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On the nonlinear degenerate elliptic PDEs with obstacles

MEREIAY R (KATsﬁYUKI IsHII)

§1. Introduction

This article is a part of [10]. We are concerned with the nonlinear degenerate
elliptic partial differential equations (PDEs) with obstacles.
Let © C RY be a bounded domain. We consider the following elliptic PDE:

(11) { max{u + F(z,Du,D*u),u — ¢} =0 in Q,

u=g on Of.

Here F is the Hamilton-Jacobi-Bellman operator:

F(z,p,X) = zléﬁ{—tr(ta(x,a)a(x,a)X) + (b(z, ), p) — f(z,a)},

where A is a compact metric space and trA and !A denote, respectively, the trace
and the transposed matrix of A. The problem (1.1) is derived from the optimal
stopping problems for diffusion processes. See [2] for more backgrounds.

It is easily seen by a simple example that, in general, the problem (1.1) has
no classical solution.

In the case F' is nondegenerate, we obtained the existence and uniqueness of
solutions satisfying the boundary condition in the classical sense. By [11] and [17]
there exists a uhique solution of (1.1) in W2°°(Q) N C(Q). Applying the results
in [4], we have a unique viscosity solution of (1.1).

However, in the case F' is degenerate, especially on 02, we cannot interpret
the boundary condition in (1.1) in the classical sense. In [6] H. Ishii pointed out
that in this case we should interpret the boundary condition in the “viscosity
sense”, which is naturally derived from the dynamic programming principle in

the optimal control theory. Moreover he obtained the comparison principle and



existence of viscosity solutions for Hamilton-Jacobi equations. Recently In [12],
[13] M. A. Katsoulakis have proved the ones for second order degenerate elliptic
PDEs without obstacles.

Our main aim here is to discuss the uniqueness and existence of viscostiy
solutions of (1.1) and to apply them to the implicit boundary value problems.
Since we consider the case F' is degenerate, we interpret the boundary condition
in the viscosity sense.

This article is organized in the following way. In Section 2 we state our
assumptins and recall the notion of viscosity solutions of (1.1). In Section 3 we
prove the comparison principle of viscosity solutions of (1.1). Section 4 is devoted
to the existence of viscosity solutions of (1.1). In Section 5 we treat some implicit
boundary value problems.

In what folk')ws we surpress the term “viscosity” since we are mainly concerned

with viscocity sub-, super- and solutions.

§2. Preliminaries

In this section we state our assumptions and give the definition of solutions

of (1.1). We make the following assumptions.
(A.1) 2 c RY is a bounded domain with the smooth boundary 9%.
(8.2) suaen {19C, @)y @y 19 Doy, 1 o } = K < +oo.
(A.3) ¥, g € C(R) and ¢ = g on I |
(A.4) For each z € 9Q, there exist @ = a(z) € A satisfying

(i) a() € W (@),

(i) tr(‘0(2, a(2))o (2, a(2))D*p(2)) — (b(z, a(2)), Do(2)) 2 1 for some > 0,

(iii) (*o(2,a(z))o(z,(2))Dp(z), Dp(2)) = 0,

(iv) There are unit vectors {&}1<i<n—1 C IRY by which the tangent
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plane at z is spanned such that

(‘o(z,a(=))o(z a(2))ér, &) = 0

except at most two vectors {ér, , é, }.

(A.5) For each z € 89, there exist a constant n > 0 and 8 = A(z) € A satisfying
(i) B(-) € Wh>=(Q),
(i) tr(*o(z, B(2))o(z, B(2))D?p(2)) — (b(2, B(2)), Dp(2)) < —n

(‘o(2,8(2))o(2, B(2))Dp(2), Dp(2)) 2 7.
Remark 2.1. As to the assumption (A.4), see [12] and [13].

Next we give the definition of solutions of (1.1) and the equivalent proposi-
tion. For any function v : @ — R, v* and u, denote, réspectively, the upper
semicontinuous (u.s.c.) envelope and the lower semicontinuous (l.s.c.) envelope of
u:

u*(z) = lim sup{u(y) | ly — 2| <r, y € 2},
r— . .

us(z) = iminf{u(y) | [y — 2| <r, y € Q}.

We define Jé’*'u(m), Jé’—u(w) by

Jotu(z) = {(p,X) e RN xgV

u(z + h) £ u(z) + (p, h)
+%(Xh,h> +o(|hl*) asz+heQand h— 0} )

72u(z) = { (5. X) € RY x8Y | ula+ 1) 2 u(e) + (o,

+%(Xh,h) +o(|r)?) asz+h€Qand h— O}‘.

It is observed that if (p,X) € J%’+u(:c) (resp., € J%’—u(x)), then there exists

a function ¢ € C%(Q) such that u — ¢ takes a local maximum (resp., a local
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minimum) at £ and (Dy(z), D?¢(z)) = (p,X). Conversly it is seen that, for any
@ € C%(Q), if u — ¢ takes a local maximum (resp., local minimum) at = € Q, then

(De(x), D2p(x)) € J2tu(z) (resp., € T2 u(z)).
Definition 2.2. Let u:Q — R. ,
(1) We say u is a subsolution of (1.1) if u* < +0o on Q and for all z € Q and
(p,X) € J%+u*(:c), u* satisfies |
max{u*(z) + F(z,p, X),u*(z) —(z)} £0 (z€9Q),
w*(z) € g(x) or max{u*(z) + F(a,p, X),u"(x) — $(x)} S0 (z € 99).
(2) We say u is a supersolution of (1.1) if u, > —oco on Q and for all z € Q and
2,— .
| (p,X) € I u«(z), u, satisfies
e {ua(2) + F(z,p, X)yua(2) ~ ()} 20 (2 € 9),

us(z) 2 g(z) or max{u.(z) + F(z,p, X),us(z) —¥(2)} 20 (z € 5Q).

(3) We say u is a solution of (1.1) if u is both a sub- and a supersolution of (1.1).

Next we mention the equivalent proposition to Definition 2.2. .725’+u(:z:),

72,~ 2,+ 2,— :
J= " u(z) are the graph closure of Jo""u(z), J3'~ u(z), respectiverly.
Proposition 2.3. Assume (A.2) and (A.3). Let u: Q — R.
(1) u is a subsolution of (2.1) if and only if u* < 400 on Q and for all z € Q and
(p,X) € %+u*(m), u* satisfies
max{u"(z) + F(z,p, X),u*(z) = $(z)} =0 (2 € ),
w*(2) £ g(e) or max{u"(2) + F(a,p,X),u"() = $(2)} SO (x € O0).
(2) u is a supersolution of (2.1) if and only if u* > —00 on Q and for all z € Q
and (p,X) € %_u*(x), uy satisfies
max{u*(:t) + F(w,p,X),u*(:v) - 2/)(113)} g 0 (m € Q)a
us(z) 2 g(z) or ma,x{u*(:c) + F(z,p, X),us(z) — ?,[J(.T)} 20 (z€ o02).
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We omit the proofs of the above proposition. See [4; Section 7].

§3. Comparison principle of solutions

In this section we prox}e the comparison principle of solutions of (1.1). To do
so, we use the similar techniques seen in [6], [4], [12] and [14] etc.

We note that, by (A.1) there exists a small constant rq > 0 such that, for any
z € 01,

(3.1) Ky :‘y + Uocs<ro B(sn(2),8) C Q, for all y € B(z,7) N R,

where —n(z) is the outward unit normal to Q at z € 9Q and B(z,r) denotes the

open ball centered at  with radius r.

Theorem 3.1. Assume (A.1)-(A.5) hold. Let u and v, be, respectively, a
subsolution and a supersolution of (1.1). If any one of the followings hoids, then
u* < v, on Q.

(1) limsupg, 5, u*(z) = u*(2) and liminfg, 5, ., v.(z) = v(2) for each z €
onN.
(2) limsupy, 5,_,, u*(z) = u*(z) and u*(z) < g(z) for each z € .

(3) Iminfg,5,, va(z) = vi(2) and v.(z) 2 ¢(z) for each z € AN.

Remark 3.2. We call the properties in Theorem 3.1 (1) nontangential upper-

and lower semicomtinuity, respectively. See [12], [13].

Proof of Theorem 3.1. We may consider that u and v are, respéctively, u.s.c.
and Ls.c. on Q. First let the éondition (1) hold.

We suppose supg(u — v) = 6 > 0 and get a contradiction. We may assume
u — v takes its strict maximum at z € €, because, if otherwise, we can make it do

so by using some perturbation techniques.
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We divide our consideration into three cases.
Case 1. z € 00 and v(z) < g(2).

Let {zn}nemw C K, be a sequence such that
Zn — 2z, u*(zn) — u*(2) (n = +00).
We define the function ®(z,y) on Q x Q by
anp | 2
q)(xay) = u(w) - ’U(y) - 7"77 —Y—2zn+ Zl ’

where a, = s3/|z, — 2|* and sq > 0 satisfies (3K? + K)s2 < 6.
Let (2n,yn) € Q X Q be a maximum point of ®. Calculating as in [4; Section

3] we obtain the behaviors of 2, yn, u(zs), v(yn) as n — +4o0:

.Tn, yn — Z’ U(.’.L'n) - U(Z), 'U(yn) - 'U(Z),

An|Tn = Yn — 20 + 2|2 = 0, \Jan|Tn — yn| — s0.

(3.4) {

We apply the maximum principle for semicontinuous functions to obtain X,

Y €8Y satisfying

(Pn,X) € '72§3+u(‘77n)7 (pn,Y) € j%’-*—v(yn)’

and

(3.5) ——3an<(I) ?)g(é( _OY)§3an(_II "II)

where p, = ap(Tn — Yn — 2n + 2).

We may consider z, € § for sufficiently large n € IN because (3.4) implies
|Trn — Yn — 2n + 2| < ro|2n — 2| for large n € IN, where rg > 0 is the same constant
as in (3.1). Moreover we have v(y,) < ¢(yn) for large n € IN by (A.3), (3.4) and
v(2z) < ¢g(z). Hence using the fact that u and v are, respectively, a subsolution and

a supersolution of (1.1), we obtain the following inequalities:

max{u(n) + F(Tn,pn, X), u(zn) — (zn)} £ 0,

max{v(yn) + F(Yn, Pn: ¥ ), v(yn) — ¥(yn)} 2 0.
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By (A.2), (A.3) and (3.5) we calculate

0 < u(zy) — v(yn)
< maX{F(ympm Y) - F(:L‘n,pn,X),l/J(yn) - 7u[)(z/'n)}

< ma.x{(3K2 + K)anlxn - yn|2 + w(lwn — Yal),w(|zn — ynl)}7

where w is a modulus of continuity of the functions f and 3.

Recalling (3.4) and letting n — 400, we obtain
< (B3K*+ K)s2 <9,

which is a contradiction.
Case 2. z € O, u(z) > g(2).

As in Case 1, we define the function ® by
®(z,y) = u(e) = v(y) + (g,0) = Fle—y+z -2 on TxQ

We can prove the remainder similarly to the above.

Case 3. z € 2.
In this case the proof is standard. See [4; Section 3].
When the condition (2) (resp., (3)) holds, it is sufficiently to consider only

Case 2, 8 (resp., Case 1, 3) in the above arguments. Thus we obtain the result. §

§4. Existence of solutions

This section is devoted to the existence of solutions of (1.1). In doing so, the
results in [12], [13] play an important role. For the case o(,a) = O (Va € A), see
[6]. In the following we assume

(A.6) A is a compact metric space.



We prepare some notations.

W; = standard N — dimensional Brownian motion.
A = {a¢ : [0,+00) = A : progressively measurable}.
B = {6 : stopping time}.

X; : solution of -
dX: = —b(Xy, ar)dt + \/§U(Xt, a)dWy, t >0,
{ Xo==z€ Q.
r=inf{t 2 0| X, € Q}.

1 4 = characteristic function for A. k

Our existence result is stated as follows.

Theorem 4.1. Assume (A.1)-(A.6). Then there exists a unique solution
u € C(R) of (1.1) and it is represented as the value function associated with the

optimal stopping problem:

TAS

u(z)= inf B, { | e dt+ tocrb(Xa)e™? + 102,9(X,>e—r} .

o 0 =
geB :

To show this theorem, we consider the penalized problem for (1.1).

(41) { F(z,un, Dup,D?uy) + n(un, — )t =0 in Q,

Up = ¢ on 09,
where n € N and r* = max{r,0}.
Then applying the results in [13], for each n € IN, there exists a unique
solution u, € C(Q) of (4.1) and it is characterized as follows:
(4.2)

una) = inf, Bo d [ (10800 = n(un(X0) = $060) ) a4 907 |
Using (A.5) and the barrier argument, we have

(4.3) u, g on 9N forallneNN.
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Since the operator nr¥ is monotone with respect ton € IN and u, 2 —C for large

C > 0, we obtain

(4.4) —C<-

1A

up <--Sup<u; on Q

by the comparison principle of solutions of (4.1). (cf. [4; Theorem 7.9].) Hence

we can define the function u by

(4.5) u(z) = lim wun(z).

n—-+oo
Then we get the following lemma.

Lemma 4.2. The above function u is a u.s.c. subsolution of (1.1).

Proof. 1t is easily seen that u is u.s.c. on Q by means of (4.4). Using (4.3)
and letting n — 400, we have u < g on 9. '
For any ¢ € C%(Q), we assume that u — ¢ attains a local maximum at z, € Q.

We may consider z¢ € € and that z¢ is a strict local maximum point of u — .

Then there exists a § > 0 such that

u(zo) — @(x0) > u(z) —p(z)  for all z € B(x,6)(C Q), T # zo.

Let in be a maximum point of u, — ¢ on B(zg,d). Then by the same argument

as in G. Barles - B. Perthame [1; Lemma A.3].), we get

(4.6) Tn — To, Un(Tn) — u(zo) (n = +00).

Since u, is a subsolution of (4.1), we obtain,

(47 Fl(zn,ua(za), De(za), D*¢(2a)) + n(un(za) — $(za))* £0.

It follows from (A.2) and (4.7) that there exists a constant C > 0 such that

n(un(z,) — (z,))T £ C for all n € IN.
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Thus passing to the limit as n — 400, we have, by (4.6)

u(woA) —(z0) £ 0.

On the other hand, (4.7) implies F(zp, un(zn), Do(zn), D?¢(z,)) £ 0. Sending

'n — +00, we observe

F(an U(wg), DSO(‘TO)’ DZSD(:CO)) é 0. |
Therefore we have completed the proof. |

According to [16; p.37], the formula (4.2) can be rewritten as the following:
TAG
un(z) = irelfx E, / f(Xtyan)etdt + Locrthn(Xo)e™® + 1e;rg(Xr)6-T} ,
beB 0
where a A b = min(a, b) and ¥, = 9 + (up — P)*.
Since u £ ¢ on Q by Lemma 4.2, we have the following lemma by (4.4) and

Dini’s Theorem.

Lemma 4.3. u, =« on Q as n — +oo and the function u is represented as

A8

u(z) = Helf.A E, {/ f(X¢, ap)e™Mdt +‘1g<,.1,b(X9)e_0 + 10_>_Tg(XT)€_T} .

s 1 0 -
éeB

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. We have only to show that u is a supersolution of (4.1).
For any » € C%(Q), we assume u — ¢ takes a strict local minimum at z, € €.
We consider the case z9 € 0. Then we may assume u(zg) < g(z¢), because, if
otherwise, we have nothing to prove. Since u € C(Q) by Lemma 4.3, there exists

a § > 0 satisfying

u(z) < g(z) = € B(zg,6) NN,

u(z) < P(z)  z € B(zy,6)N Q.
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Moreover, Lemma 4.3 implies there exists a ng € IN satisfying, for all n > n,,
(4.8) un(z) < g(z)  z € B(zg,6) N 0N,
(4.9) un(z) < ¢(z) z € B(z9,8) N Q.

Let z,, € B(zo,0) N Q be a minimum point of u, — ¢ on B(zg,8) N Q. By the
same argument as in the proof of Lemma 4.1, we have

Tn — T, Un(Tn)— u(zo) (n — +00).

Therefore, using (4.8), (4.9) and the fact that u, is a supersolution of (4.1), we

obtain

F(Ztn, un(xn),Dcp(xn), Dz‘p(‘r")) .% 0.

Sending n — 400, we get

F(z0,u(z0), Do(z0), D*p(z¢)) = 0.

Thus the proof is completed. §

§5. Implicit boundary value problems

In this section we apply Theorems 3.1 and 4.1 to the implicit boundary value
problems.
I. The impulse control problem. We consider the following problem::

{ max{u + F(z, Du,D*u),u — Mu} =0 in Q,
max{u —g,u — Mu} =0 on 01,

(5.1)
where the operator M is deﬁnd by
Mu(z) = inf{k(€) + u(e +€) |¢ € RY)Y, o + €€ Q).

This problem arises in the impulse control problems for diffusion processes. For

the impulse control and the related results, see [3], [19], [20] and [9] etc.
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In addition to (A.1)-(A.6), we make the following assumptions.

. ere exists a mappin (0 x — satisfyin
A.7) Th 1 ing P:Q x (RT)N RH)N fying

z+ P(z,6)€Q for all (z,£) € Q x (IR+)N’.
P(z,6)=¢ if 2+ ¢ €,

P(-,¢) € C(Q) for each £ 2 0.

(A.8) k € C((RT)N) and there exists a constant ko > 0 such that k(¢) = ko for
all ¢ € (RT)N.

Remark 5.1. The assumption (A.7) needs to make sure that, whenever u is

w.s.c. on 2, so is Mu. See [9; Section 2].
We give the definition of solutions of (5.1).

Definition 5.2. Let u:Q — R.
(1) We say u is a subsolution of (5.1) if u* < 400 on Q and for all z € Q and

(p,X) € Jé’+u*(x), u* satisfies

max{u*(2) + F(z,p, X),u"(2) - Mu*(2)} S0 (z € Q),
max{u*(z) - g(z), u"(z) — Mu*()} £ 0

or max{u*(z) + F(z,p,X),u*(z) — Mu*(2)} £0 (z € a0).

(2) We say u is a supersolution of (5.1) if us. > —o0 on Q and for all z € Q and

(p,X) € J%’_u*(a:), u, Satisfies

 max{us(e) + F(z,p,X), ua(2) — Mua(2)} 20 (2 €9),
max{u*(ac) —g(z),us(z) — Mus(z)} 20

or max{u(z) +‘F(:c,p,X),u*(:c) — Mu,(2)} 20 (z€9N).
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(3) We say u is a solution of (5.1) if u is both a sub- and a supersolution of (5.1).

We can prove the proposition equivalent to the above definition similar to

that to Definition 2.2. We have the following theorem.

Theorem 5.3. Assume (A.1), (A.2), (A.4)-(A.8) and g € C(Q). Then there
exists a unique solution u € C() of (5.1).

Outline of proof. The comparson principle of solutions of (5.1) can be proved
similarly to that of Theorem 3.1. Hence we show only the existence.

We may assume f(-,a), ¢ = 0 on Q. By [13] there exists a unique solution

Up € C(ﬁ) of
‘ { F(z,u, Du,D*u) =0 in Q,
u—g=20 on Of.

Using Theorems 3.1 and 4.1 we can define the sequence {u,}new C C(Q) induc-

tively as follows:

up : a unique solution of
{ max{F(z,u, Du, D*u),u — Mu,_1} =0 in €,
max{u — g,u — Mu,—1} =0 on 09,

We see by Theorem 3.1 and the properties of the operator M the following esti-

mates.

0

[IA

v L up

A

e Sug Sup Sy on

9y

<)

?

Unt1 — Unt2 S (1 — N)n”“()”c(ﬁ) on

for some p € (0,1). Thus there exists a function u € C(Q) such that u, = u on
Q. Tt follows from the stability of solutions and the comparison principle that u is

a unique solution of (5.1). §
For the detail, see [10].

II. The optimal switching problem.



Next we treat the following systerh of elliptic PDEs:

u :(ul,"' ,u™), ke T ={1,--- ,m},
(5.2) max{u* + F*(z, Du*, D*u*),u* — M*[u]} =0 in Q,
max{u® — ¢F, uF — M*[u]} =0 on 09,

Here m (> 1) € N and F*, M* are defined by

FH(a,p, X) = sup{—tr('0*(z, )0 (2, )X) + (¥(z,a),7) ~ (a0},
M*[u](z) = min{u'(z) + K¥'(2) | 1 €T, 1 # k}.

This problem is associated with the optimal switching for diffusion processes. See

[5], [18], [7], [14] and [15] for the related results.
As to the coefficients of F* and A*! (k, l € T'), we make the following assump-

tions.

(A.2)' supger.aen {174 @)lwnmqay A )l e 1Al oy } < o0
(A.9) R e C(Q) and R¥' > 0on Qfor k, I =1,--- ,m.

Remark 5.4. The assumption (A.9) is needed to show the comparison principle

of solutions of (5.2). It is called “no loop of zero cost condition”. (cf. [18].)

We give the definition of solutions of (5.2). Let u* = (u!*,--.  u™*) and
Uy = (ui’ ’u;n)

Definition 5.5. Let u: Q — R™.
(1) We say u is a subsolution of (5.2) if u* < +oo on Q and forall k € T, z € Q

and (p, X) € T2 ub(a),

max{u**(z) + F*(z,p, X),u**(2) - M*[u)(2)} 0 (2 € Q),
max{ut*(z) — g*(2), u**(z) - M*u"](2)} < 0

or max{u**(z) + F*(z,p, X),u**(z) — M*[u*](2)} <0 (z € 3Q).
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(2) We say u is a supersolution of (5.2) if ux > —co on Q and forallk € T, z € Q
and (p, X) € J2"u}(a),

max{u®(z) + F¥(z,p, X),u*(z) — M*[u,])(2)} 20 (2 €Q),
max{u}(z) — g*(e), ul(¢) — M*[w.](2)} 2 0

“or max{u¥(z) + F*(z,p, X),uf(z) — M*u.](2)} 20 (z € 99).
(3) We say u is a solution of (5.2) if u is both a sub- and a supersolution of (5.2).

The equivalent proposition to the above defintion can be shown similarly to

that of Definition 2.2. Then we obtain the following theorem.

Theorem 5.6. Assume (A.1), (A.2)', (A.4)-(A.6) and (A.9) and ¢* € C(Q)
(Vk € T). Then there exists a unique solution u € C(Q)™ of (5.2).

The strategy of the proof is similar to that of Theorem 5.3. Thus we leave it

to the reader.

Remark 5.7. In [8], [14] and [15] we discussed the problem (5.2) from the
viewpoint of monotone systems. As to the existence of solutions of (5.2), Theorem

5.4 provides another proof.
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