl >for all z e V.
Q r r

We see from (3.1) that h — h> € L*(R4; H'(Q)).

In the sequel we mean by (P*) the algebraic relation (3.3) with the solution u™ € H'(f)
of (3.4), and w™ = w*>(z) is called a solution of (P*).

As the following example shows, the steady-state problem (P*°) has in general infinitely
many solutions.

Example 3.1. Consider the case when
fPx)=0, (@)=, an(z)=1, B=0l_1yand g(w)=v’—w

where [y is a constant. Then, clearly u® = [, and we have the following three possibilities:
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(i)  when , > # (resp. lp < —5—\2/——3), the algebraic relation

pr) +9(r) 3 v (=) | (3.5)
has exactly one solution r =1 (resp. —1).

(ii) Evhen lo ;_-) ﬁ (resp.: v—%g), (3.5) has exactly two solutions r = —% (resp. %), 1
resp. —1). - ' :

(iii) when |lp] < %5, (3.5) has exactly three solutions r = £_, &g, €4 with —1 < §_ < & <
&y < 1.

Physically (i) means that if the temperature is kept high (resp. low) enough, then the
limit state (as t — +o00) will be of pure liquid (resp. solid). On the other hand, (ii)
and (iii) mean that if the temperature is kept near the phase transition temperature, then
the limit state possibly includes a mushy region. In particular, in the case of (iii), all step
functions w* with range in {£_, &y, {4 } are solutions of (P*) and hence (P*°) has in general
infinitely many solutions.

Our main result is stated in the following theorem.

Theorem 3.1. Suppose that conditions (A1)-(A6) and (3.1) hold, and let {u,w} be the
solution to (CP) on R,. Further, suppose that for each p € R the (algebraic) inclusion

| B0) +() 3
has a finite number ofAsolutions ran W Then,

u(t) — u*™ weakly in H'(Q) as t — +o0, (3.6)
where u™ is the unique solution of (8.4), and there exists afunction w™ € L=(Q) such that

Bw™(z)) + g(w™(x)) 2 u™(z) forae z€Q

and
w(t,z) — w>(z) for a.e. z € Q ast — +oo.

We prove the theorem by the following four lemmas.

Lemma 3.1. Under the same assumptions of Theorem 3.1, for the solution {u,w} to (CP)
on R, we have

U= U € L*(Ry; H'(Q)), w' € L*(Ry; L*(Q)) and f(w) € L= (Ry; L1(Q)), (3.7)

u € L=([1,+00); H'(R)). (3.8)
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Proof. Multiplying the difference of (1.1) and (3.2) by u(¢) — u™ and (1.2) by w'(t), we
get

S (plutt)))de — (p(u(0) + w(0),u)} + (' (1), u(t) +

and
(1) By + 1L Bo(®)de + [ 4((0)de} = (u(t),w'(2)

for ae. t > 0. Adding these two equalities we have

{/p Mdz = (plu(®)) +w(t),u™) + [ Bw(®)de + [ glw(t)da}+

b (O + IV (u() — 0™ oy + [ awlu(t) - uwdT
= (f(t) = £=u(®) = w™) + [(h(t) = hH=)(u(t) = u=)dT

for a.e. t > 0, so that there are positive constants C; and C; such that

{/p Nz = (p(u(®) +w(®),u®) + [ Blw(®)dz + [ jluw(®)ds}+

+u|w' () 720y + Crlu(t) — v )
< Co{lf(8) = f =1Ly + 1~(E) = B®|Zary}
' for a.e. ¢ > 0.

Therefore, for all T > 0, we have
[ (p(u(T)))dz = (p(a(T)) + w(T),u*) + [ Bw(T))da + [ §(w(T)do+
T T
+v /0 [ (8) 22y dt + Ci /0 Ju(t) = w2 gy dt
T 2 T 2
< CA [ 1) — = Badt + [ [B(0) = B2aydt}+

+/p (ug))dz — (p(uo) + wo, u +/ﬁwodm+/ (wo))

Hence (3.7) is obtained. Also, (3.8) is a direct consequence of (3.7) and a standard regularity
result for parabolic equations. a

Lemma 3.2. Under the same assumptions of Theorem 8.1, put

t+1 2
Ul(z) == / |w'(r,z)|*dr  for z € Q.
11
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Then, Ut(z). — 0 as t —> +oo for a.e. € Q.
Proof. By Lemma 3.1, we have

400
lim dt/Q |w'(t,z)|*dz = 0,

T/ 40 JT
so that oo
lim /d:v/ |w'(t, z)[?dt = 0.
T/ +o0 JQ T
Hence,
+o0
/ |w'(t,z)|*dt — 0 as T — +oo for a.e. z € Q.
T
This implies the lemma. - O

Lemma 3.3. Under the same assumptions of Theorem 3.1, (3.6) holds.

Proof. Let {u,w} be a solution to (CP) and u® be the solution to (3.4).
Let {t,} be any sequence with ¢, — 400 as n — 400, and put
U (1) == u(t, + 1), wa(t) = w(ty +1), fult) = f(tn +1), ha(t) :=h(t, +1)
for 0 <t <1.
Since by Lemma 3.1, u — u* and w’ are in L*(Ry; H'(Q)) and L*(R4; L*(Q)), respectively,

we see that
u, — u™ in L*(0,1; H*(Q)), (3.9)
and ; ‘
w! — 0 in L*(0,1; L*(Q)), (3.10)
as n — +00. Moreover since by Lemma 3.1, u is bounded in H(2) on [1,+00), we may

assume that for a function 4 in H*(f)

1 (0) = u(t,) — 4* weakly in H*() (3.11)

as n — +0o. Now, consider the Cauchy problem for each n
{ p(un)'(t) + 007 (un(t)) = fo(t) —wi(t) in L*(Q), 0 <t <1,

ur(0) = u(ty)
where ®! is a propér Ls.c. and convex function on L*(£2) such that for each n and ¢ € [0,1]
1

Sz =R (D) zeV,
)= § 27OV

400 otherwise,

and d®!, is the subdifferential of ®f in L?(Q). From (3.9), (3.10) and (3.11), we see that

o — O “on L*(9) in the sense of Mosco for every t € [0, 1],

n
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fn—wl, — £ in L*(0,1; L*(Q))

and

u,(0) — 4> in L*(Q)

as n — +o00, where @, is a proper l.s.c. and convex function on L*(Q) such that

1 .
Sle= k< ifzeV,

O (2) =
40 otherwise.
Therefore, by a general theory in [8],
u, — @ in C([0,1]; L*(Q)) as t — +o0, (3.12)

where @ is the solution of
p()(t) + 00co(a(t)) = f in L*(Q),0 <t <1,
{ i(0) = &>
From (3.9) and (3.12) it follows that & = u™ on [0,1]. Consequently (3.6) holds. ]

Lemma 3.4. Under the same assumptions of Theorem 3.1, put

V(z) :={r € D(B);w(tn,z) — r for some t, with t, - +oo} for z € .
Then,
(1) V(z)#0 for ae. z€Q;
(2) B(r) +g(r) > u>®(z) for allT € V(z) and a.e. z € Q;
(3) V(z) is a singleton for a.e. z € Q.

Proof. (1) is clear by the boundedness of w(t,z) on R. .
t+1
Let z € Q with tli+m / |w'(7,z)|*dT = 0 (cf. Lemma 3.2) and r € V(z). Then, there
-1 00 t

exists a sequence {¢,} such that
| t, — +oo and w(t,,z) — r asn — +oo.
Fixing z, put
wn(t) == w(t, +t,2), us(t) :=u(t, +t,2) for0<t<1.
By Lemma 3.3 and (A2), we may assume that

Uy, — g(w,) — u™(z) —g(r) in L*(0,1) as t — +o0
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Now consider a sequence of ODEs:

{ wh (t) + B(wn(t)) + g(wn(t)) 3 un(t) for0<t <1,
wn(0) = w(t,,z).

By a general theory in [8] again, w, converges in C([0,1]) to the solution @ of

{ w'(t) + B(w(t) + g(@(t)) > uP(z) for0<t <1,
(3.13)

w(0) =r.
But, since @' = 0 i.e. @ =r by assumption, we see from (3.13) that
B(r) +g(r) > u™().

Thus, (2) is proved. At last, we show (3). Suppose that V(z) has more than two elements
for some z € Q, say 1,72 € V(z), r1 < r;. By definition, there exists two sequence {s,}
and {¢,} such that

Sp — 00, W(Sy,z) — 11,
t, — 400, Aw(tn,a:) —

as n — +00, and
Sp <tp < Spp1 < tpyy forn=1,2,3,---.

From the continuity of w with respect to ¢, for any r € (ry,732), there exists a sequence {7,}
with 7, — 4o00(n — +00) such that

Sp < Tp <ty forn=1,2,3,--- and w(7,,z) =r for large n.

This implies that 7 € V(z) and hence [r1,72] C V(z). This contradicts the assumption

that 3(r) + ¢g(r) 3 u*(z) has a finite number of solutions r in D(8). Thus, V(z) must be
a singleton for a.e. z € (1. O

In particular, (2) and (3) of Lemma 3.4 imply that w(t, z) converges to a solution w*(z)
for a.e. x € ) as t — +o0o and the limit w™ is a solution of (P*°). Thus we complete the
proof of Theorem 3.1.
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