Nonlinear Ergodic Theorems for Semigroups of Nonexpansive Mappings and Left Ideals

Anthony T. M. Lau*, Koji Nishiura and Wataru Takahashi
(西浦 孝治) (高橋 涉)

1 Introduction

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology such that for each $s \in S$ the mappings $s \mapsto a \cdot s$ and $s \mapsto s \cdot a$ from S to S are continuous. Let E be a uniformly convex Banach space and let $S = \{T_s : s \in S\}$ be a continuous representation of S as nonexpansive mappings on a closed convex subset C of E into C, i.e., $T_{s+b}x = T_s T_b x$ for every $a, b \in S$ and $x \in C$ and the mapping $(s, x) \mapsto T_s(x)$ from $S \times C$ into C is continuous when $S \times C$ has the product topology. Let $F(S)$ denote the set $\{x \in C : T_s x = x \text{ for all } s \in S\}$ of common fixed points of S in C. Then as well known, $F(S)$ (possibly empty) is a closed convex subset of C (see [5]).

In this paper, we shall study the distance between left ideal orbits and elements in the fixed point set $F(S)$. We shall prove (Theorem 3.11) among other things that if E has a Fréchet differentiable norm, then for any semitopological semigroup S and $x \in C$, the set $Q(x) = \bigcap \overline{co}\{T_t x : t \in L\}$, with the intersection taking over all closed left ideals L of S, contains at most one common fixed point of S (where $\overline{co}A$ denotes the closed convex hull of A). This result is then applied to show (Theorem 4.1) that if $F(S) \cap Q(x) \neq \emptyset$ for any $x \in C$, then there exists a retraction P from C onto $F(S)$ such that $T_t P = P T_t = P$ for every $t \in S$ and $P(x) \in \overline{co}\{T_t x : t \in S\}$ for every $x \in C$. Both Theorem 3.11 and Theorem 4.1 were established by Lau and Takahashi in [18] when S has finite intersection property for closed left ideals.

The first nonlinear ergodic theorem for nonexpansive mappings was established in 1975 by Baillon [1]: Let C be a closed convex subset of a Hilbert space and let T be a nonexpansive mapping of C into itself. If the set $F(T)$ of fixed points of T is nonempty, then for each $x \in C$, the Cesàro means

$$S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converge weakly to some $y \in F(T)$. In this case, putting $y = Px$ for each $x \in C$, P is a nonexpansive retraction of C onto $F(T)$ such that $P T = T P = P$ and $P x \in \overline{co}\{T^n x : n = 1, 2, \cdots\}$ for each $x \in C$. In [24], Takahashi proved the existence of such a retraction for an amenable semigroup. This result is further extended to certain Banach spaces by Hirano and Takahashi in [12].

*This research is supported by NSERC-grant A7079
Our paper is organized as follows: In section 2 we define some terminologies that we use; in section 3 we study the distance between ideals determined by left orbits and the fixed point set; in section 4 we apply our results in section 3 to establish our main nonlinear ergodic theorems; finally in section 5 we study an almost fixed point property determined by the minimal left ideals in the enveloping semigroup of a semigroup of nonexpansive mappings on a weak compact convex set and obtain a generalization of De Marr's fixed point theorem [6].

2 Preliminaries

Throughout this paper, we assume that a Banach (or Hilbert) space is real.

Let E be a Banach space and let E^* be its dual. Then, the value of $f \in E^*$ at $x \in E$ will be denoted by $\langle x, f \rangle$ or $f(x)$. The duality mapping J of E is a multivalued operator $J : E \rightarrow E^*$ where $J(x) = \{ f \in E^* : \langle x, f \rangle = \| x \| = \| f \| \}$ (which is nonempty by simple application of the Hahn-Banach theorem). Let $B = \{ x \in E : \| x \| = 1 \}$ be the unit sphere of E. Then the norm of E is said to be Fréchet differentiable if for each $x \in B$, the limit

$$\lim_{\lambda \rightarrow 0} \frac{\| x + \lambda y \| - \| x \|}{\lambda}$$

is attained uniformly for $y \in B$. In this case, J is a single-valued and norm to norm continuous mapping from E into E^* (see [5] or [8] for more details).

Let S be a nonempty set and let X be a subspace of $l^\infty(S)$ (bounded real-valued functions on S) containing constants. By a submean on X we shall mean a real-valued function μ on X satisfying the following properties:

1. $\mu(f + g) \leq \mu(f) + \mu(g)$ for every $f, g \in X$;
2. $\mu(\alpha f) = \alpha \mu(f)$ for every $f \in X$ and $\alpha \geq 0$;
3. For $f, g \in X$, $f \leq g$ implies $\mu(f) \leq \mu(g)$;
4. $\mu(c) = c$ for every constant function c.

A semitopological semigroup S is called left reversible (resp. right reversible) if S has finite intersection property for right (resp. left) ideals. S is called reversible if S is both left and right reversible.

Let S be a semitopological semigroup and let $C(S)$ denote the closed subalgebra of $l^\infty(S)$ consisting of bounded continuous functions. For each $f \in C(S)$ and $a \in S$, let $(l_a f)(t) = f(at)$ and $(r_a f)(t) = f(ta)$. Let $RUC(S)$ denote all $f \in C(S)$ such that the mapping $S \rightarrow C(S)$ defined by $s \rightarrow r_s f$ is continuous when $C(S)$ has the norm topology. Then $RUC(S)$ is a translation invariant subalgebra of $C(S)$ containing constants. Further, $RUC(S)$ is precisely the space of bounded left uniformly continuous functions on S when S is a group (see [11]).

A submean μ on $RUC(S)$ is called invariant if $\mu(l_a f) = \mu(r_a f) = \mu(f)$ for every $f \in RUC(S)$ and $a \in S$. If S is a discrete semigroup, then $RUC(S)$ has an invariant submean if and only if S is reversible. Also if S is normal and $C(S)$ has an invariant submean, then S is reversible. However S need not be reversible when $C(S)$ has an invariant submean in general (see [19] for details).
3 Left ideal orbits and the fixed point set

Unless otherwise specified, \(S \) denotes a semitopological semigroup and \(S = \{ T_s : s \in S \} \) a continuous representation of \(S \) as nonexpansive mappings from a nonempty closed convex subset \(C \) of a Banach space \(E \) into \(C \).

Let \(\mathcal{L}(S) \) denote the collection of closed left ideals in \(S \). Assume that \(F(S) \neq \emptyset \). For each \(x \in C \) and \(L \in \mathcal{L}(S) \), define the real-valued function \(q_{x,L} \) on \(F(S) \) by

\[
q_{x,L}(f) = \inf \{ \| T_t x - f \|^2 : t \in L \}
\]

and let

\[
q_{x}(f) = \sup \{ q_{x,L} : L \in \mathcal{L}(S) \}.
\]

Then

\[
q_{x}(f) = \sup_{s} \inf_{t} \| T_{ts} x - f \|^2
\]

as readily checked.

Lemma 3.1 Let \(C \) be a nonempty closed convex subset of a Banach space \(E \). If \(F(S) \neq \emptyset \), then for each \(x \in C \), \(q_{x} \) is a continuous real-valued function on \(F(S) \) such that \(0 \leq q_{x}(f) \leq \| x - f \|^2 \) for each \(f \in F(S) \) and \(q_{x}(f_n) \to \infty \) if \(\| f_n \| \to \infty \). Further, if \(F(S) \) is convex, then \(q_{x} \) is a convex function on \(F(S) \).

Proof. Since \(0 \leq \| T_t x - f \|^2 = \| T_t x - T_t f \|^2 \leq \| x - f \|^2 \) for every \(f \in F(S) \) and \(t \in S \), it follows readily that \(0 \leq q_{x}(f) \leq \| x - f \|^2 \). Also if \(f \in F(S) \) and \(t \in S \), then \(\| T_t x - f \| \leq \| x - f \| \). Hence \(\| T_t x \| \leq \| T_t x - f \| + \| f \| \leq \| x - f \| + \| f \| \), i.e.,

\[
M = \sup \{ \| T_t x \| : t \in S \} < \infty.
\]

Let \(\{ f_n \} \) be a sequence in \(F(S) \) such that \(\| f_n \| \to \infty \). Then we have for each \(t \in S \),

\[
\| T_t x - f_n \|^2 \geq (\| T_t x \| - \| f_n \|)^2
= \| f_n \|^2 - 2 \| T_t x \| \| f_n \| + \| T_t x \|^2
\geq \| f_n \|^2 - 2M \| f_n \|
= \| f_n \|^2 \left(1 - \frac{2M}{\| f_n \|} \right)
\]

and hence for each \(L \in \mathcal{L}(S) \),

\[
q_{x,L}(f_n) \geq \| f_n \|^2 \left(1 - \frac{2M}{\| f_n \|} \right) \to \infty.
\]

So we have \(q_{x}(f_n) \to \infty \).

To see that \(q_{x} \) is continuous, let \(\{ f_n \} \) be a sequence in \(F(S) \) converging to some \(f \in F(S) \) and

\[
M' = \sup \{ \| T_t x - f_n \| + \| T_t x - f \| : n = 1, 2, \ldots \text{ and } t \in S \}.
\]

Then

\[
\| T_t x - f_n \|^2 - \| T_t x - f \|^2 \leq (\| T_t x - f_n \| + \| T_t x - f \|) \| T_t x - f_n \| - \| T_t x - f \|
\leq M' \| f_n - f \|,
\]

and

\[
q_{x,L}(f_n) \geq \| f_n \|^2 \left(1 - \frac{2M}{\| f_n \|} \right) \to \infty.
\]

So we have \(q_{x}(f_n) \to \infty \).
we have for each $L \in \mathcal{L}(S)$,

$$q_{x,L}(f_n) \leq q_{x,L}(f) + M'\|f_n - f\|.$$

Similarly, we have

$$q_{x,L}(f) \leq q_{x,L}(f_n) + M'\|f_n - f\|.$$

So we obtain

$$|q_{x}(f_n) - q_{x}(f)| \leq M'\|f_n - f\|.$$

This implies that q_{x} is continuous on $F(S)$.

If $F(S)$ is convex, for each $f, g \in F(S)$ and $\alpha, \beta \geq 0$ with $\alpha + \beta = 1, \alpha f + \beta g \in F(S)$.

Let $\epsilon > 0$. Then there exists $L_0 \in \mathcal{L}(S)$ such that

$$\sup_{L \in \mathcal{L}(S)} \inf_{t \in L} (\alpha \|T_{tx} - f\|^2 + \beta \|T_{tx} - g\|^2) < \inf_{t \in L_0} (\alpha \|T_{tx} - f\|^2 + \beta \|T_{tx} - g\|^2) + \frac{\epsilon}{2}.$$

Let $u \in L_0$. Then $Su \subseteq L_0$ and hence

$$\sup_{L \in \mathcal{L}(S)} \inf_{t \in L} (\alpha \|T_{tx} - f\|^2 + \beta \|T_{tx} - g\|^2) < \inf_{t \in S} (\alpha \|T_{tx} - f\|^2 + \beta \|T_{tx} - g\|^2) + \frac{\epsilon}{2}.$$

Moreover, there exist $v, w \in S$ such that

$$\|T_{vu}x - f\|^2 < \inf_{t \in S} \|T_{tvu}x - f\|^2 + \frac{\epsilon}{2}$$

and

$$\|T_{wvu}x - f\|^2 < \inf_{t \in S} \|T_{tvu}x - f\|^2 + \frac{\epsilon}{2}.$$

Therefore we obtain

$$q_{x}(\alpha f + \beta g) = \sup_{L \in \mathcal{L}(S)} \inf_{t \in L} \|T_{tx} - (\alpha f + \beta g)\|^2$$

$$\leq \sup_{L \in \mathcal{L}(S)} \inf_{t \in L} (\alpha \|T_{tx} - f\|^2 + \beta \|T_{tx} - g\|^2)$$

$$< \inf_{t \in S} (\alpha \|T_{vu}x - f\|^2 + \beta \|T_{vu}x - g\|^2) + \frac{\epsilon}{2}$$

$$\leq \alpha \|T_{vu}x - f\|^2 + \beta \|T_{vu}x - g\|^2 + \frac{\epsilon}{2}$$

$$< \alpha \inf_{t \in L_1} \|T_{tx} - f\|^2 + \beta \inf_{t \in L_2} \|T_{tx} - g\|^2 + \frac{\alpha \epsilon}{2} + \frac{\beta \epsilon}{2} + \frac{\epsilon}{2}$$

$$= \alpha q_{x}(f) + \beta q_{x}(g) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, we have

$$q_{x}(\alpha f + \beta g) \leq \alpha q_{x}(f) + \beta q_{x}(g). \square$$
Theorem 3.2 Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Assume that $F(S) \neq \emptyset$. Then for any $x \in C$, there exists a unique element $h \in F(S)$ such that
\[
q_x(h) = \inf \{ q_x(f) : f \in F(S) \}.
\]

Proof. Since E is uniformly convex, the fixed point set $F(S)$ in C is closed and convex (see [5]). Hence it follows from Lemma 3.1 and [2] that there exists $h \in F(S)$ such that
\[
q_x(h) = \inf \{ q_x(f) : f \in F(S) \}.
\]
To see that h is unique, let $k \in F(S)$. Then by [27], there exists a strictly increasing and convex function (depending on h and k) $g : [0, \infty) \rightarrow [0, \infty)$ such that $g(0) = 0$ and
\[
\| T_t x - (\lambda h + (1 - \lambda)k) \|^2 = \| \lambda(T_t x - h) + (1 - \lambda)(T_t x - k) \|^2 \\
\leq \lambda\| T_t x - h \|^2 + (1 - \lambda)\| T_t x - k \|^2 - \lambda(1 - \lambda)g(\| h - k \|)
\]
for each $t \in S$ and λ with $0 \leq \lambda \leq 1$. So we have for each λ with $0 \leq \lambda \leq 1$,
\[
q_x(h) \leq q_x(\lambda h + (1 - \lambda)k) \\
\leq \lambda q_x(h) + (1 - \lambda)q_x(k) - \lambda(1 - \lambda)g(\| h - k \|)
\]
and hence
\[
q_x(h) \leq q_x(k) - \lambda g(\| h - k \|).
\]
It follows that
\[
q_x(h) \leq q_x(k) - g(\| h - k \|) \text{ as } \lambda \rightarrow 1.
\]
Since g is strictly increasing, it follows that if $q_x(h) = q_x(k)$, then $h = k$.\(\square\)

We call the unique element $h \in F(S)$ in Theorem 3.2 the minimizer of q_x in $F(S)$. For each $x \in C$, let
\[
Q(x) = \bigcap_{L \in \mathcal{L}(S)} \overline{co}\{T_t x : t \in L\}(= \bigcap_{s \in S} \overline{co}\{T_{ts} x : t \in S\}).
\]

Theorem 3.3 Let C be a nonempty closed convex subset of a Hilbert space H. Let $S = \{ T_s : s \in S \}$ be a continuous representation of S as nonexpansive mappings from C into C. Then for any $x \in C$, any element in $Q(x) \cap F(S)$ is the unique minimizer of q_x in $F(S)$. In particular, $Q(x) \cap F(S)$ contains at most one point.

Proof. Let $z \in F(S)$ be the minimizer of q_x in $F(S)$ and $y \in Q(x) \cap F(S)$. Then for some $\varepsilon > 0$, there exists $u \in S$ such that
\[
\sup \inf_s (\| T_{ts} x - z \|^2 + 2(T_{ts} x - z, z - y) + \| z - y \|^2) \\
< \inf_t (\| T_{tu} x - z \|^2 + 2(T_{tu} x - z, z - y) + \| z - y \|^2) + \frac{\varepsilon}{4}.
\]
Moreover there exist $v, w \in S$ such that
\[
\| T_{vu} x - z \|^2 < \inf_t \| T_{tu} x - z \|^2 + \frac{\varepsilon}{4}
\]
and

\[\langle T_{wvu}x - z, z - y \rangle \leq \inf_t \langle T_{tvu}x - z, z - y \rangle + \frac{\epsilon}{4}. \]

Therefore we obtain

\[
q_{x}(y) = \sup_s \inf_t \|T_{ts}x - y\|^2 \\
= \sup_s \inf_t (\|T_{ts}x - z\|^2 + 2\langle T_{ts}x - z, z - y \rangle + \|z - y\|^2) \\
< \inf_t (\|T_{tu}x - z\|^2 + 2\langle T_{tvu}x - z, z - y \rangle + \|z - y\|^2 + \frac{\epsilon}{4}) \\
\leq \|T_{vu}x - z\|^2 + 2\langle T_{wvu}x - z, z - y \rangle + \|z - y\|^2 + \frac{\epsilon}{4} \\
< \inf_t \|T_{tu}x - z\|^2 + 2\inf \langle T_{tvu}x - z, z - y \rangle \\
+ \|z - y\|^2 + \frac{\epsilon}{2} + \frac{\epsilon}{4} \\
\leq \sup_s \inf \|T_{ts}x - z\|^2 + 2\sup_s \inf \langle T_{ts}x - z, z - y \rangle \\
+ \|z - y\|^2 + \epsilon \\
= q_{x}(z) + 2\sup \inf \langle T_{ts}x - z, z - y \rangle + \|z - y\|^2 + \epsilon.
\]

This implies

\[
2\sup \inf \langle T_{ts}x - z, z - y \rangle > q_{x}(y) - q_{x}(z) - \|z - y\|^2 - \epsilon \\
\geq -\|z - y\|^2 - \epsilon.
\]

So, there exists \(a \in S \) such that

\[2\langle T_{ta}x - z, z - y \rangle > -\|z - y\|^2 - \epsilon \]

for every \(t \in S \). From \(y \in \overline{co}\{T_{ta}x : t \in S\} \), we have

\[2\langle y - z, z - y \rangle \geq -\|z - y\|^2 - \epsilon. \]

This inequality implies \(\|z - y\|^2 \leq \epsilon \). Since \(\epsilon > 0 \) is arbitrary, we have \(z = y \). \(\square \)

Remark 3.4 From Theorem 3.3, it is natural to ask the following:

Problem 1. If \(E \) is a uniformly convex Banach space, \(x \in C \) and \(y \in Q(x) \cap F(S) \), is \(y \) always the minimizer of \(q_{x} \) in \(F(S) \)?

Problem 2. If \(E \) is a uniformly convex Banach space, does \(Q(x) \cap F(S) \) contain at most one point for each \(x \in C \)?

Clearly, by Theorem 3.2, an affirmative answer for Problem 1 gives an affirmative answer to Problem 2. We now proceed to give an affirmative answer for Problem 2 when \(E \) has a Fréchet differentiable norm.
Lemma 3.5 Let C be a nonempty closed convex subset of a Banach space E. Let $x \in C$ and $f \in F(S)$. Then

$$\inf_{s} \| T_{s}x - f \| = \inf_{s} \sup_{t} \| T_{ts}x - f \|.$$

Proof. Let $r = \inf_{s} \| T_{s}x - f \|$ and $\epsilon > 0$. Then there exists $a \in S$ such that

$$\| T_{s}x - f \| < r + \epsilon.$$

So, for each $t \in S$, we have

$$\| T_{ta}x - f \| \leq \| T_{a}x - f \| < r + \epsilon$$

and hence

$$\inf_{s} \sup_{t} \| T_{ts}x - f \| \leq r + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, we have

$$\inf_{s} \sup_{t} \| T_{ts}x - f \| \leq r.$$

It is clear that $\inf_{s} \sup_{t} \| T_{ts}x - f \| \geq r$. So we have

$$\inf_{s} \sup_{t} \| T_{ts}x - f \| = r. \square$$

Lemma 3.6 Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let $x \in C$, $f \in F(S)$ and $0 < \alpha \leq \beta < 1$. Then for any $\epsilon > 0$, there exists a closed left ideal L of S such that

$$\| T_{s}(\lambda T_{t}x + (1 - \lambda)f) - (\lambda T_{s}T_{t}x + (1 - \lambda)f) \| < \epsilon$$

for every $s \in S$, $t \in L$ and $\alpha \leq \lambda \leq \beta$.

Proof. Let $r = \inf_{s} \| T_{s}x - f \|$. By Lemma 3.5, for any $d > 0$, there exists $t_{0} \in S$ such that

$$\sup_{t} \| T_{ts}x - f \| \leq r + d.$$

Apply now Lemma 1 in [18] and let $L = \overline{St_{0}}. \square$

Let E be a Banach space and let S be a semigroup. Let $\{x_{\alpha} : \alpha \in S\}$ be a subset of E and $x, y \in E$. Then we write $x_{\alpha} \to x (\alpha \to \infty_{R})$ if for any $\epsilon > 0$, there exists $\alpha_{0} \in S$ such that $\| x_{\alpha_{0}} - x \| < \epsilon$ for every $\alpha \in S$ (see [23]). We also denote by $[x, y]$ the set $\{\lambda x + (1 - \lambda)y : 0 \leq \lambda \leq 1\}$.

Lemma 3.7 Let C be a nonempty closed convex subset of a Banach space E with a Fréchet differentiable norm and let S be a semigroup. Let $\{x_{\alpha} : \alpha \in S\}$ be a bounded subset of C. Let $z \in \bigcap_{\alpha} \overline{co}\{x_{\alpha} : \alpha \in S\}$, $y \in C$ and $\{y_{\alpha} : \alpha \in S\}$ be a subset of C with $y_{\alpha} \in [y, x_{\alpha}]$ and

$$\| y_{\alpha} - z \| = \min\{\| u - z \| : u \in [y, x_{\alpha}]\}.$$

If $y_{\alpha} \to y (\alpha \to \infty_{R})$, then $y = z$.

Proof. Since the duality mapping \(J \) of \(E \) is single-valued, for each \(\alpha \in S \), it follows from [7] that
\[
\langle u - y_\alpha, J(y_\alpha - z) \rangle \geq 0
\]
for every \(u \in [y, x_\alpha] \). Putting \(u = x_\alpha \), we have
\[
\langle x_\alpha - y_\alpha, J(y_\alpha - z) \rangle \geq 0
\]
for every \(\alpha \in S \). Since \(\{x_\alpha : \alpha \in S\} \) is bounded, there exists \(K > 0 \) such that \(\|x_\alpha - y\| \leq K \) and \(\|y_\alpha - z\| \leq K \) for every \(\alpha \in S \). Let \(\varepsilon > 0 \) and choose \(\delta > 0 \) so small that \(2\delta K < \varepsilon \). Then since the norm of \(E \) is Fréchet differentiable, there exists \(\delta_0 > 0 \) such that \(\delta_0 < \delta \) and
\[
\|J(u) - J(y - z)\| < \delta
\]
for every \(u \in E \) with \(\|u - (y - z)\| < \delta_0 \). Since \(y_\alpha \to y (\alpha \to \infty_R) \), there exists \(\alpha_0 \in S \) such that
\[
\|y_{\alpha_0} - y\| < \delta_0
\]
for every \(\alpha \in S \). So, for each \(\alpha \in S \), we have
\[
\begin{align*}
\langle x_{\alpha_0} - y_{\alpha_0}, J(y_{\alpha_0} - z) \rangle - \langle x_{\alpha_0} - y, J(y - z) \rangle &
\leq \langle x_{\alpha_0} - y_{\alpha_0}, J(y_{\alpha_0} - z) \rangle - \langle x_{\alpha_0} - y, J(y_{\alpha_0} - z) \rangle \\
&\quad + \langle x_{\alpha_0} - y, J(y_{\alpha_0} - z) \rangle - \langle x_{\alpha_0} - y, J(y - z) \rangle \\
&\leq \|y - y_{\alpha_0}\| \|y_{\alpha_0} - z\| + \|x_{\alpha_0} - y\| \|J(y_{\alpha_0} - z) - J(y - z)\| \\
&\leq \delta_0 K + \delta K < \varepsilon
\end{align*}
\]
and hence
\[
\langle x_{\alpha_0} - y, J(y - z) \rangle > \langle x_{\alpha_0} - y_{\alpha_0}, J(y_{\alpha_0} - z) \rangle - \varepsilon \geq -\varepsilon.
\]
From \(z \in \overline{co}\{x_\alpha : \alpha \in S\} \), we have
\[
\langle z - y, J(y - z) \rangle \geq -\varepsilon,
\]
that is
\[
\|y - z\|^2 \leq \varepsilon.
\]
Since \(\varepsilon > 0 \) is arbitrary, we have \(y = z \). \(\Box \)

Lemma 3.8 Let \(C \) be a nonempty closed convex subset of a uniformly convex Banach space \(E \) with a Fréchet differentiable norm. Let \(x \in C \). Assume that \(F(S) \neq \emptyset \). Then for \(y \in F(S) \) and \(y \notin Q(x) \),
\[
k = \inf_{x} \|T_s x - y\| > 0.
\]

Proof. Supposing that \(k = 0 \), by Lemma 3.5,
\[
\inf_{x} \sup_{t} \|T_{ts} x - y\| = k = 0.
\]
Let $z \in Q(x)$. For each $t \in S$, let y_t be the unique element in $[y, T_t x]$ such that
\[\|y_t - z\| = \min\{\|u - z\| : u \in [y, T_t x]\}.
\]So, for any $\epsilon > 0$, there exists $s_0 \in S$ such that
\[\sup_t \|T_{s_0} x - y\| < \frac{\epsilon}{2}
\]and hence we have
\[\|y_{t_0} - y\| \leq \|y_{t_0} - T_{t_0} x\| + \|T_{t_0} x - y\| < \epsilon
\]
for every $t \in S$, that is, $y_t \rightarrow y (t \rightarrow \infty_R)$. So by Lemma 3.7, we have $y = z$. This is a contradiction. So we have $k > 0$. □

Lemma 3.9 Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm. Let $x \in C$. Then for any $y \in F(S)$ and $z \in Q(x)$, there exists a closed left ideal L of S such that
\[\langle T_t x - y, J(y - z) \rangle \leq 0
\]
for every $t \in L$.

Proof. If $x = y$ or $y = z$, Lemma 3.9 is obvious. So, let $x \neq y$ and $y \neq z$. For any $t \in S$, define a unique element y_t such that $y_t \in [y, T_t x]$ and
\[\|y_t - z\| = \min\{\|u - z\| : u \in [y, T_t x]\}.
\]Then since $y \neq z$, by Lemma 3.7 we have $y_t \rightarrow y (t \rightarrow \infty_R)$. So we obtain $c > 0$ such that for any $t \in S$, there exists $t' \in S$ with $\|y_{t'} - y\| \geq c$. Setting
\[y_{t'} = a_{t'} T_{t'} x + (1 - a_{t'}) y, \quad a_{t'} \in [0, 1],
\]we also obtain $c_0 > 0$ so small that $a_{t'} \geq c_0$. In fact, since $T_{t'} x$ is nonexpansive and $y \in F(S)$, we have
\[c \leq \|y_{t'} - y\| = a_{t'} \|T_{t'} x - y\| \leq a_{t'} \|x - y\|
\]So, put $c_0 = c/\|x - y\|$. Let $k = \inf_s \|T_s x - y\|$. By Lemma 3.5 and $y \rightarrow y (t \rightarrow \infty_R)$, we have $k > 0$.

Now, choose $\epsilon > 0$ so small that
\[(R + \epsilon) \left(1 - \delta \left(\frac{c_0 k}{R + \epsilon}\right)\right) < R,
\]
where δ is the modulus of convexity of E and $R = \|z - y\|$. Then by Lemma 3.6, there exists $t_0 \in S$ such that
\[\|T_s (c_0 T_{t_0} x + (1 - c_0) y) - (c_0 T_s T_{t_0} x + (1 - c_0) y)\| < \epsilon
\]
(*)
for every $s, t \in S$. Fix $t_1 \in S$ with $\|y_{t_1 t_0} - y\| \geq c$. Then since $a_{t_1 t_0} \geq c_0$, we have

$$c_0 T_{t_1 t_0} x + (1 - c_0) y = \left(1 - \frac{c_0}{a_{t_1 t_0}}\right) y + \frac{c_0}{a_{t_1 t_0}} (a_{t_1 t_0} T_{t_1 t_0} x + (1 - a_{t_1 t_0}) y)$$

$$= \left(1 - \frac{c_0}{a_{t_1 t_0}}\right) y + \frac{c_0}{a_{t_1 t_0}} y_{t_1 t_0} \in [y, y_{t_1 t_0}]$$

and hence

$$\|c_0 T_{t_1 t_0} x + (1 - c_0) y - z\| \leq \max\{\|y - z\|, \|y_{t_1 t_0} - z\|\} \leq \|y - z\| = R.$$}

By using $(*)$, we obtain

$$\|c_0 T_{s} T_{t_1 t_0} x + (1 - c_0) y - z\| < \|T_s (c_0 T_{t_1 t_0} x + (1 - c_0) y) - z\| + \varepsilon$$

$$\leq \|c_0 T_{t_1 t_0} x + (1 - c_0) y - z\| + \varepsilon$$

$$\leq R + \varepsilon$$

for every $s \in S$. On the other hand, since $\|y - z\| = R < R + \varepsilon$ and

$$\|c_0 T_{s} T_{t_1 t_0} x + (1 - c_0) y - y\| = c_0 \|T_{s t_1 t_0} x - y\| \geq c_0 k$$

for every $s \in S$, we have, by uniform convexity,

$$\left\| \frac{1}{2} ((c_0 T_{s} T_{t_1 t_0} x + (1 - c_0) y - z) + (y - z)) \right\|$$

$$\leq (R + \varepsilon) \left(1 - \delta \left(\frac{c_0 k}{R + \varepsilon}\right)\right) < R,$$

that is

$$\left\| \frac{c_0}{2} T_{s} T_{t_1 t_0} x + \left(1 - \frac{c_0}{2}\right) y - z \right\| < R$$

for every $s \in S$. Putting

$$u_s = \frac{c_0}{2} T_{s} T_{t_1 t_0} x + \left(1 - \frac{c_0}{2}\right) y,$$

we have

$$\|u_s + \alpha(y - u_s) - z\| \geq \alpha\|y - z\| - (\alpha - 1) \|u_s - z\|$$

for every $s \in S$ and $\alpha \geq 1$. So, by Theorem 2.5 in [7], we have

$$\langle u_s + \alpha(y - u_s) - y, J(y - z) \rangle \geq 0$$

for every $s \in S$ and $\alpha \geq 1$ and hence

$$\langle u_s - y, J(y - z) \rangle \leq 0$$
for every $s \in S$. Therefore we obtain
\[
\langle T_s T_{t_1 t_0} x - y, J(y - z) \rangle = \frac{2}{c_0} \left(\frac{c_0}{2} T_s T_{t_1 t_0} x - \frac{c_0}{2} y, J(y - z) \right) = \frac{2}{c_0} (u_s - y, J(y - z)) \leq 0
\]
for every $s \in S$. Let $L = \overline{St_1 t_0}$. \square

Lemma 3.10 Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let $x \in C$. If for any $y, z \in Q(x) \cap F(S)$,
\[
\inf_{L \in L(S)} \inf_{\phi \in J(y - z)} \sup_{t \in L} \langle T_t x - y, \phi \rangle \leq 0,
\]
then $Q(x) \cap F(S)$ has at most one point.

Proof. Let $y, z \in Q(x) \cap F(S)$. Then by convexity of $Q(x) \cap F(S)$, we have $(y + z)/2 \in Q(x) \cap F(S)$. Let $\epsilon > 0$. By assumption, there exist $L \in L(S)$ and $\phi \in J((y + z)/2 - z)$ such that
\[
\langle T_t x - \frac{y + z}{2}, \phi \rangle \leq \epsilon
\]
for every $t \in L$. Since $y \in \overline{co}\{T_t x : t \in L\}$, it follows
\[
\langle y - \frac{y + z}{2}, \phi \rangle \leq \epsilon
\]
and hence
\[
\frac{1}{2} \langle y - z, \phi \rangle = \frac{1}{2} \|y - z\|^2 \leq \epsilon.
\]
Since $\epsilon > 0$ is arbitrary, we have $y = z$. \square
Combining Lemma 3.9 and Lemma 3.10, we have the following result.

Theorem 3.11 Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm. Let $x \in C$. Then $Q(x) \cap F(S)$ contains at most one point.

4 Ergodic theorems

We are now ready to prove our main nonlinear ergodic theorems.

Theorem 4.1 Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm. Let $S = \{T_s : s \in S\}$ be a continuous representation of a semitopological semigroup S as nonexpansive mappings from C into C. Assume that $F(S) \neq \emptyset$. Then the following are equivalent:

1. For each $x \in C$, the set $Q(x) \cap F(S)$ is nonempty.
(2) There exists a retraction P of C onto $F(S)$ such that $PT_t = T_tP = P$ for every $t \in S$ and $Px \in \overline{co}\{T_tx : t \in S\}$ for every $x \in C$.

Proof. (1) \Rightarrow (2). If for each $x \in C$, the set $Q(x) \cap F(S) \neq \emptyset$, then by Theorem 3.11, $Q(x) \cap F(S)$ contains exactly one point Px. Then clearly P is a retraction of C onto $F(S)$ and $Px \in \overline{co}\{T_tx : t \in S\}$ for every $x \in C$. Clearly $T_tP = P$ for every $t \in S$. Also if $u \in S$ and $x \in C$, we have

\[
\bigcap_{s \in S} \overline{co}\{T_{ts}x : t \in S\} \subset \bigcap_{s \in S} \overline{co}\{T_{tsu}x : t \in S\}
\]

and hence

\[
Q(x) \cap F(S) = Q(T_u x) \cap F(S).
\]

This implies $PT_t = P$ for every $t \in S$.

(2) \Rightarrow (1). Let $x \in C$. Then it is obvious that $Px \in F(S)$. Since

\[
Px = PT_sx \in \overline{co}\{T_sT_tx : t \in S\} = \overline{co}\{T_{ts}x : t \in S\}
\]

for every $s \in S$, we have

\[
Px \in \bigcap_{s \in S} \overline{co}\{T_{ts}x : t \in S\} = Q(x). \square
\]

THEOREM 4.2 Let C be a nonempty closed convex subset of a Hilbert space H and let $S = \{T_s : s \in S\}$ be a continuous representation of a semitopological semigroup S as nonexpansive mappings from C into C. If for each $x \in C$, the set $Q(x) \cap F(S)$ is nonempty, then there exists a nonexpansive retraction P of C onto $F(S)$ such that $PT_t = T_tP = P$ for every $t \in S$ and $Px \in \overline{co}\{T_tx : t \in S\}$ for every $x \in C$.

Proof. For each $x \in C$, let Px be the unique element in $Q(x) \cap F(S)$. Then, as in the proof of Theorem 4.1 (1) \Rightarrow (2), P is a retraction of C onto $F(S)$ such that $PT_t = T_tP = P$ for every $t \in S$ and $Px \in \overline{co}\{T_tx : t \in S\}$ for every $x \in C$. It remains to show that P is nonexpansive. Let $y \in C$ and $0 < \lambda < 1$. Then as in the proof of Theorem 3.3 we have for any $\varepsilon > 0$,

\[
q_x((1 - \lambda)Px + \lambda Py)
\]

\[
= \sup_{s} \inf_{t} \|T_{ts}x - ((1 - \lambda)Px + \lambda Py)\|^2
\]

\[
= \sup_{s} \inf_{t} \|T_{ts}x - Px + \lambda(Px - Py)\|^2
\]

\[
= \sup_{s} \inf_{t} (\|T_{ts}x - Px\|^2 + 2\lambda\langle T_{ts}x - Px, Px - Py\rangle + \lambda^2\|Px - Py\|^2)
\]

\[
< q_x(Px) + 2\lambda \sup_{s} \inf_{t} \langle T_{ts}x - Px, Px - Py\rangle + \lambda^2\|Px - Py\|^2 + \varepsilon.
\]

Since Px is the minimizer of q_x, we have

\[
2\lambda \sup_{s} \inf_{t} \langle T_{ts}x - Px, Px - Py\rangle + \lambda^2\|Px - Py\|^2 + \varepsilon
\]

\[
> q_x((1 - \lambda)Px + \lambda Py) - q_x(Px) \geq 0.
\]
Since $\varepsilon > 0$ is arbitrary, we have

$$2\lambda \sup_s \inf_t (T_{ts}x - Px, Px - Py) + \lambda^2 \|Px - Py\|^2 \geq 0$$

and hence

$$2 \sup_s \inf_t (T_{ts}x - Px, Px - Py) \geq -\lambda \|Px - Py\|^2.$$

Now, if $\lambda \to 0$, then

$$\sup_s \inf_t (T_{ts}x - Px, Px - Py) \geq 0.$$

Let $\varepsilon > 0$. Then there exists $u \in S$ such that

$$\langle T_{tu}x - Px, Px - Py \rangle > -\varepsilon$$

for every $t \in S$. For such an element $u \in S$, we also have

$$\sup_s \inf_t (T_{ts}Tu - PT_u y, PT_u y - Px) \geq 0$$

and hence there exists $v \in S$ such that

$$\langle T_{tvu}y - PT_u y, PT_u y - Px \rangle > -\varepsilon$$

for every $t \in S$. Then, from $PT_u y = Py$, we have

$$\langle T_{tvu}y - Py, Py - Px \rangle > -\varepsilon$$

for every $t \in S$. Therefore we have

$$-2\varepsilon < \langle Tuuvx - Px, Px - Py \rangle + \langle Tuuvy - Py, Py - Px \rangle$$

$$= \langle Tuuvx - Tuuvy - (Px - Py), Px - Py \rangle$$

$$= \langle Tuuvx - Tuuvy, Px - Py \rangle - \|Px - Py\|^2$$

$$\leq \|Tuuvx - Tuuvy\| \|Px - Py\| - \|Px - Py\|^2$$

$$\leq \|x - y\| \|Px - Py\| - \|Px - Py\|^2.$$

Since $\varepsilon > 0$ is arbitrary, this implies $\|Px - Py\| \leq \|x - y\|$. □

We now proceed to find conditions on S and E such that $Q(x) \cap F(S) \neq \emptyset$ for every $x \in C$.

Lemma 4.3 [20] Let C be a nonempty closed convex subset of a Hilbert space H, let S be an index set, and let $\{x_t : t \in S\}$ be a bounded set of H. Let X be a subspace of $l^{\infty}(S)$ containing constants, and let μ be a submean on X. Suppose that for each $x \in C$, the real-valued function f on S defined by

$$f(t) = \|x_t - x\|^2 \text{ for all } t \in S$$

belongs to X. If

$$r(x) = \mu_t \|x_t - x\|^2 \text{ for all } x \in C$$

and $r = \inf \{r(x) : x \in C\}$, then there exists a unique element $z \in C$ such that $r(z) = r$. Further the following inequality holds:

$$r + \|z - x\|^2 \leq r(x) \text{ for every } x \in C.$$
Theorem 4.4 Let C be a nonempty closed convex subset of a Hilbert space H and let S be a semitopological semigroup such that $RUC(S)$ has an invariant submean. Let $S = \{T_s : s \in S\}$ be a continuous representation of S as nonexpansive mappings from C into C. Suppose that $\{T_s x : s \in S\}$ is bounded for some $x \in C$. Then the set $Q(x) \cap F(S)$ is nonempty.

Proof. First we observe that for any $y \in H$, the function $f(t) = \|T_t x - y\|^2$ is in $RUC(S)$ (see [16]). Let μ be an invariant submean and define a real-valued function g on H by

$$g(y) = \mu_t \|T_t x - y\|^2$$

for each $y \in H$.

If $r = \inf\{g(y) : y \in H\}$, then by Lemma 4.3 there exists a unique element $z \in H$ such that $g(z) = r$. Further, we know that

$$r + \|z - y\|^2 \leq g(y) \text{ for every } y \in H.$$

For each $s \in S$, let Q_s be the metric projection of H onto $\overline{co}\{T_{ts} x : t \in S\}$. Then by Phelps [22], Q_s is nonexpansive and for each $t \in S$,

$$\|T_{ts} x - Q_s z\|^2 = \|Q_s T_{ts} x - Q_s z\|^2 \leq \|T_{ts} x - z\|^2.$$

So, we have

$$\mu_t \|T_t x - Q_s z\|^2 = \mu_t \|T_t x - Q_s z\|^2$$

$$\leq \mu_t \|T_{ts} x - z\|^2$$

$$= \mu_t \|T_t x - z\|^2$$

and thus $Q_s z = z$. This implies

$$z \in \overline{co}\{T_{ts} x : t \in S\} \text{ for all } s \in S$$

and hence

$$z \in \bigcap_{s \in S} \overline{co}\{T_{ts} x : t \in S\}.$$

On the other hand, by Lemma 4.3

$$\|z - y\|^2 \leq \mu_t \|T_t x - y\|^2 - \mu_t \|T_t x - z\|^2 \text{ for every } y \in H.$$

So, putting $y = T_s z$ for each $s \in S$, we have

$$\|z - T_s z\|^2 \leq \mu_t \|T_t x - T_s z\|^2 - \mu_t \|T_t x - z\|^2$$

$$= \mu_t \|T_{ts} x - T_s z\|^2 - \mu_t \|T_t x - z\|^2$$

$$\leq \mu_t \|T_t x - z\|^2 - \mu_t \|T_t x - z\|^2 = 0.$$

Therefore, we have $T_s z = z$ for every $s \in S$. □
ideals
of
of
for
of
left
if
of
S-invariant.
by
choose
If
weakly
convex
Banach
minimal
compact
there
Consider
now
Then
point,
X.
smigroup
convex.
nonempty
compact
nonexpansive
of
semigroup.
structure
for
nonexpansive
and
homeomorphic
almost
representation
mapping
any
convex
left
one
of
ideals.
Let
minimal
space
weak-
semigroup
in
right
closed
compact
of
a
ideals.
convex
space
weak-
semigroup,
i.e.,
and
compact
topological
space
weakly
nonexpansive.
Then
of
a
also
exists
topological
space
closed
continuous.
Further,
that
nonempty
compact
to
nonexpansive.
Finally,
that
compact
for
any
closed
compact
left
implies
each
subset
compact
to
compact
space
there
and
nonempty.
The
case,
and
topological
space
that
that
topological
space
that
a
affine
space
hence
a
affines
functions
isomorphic
Hausdorff
functions
is
so
a
subset
compact
set
continuous.
Hence
each
that
compact
the
theory
that
a
subset
compact
two
minimal
function
is
is
convex
functions
two
subset
fixed
point
is
compact
in
weakly
nonexpansive.
Then
space
space
weakly
nonexpansive.
that
compact
for
compact
space
and
closed
compact
left
implies
any
closed
compact
left
implies...
as norm-nonexpansive and weakly continuous mappings from X into X and let Σ be the enveloping of S. Let I be a minimal left ideal of Σ and let Y be a minimal S-invariant closed convex subset of X. Then there exists a nonempty weakly closed subset C of Y such that I is constant on C.

Proof. Since I is a minimal left ideal of Σ and Σ is a compact right topological semigroup (Lemma 5.1), $I = \Sigma e$ for a minimal idempotent e of Σ and $G = e\Sigma e$ is a maximal subgroup contained in I (see [3]). Since each $T \in G$ is a nonexpansive mapping from Y into Y (Lemma 5.1), by Broskii-Milman Theorem [4], there exists $x \in Y$ such that $Tx = x$ for every $T \in G$. Now put $C = Ix$. Then C is weakly closed and S-invariant. Also if $y_1, y_2 \in C, y_1 = T_1 ex, y_2 = T_2 ex, T_1, T_2 \in \Sigma$, then, since $eT_1 e \in G$, we have

$$(Te)y_1 = Te(T_1 e x) = Tx$$

for every $T \in \Sigma$ and similarly

$$(Te)y_2 = T x$$

for every $T \in \Sigma$. The assertion is proved. □

The following improves the main theorem in [13] for Banach spaces (see also [21]).

COROLLARY 5.3 Let Σ and X be as in Theorem 5.2. Then there exist $T_0 \in \Sigma$ and $x \in X$ such that $T_0 Tx = T_0 x$ for every $T \in \Sigma$.

Proof. Pick $x \in C$ and $T_0 \in I$ of the above theorem. □

REMARK 5.4 If S is commutative, then for any $T \in \Sigma$ and $s \in S, T_s \circ T = T \circ T_s$, i.e., $z = T_0 x$ is in fact a common fixed point for Σ (and hence for S). Note that if X is norm compact, the weak and norm topology agree on X. Hence every nonexpansive mapping from X into X must be weakly continuous. Therefore Corollary 5.3 improves the well known fixed point theorem of De Marr [6] for commuting semigroups of nonexpansive mappings on compact convex sets.

References

Department of Mathematical Sciences
University of Alberta,
Edmonton, Alberta, Canada T6G-2G1
and
Department of Information Sciences
Tokyo Institute of Technology,
Oh-okayama, Meguro-ku,
Tokyo 152, Japan.