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Introduction

In the context of uniform convexity, Clarkson' s inequalities for
Lp were proved in [2]. Boas [1] considered their generalization in
parameﬁers, which was ‘completed' by Koskela [10]; we call these
ineqﬁalities given by Boés and Koskela 'of Clarkson—Beas-type' (see
also Kato [6] for their high-dimensional versions).

In this éxpository note, some recent results on Clarkson' s and
Clarkson—Boas—type inequalities are given especially in connection
with type, cotype properties:

(i) By applying vector-valued interpolation to the Littlewood
matrices as operatoré between Lp(Lq)—valued lin-spaces, ‘Clarkson' s
inequality' for Lp(Lq) (and for some other Banach spaces as corol-
laries) is obtained in the high—dimensional setting (Kato & Miyazaki
[71): This might provide, in particular, one of the most concise
proofs of classical Clarkson's inequalities (cf. Miyazaki & Kato
[14]). The same argument, applied to the 'Rademacher matrices',
yvields type inequalities with the best 'type constant' 1 for Lp(Lq)
(Kato, Miyazaki & Takahashi [8]). Our idea comes from Pietsch's

work [15] (ef. [143, [111, [121).



(ii ) Further application of interpolation with decomposition
argument of operators yields ‘genéralized Clarkson' s inequalities'
(high—dimensional Clarkson—-Boas—type inequalities) fof Lp(Lq).
Thiév‘completes' and generalizes Boas' another inequality ([1]).
Such high—dimensional versions of Clarkson—Boas-type inequalities
are closely related with the Grothendieck inequality (see Tonge
[16]1).  As a straightforward applica@ion the von Neumann—-Jordan
constant ([3]; ef. also [5]) for the spaces considered here is
determined ([71).

(iii ) In general, Banach spaces with 'type or cotype constant' 1

are charaéterized as those satisfying Ciarkson—Boas—tybe inequéli—

ties (Kato & Takahashi [9]).
1. Preliminaries. P, d., ... denote the conjugate exponents
of p, q,

1. 1. Clarkson's inequalities (Clarkson [2]). (i) Let

1 < p £ 2. Then, for all f and g in Lp,

1 1 1 1 1 L 1
(cr-1) (Ne+el® +ne-gl®) /P p1/P (el +nen’ /P

: 1 1 1
(ct=2) (N £+gl® + 1 t=gl®"P < 2P 1P +1g1® '™
P p P P
(ii) Let 2 < p < o. Then, for all f and g in Lp,

OT— p 1 Pyl/p . /P P p' ,1/p'
(CI-3) (N f+el  + 1l f—gl ) 2 TEl )+ el ) ;
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_ p _ p,1/p o ,1/P £ P | p,1/p
(CI-4) (lIf+gIlp+lIf gllp) 2 Cl Ilp+|igllp) .

1. 2. Boas' inequality (Boas [1], Theorem 1). (i) Let 1 < r

= p =< s < o and s =< r. Then, forallfandgian,

s.1/s

y 1/¢' r r.1/r
B1-1) (le+el S + 1e-gl Y < 2" (nenl +nen V"

)
p

(BI-1) includes (CI-1), (CI-3) and (CI-4). The situation is well

expressed in the following unit squares with the coordinates 1/r

(horizontal) and 1/s (vertical):

(i) the case 1 < p = 2: _ (ii ) the case 2 < p < oo:
ve| 1’/"‘ (CI-2) 1/p' — (CI-4)
L
1177 1) — o (CI-1) 1/p " (CI-3)
\
- 1/p S~ (BI-1) 1/p 1/p \(B'I—n
Let An = (ei.) be the Littlewood matrices, that is,
1 1 Ay A
A ). A = (n =1, 2 )
1 (1 1) n—+ 1 A ~A )
n n

1. 3. Generalized Clarkson' s inequalities (Kato [6]; ecf. [10],
[16]1, [111, [121, [14]). let 1 < p< o and 1 = r, s S o0,

‘Then, for an arbitrary positive integer n and all f1, f2’ c e fz“
€ L,
p
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2" 1/r
r

', ,
RN p]

) £ r £ oo,

max(p, p'),
min(p, p'),
,rl .

max(p, p') £ s £ oo.

Equality is attained in (GCI) for all 1 < r, s < o0o. In other
words,
. 12" 2" _ ,ne(r, s;p) .
I An- 1r (Lp)) - ,ls (Lp)) = 2 :
1/p 1/p'
1/r' +1/s . 1/ +1/s
—-1/p' 1/s c(r, s;p) —1/p 1/s
1/p' 1/p
1/ ' 1/r
1< p = 2 2 < p < o
1. 4. Remark.

A more generalized inequality including (GCI) is

considered in Maligranda and Persson [11] (see also [12]).

1. 5. Definition.

A Banach space X is said to be of (Rademacher)
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type p (1 = p ='2) resp. of cotype g (2 = q = o0) if X satisfies

with some M > 0 and 1 & s < oo

prI> ! H

resp.

n

.Z (t)x

1/s
Sdt}

n
gmlz I, 1P
P2

n

Z r. (t)x

L n 1/CI
q s
(Cq) {Jz I, } [S dt

1/s
|

for all finite system {x.} in X, where rj(t) are the Rademacher
functions, i.e., rj(t) = sgn(sin 2Y tt). (Usually, s is taken to
be 1, 2; or p resp. q: Recall Khinchin-Kahane's inequality. ) The

smallest constant M in (TpI) resp. (Cql) are denoted by T (X)

p(s)
resp. C X).
esp q(S)( )
Now, we define Rademacher matrices Rn = (rf?)) inductively by
r 1
. R
! 1
R = (_1), R, o= [t (n =12 ...)
) R
X n
=
Then, since
1 n s 1/s 1 n s 1/s
H Y, v (t)f. dt} = {— ), 6.f ]
oll =17 J 2" o= Il 5= JJ
_ ] 2 n (n)f S}1/s
M=l = I




type and cotype inequalities are described by the norms of the

Rademacher matrices (see [8], Proposition 2. 3).

2. Clarkson's inequality of Zn—dimension, type, cotype constants

for Lp(Lq) and interpolation.

2. 1. Theorem (Clarkson's inequality (CI-1) of 2n—dimension for
Lp and interpolation; Kato [61, Miyaéaki & Kato [14]). Let

1 = p = 2. Then, forallf1,f,...,anL,

2 2 p
: 20 2n L, 1/p' , 2" 1/p
(cT-11) { R DIEEA K ] < /P { RN p]
: =l = =1 3 F
or equivalently,
2n 2!1 ) ]
ta : 12wy - 12 a@wnn = 2P,
n p P p P
Indeed, it is immediate to see that
M = A :1°2(@L) » 12 @)Hll =1 (the case p = 1)
1 n 1 o ‘T ’
. L 2n _ .n/2 _
M2 = | An : ].2 (LZ) - 112 (L2) I = 2 (Fhe case p = 2).

Put 8 = 2/p' (0 < 0 < 1), where 1 < p < 2. Then, by interpo-

lation,

n . on ‘ 1— 1
ta 12wy > 12w =u " 9uf < P,
n P P PP 1 2

as is desired ([141). (Note that



i 2n 2n _ on .
(11 (L1 ), 12 (L2) ) (01 = lp (Lp) with equal norms,
12" @), 127 @) = 12" (L) with equal norms
o T2 2" [0 ] P p au

since (1 —0)/1 +0/2 = 1/pand (1 — @ )/oc0 + 68/2 = 1/p'.)

Note. The following figure may visually explain what we have

done just above:

(1/2,1/2;1/2)
°
JUES—— \ "9 _________________
L - \

2 /
,l’l, 1 . ‘.\.‘
o (/p1/p' 51/p) “~ 8

(1/1,1/00;1/1)

Note (1/p, 1/p' ;1/p) = (1 — 0 )(1/1,1/0;1/1) + 0 (1/2,1/2;1/2),
or figurativeiy, (1/p, 1/D' ; Lp) = (1 —@8)(1/1,1/00; L1) +

0 (1/2,1/2; L,), where 6 = 2/p'.

2. 2. Theorem (Clarkson's inéquality (CI—-1) of Zn—dimension for

Lp(Lq) and interpolation; Kato & Miyazaki [7]). Let 1 < p, g < oo

and £t = min{p,q,p'.q'}. Then, for an ai‘bitrary positive integer
n and all f1, fZ’ ey fZ“ in Lp(Lq) = Lp(u. ; Lq( v)),
on . 2® N VA 1y 2" 1/t
(cr=1) (2 IS } = 2 l AP
i=1 5= r(q) J=1
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or equivalently

2

n ' 2n n/t'
. — < .
||An 1 (Lp(Lq)) lt,(Lp(Lq))ll = 2

t

In this case, more skillful use of interpolation is required
(see [7]1). By applying the séme argument to 'Rademacher matrices',

‘the type inequality' for Lp(Lq) is obtained:

2. 3. Theorem (Type inequality for Lp(Lq); Kato, Miyazaki &

Takahashi [8]). Let 1 < p, q < o and t = min{p,q.p',q }. Then,

n 20 n/t'
: - < :
||Rn lt(Lp(Lq)) lt,(Lp(Lq))ll__ 2

In other words, for all £, f_., ..., £ in L (L ),
1 2 n P q
2n n 1/t n 1/t
1 t! t
Y PG NN R UL
2 i=11l g=1 p(q) Jj=1

that is, Lp(Lq) is of type t and its ‘type t constantf,

It(t,)((Lp(Lq)), is 1. Here, t' in the left side may be replaced
. < v s .
by any s with 1 £ s £ t', i.e., Tt(s)(x) 1.)

Here, the constants t and t' are optimal as far as '‘the type

constant' is 1.

2. 4. Remark. Theorem 2.3 with duality argument yields analogous
results on cotype inequalities for-Lp(Lq) ([81). Type and cotype
inequalities for Sobolev spaces given in Milman [13] and Cobos [4]

are immediately derived as its corollaries.



3. Generalizéd Clarkson' s inequalities for Lp(Lq)

3. 1. Theorem (Generalized Clarkson's inequalities for L (Lq);

Kato & Miyazaki [7]). Let 1 < p, g< o© and 1 = r, 8 £ o0.

Then, for an arbitrafy positive integer n and all f1, .,

in in L (L )',‘
P q

21’1

. 2n
(GCT' ) [ ),
i=1

e..f.
1J J

J=1

where, letting t = min{p,q,p'.q } and 1/t +

1
;v

V|-

c(r, s;p,q) = —

H =

p(q)

+

ol

1
s

o e f2“
1/s 2t 1/r
ne(r, s;p, r
A p(q)
J=1
/80 = 1,
if (i)t = r £ oo,
1 < s = t',
if (ii) 1 = r £ t,
1= 8 = r,
if (jfi) 88 £ r = oo,
t' = s £ o

Equality is attained in (GCI') for all 1 = r, s £ o ; and hence

IIA_: 12n(L (L)) — 12"(L Nl = ch(r,s;p,CI):
n r P aq s P q »
1/t
1/ +1/s
-1/t 1/8
1/¢
1/

c(r,s;p, q

)
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3.2. Remarks. (i) (GCI') covers all the 'rest cases' of Boas'

inequality for Lp(Lq) ([11, Theorem 2): Let 1 < p, gq < oo. Let
1< r=p= s<K © and let s' < r £ s{min(q, q )—1}. Then,

for all f and in L (L ),
, g p( CI)

178 < ”‘"(Nfu +ng||p( /T

s
(BI-2) (Il f+gll p(q) + || f-g e )

p(Q) )

(ii) (GCI) for L., 1 (L ), and Wk(Q) are corollaries of (GCI' ).
: - P PP P .

The last one includes Milman's ([13]) and Cobos' result ([4]).

The von Neumann—-Jordan constant for a Banach space X ([3]),

C J(X), is the smallest constant C satisfying

2 o 2
lx + vyl +11x — vyl
2 2
200zl "+ Nyl

1 <
C

for all x and y in X with || x| 2+ (VA 2 #+ 0. For any Banach
space X, 1 = CNJ(X) = 2; and it is a Hilbert space' if and only if

2max(1/p, 1/p' ) — 1

CNJ(X) = 1 ([5]). For Lp, C (Lp) = 2 (I[31).

NJ-
3.3. Corollary ([7]1). Let 1 = p, q <o and let t = min{p, q,
P'.qd }. Then,

_ _ emax(1/t,1/t" ) —1
CNJ(Lp(Lq)) = CNJ(lp(Lq)) = 2

. _ 2max(1/p, 1/p' ) —1
Cuy (L (L)) = cNJ(w‘;m)) — 2 .
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4. Banach spaces satisfying Clarkson' s inequalities

4. 1. Theorem (Kato & Takahashi [9]). Let X be a Banach space.
(i) Let 1 < p< 2andp £ s < p'. Then X satisfies the

Clarkson—-Boas—-type inequality

(CBI-1) (I x+y1S + Ix—y0 )" < 231 x1® +1y1®)"/P

if and only if X is of type p and T (X) = 1. 1In particular,

—Pp(s)
X satisfies Clarkson' s inequalities

1 I‘d' \ 1 1 . 1
C1-1*) (Ix+yl® + 1x=y 1 PP < 2P (1 x1® + )y P)"/P

resp.

(c1-2*) (N x+yl® + 1x—y0P)"/P < 2"Pixy® + 1y ®)"P

if d ly if X i ft , dT ,, . (X)) =1 sp.
if and only i is o ypep_an_p(p)() resp

T X) = 1.
—p(p)(*—)——‘*—
(il ) Let 2 = g < o0 and ¢ = s =< q. Then, X satisfies the

Clarkson—-Boas—-type inequality

/d

(cBI-2) (Nx+yl T + Ix—y13)/9 < 2'/s

(xS +nynSHYs

if and only if X is of cotype g and gq (X) = 1. In particular,

(s)

X satisfies Clarkson' s inequalities
. 1 1 ] 1 1 1
C©1-3%) (Nxt+yl D + 1x—yl 97T < 2V @ 4 yn T )/

resp.



57

€1-4) (Nxt+yl T + 1x—y1 VYT < 2T (hx) @ 4 gy H'/a

(X) = 1 resp.

if and only if X is of t , and C
1 Yy 1 1 cotype g _q(qt )

Cqtaqy =

Note. The above theorem implies in particular that the notions
of GO— and Gn—Fourier type for a Banach space in Milman [13] are

equivalent.k (See [9] for some other related results. )
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