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ABSTRACT. A general parabolic evolution equation is considered for a closed hypersurface in
Euclidean space. All stationary solutions are shown to be Lyapunov unstable if the normal
velocity of a hypersurface depends only on its normal and second fundamental form and is
independent of its position. Instability of time periodic solution is also discussed.

1. Introduction

This is a preliminary note. We consider the initial value problem of an evolution of a closed

hypersurface $\Gamma_{t}$ in $\mathbb{R}^{n}$

$V=f(n, -A)$ . (1)

Here $n$ is an inward unit normal vector field on $\Gamma_{t}$ and $V$ is normal velocity in the direction

of $n;A=-$ dn denotes the second fundamental form. We shall prove that all stationary

solutions $S$ of (1) is Lyapunov unstable provided that (1) is (nondegenerate) parabolic.

This generalized a recent work of Ei and Yanagida [EY] where they assumed that $f$ defends

on A only through its mean curvature. Their method is completely different from ours.

They linearized equation around stationary solution and appeal to spectral analysis. Their

method applies to the equation depending on space variable but invarimt under transla-

tion. We simply use a distance function of $S$ and appeals to the maximum principle. We

believe our proof is simpler than theirs for this problem.

Our method also applies to instability of the periodic solution of

$V=f(t, n, -A)$ . (2)

where $f$ is time periodic. We show that periodic solutions $S_{t}$ are unstable unless second

fundamental form vanishes somewhere on $S_{t}$ for all $i$ .
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2. Parabolic evolution equations

We formulate our equations as in [GGl]. Let $E$ be a bundle over the sphere $S^{n-1}$ of the

form

$E=\{(\overline{p}, Q_{\overline{p}}(X))\in S^{n-1}\cross S_{n};X\in S_{n}\}$

with $Q_{\overline{p}}(X)=R_{\overline{p}}XR_{\overline{p}}$ and $R_{\overline{p}}=I-\overline{p}\otimes\overline{p};R_{\overline{p}}$ is the projection orthogonal to $\overline{p}$ . Here $S_{n}$

denotes the space of the $n\cross n$ real symmetric matrices. By the standard Euclidean metric

the bundle $E$ is identified with the tensor bundle $TS^{n-1}\otimes T^{*}S^{n-1}$ over $S^{n-1}$ . Let $f$ be

a function from $[0, \infty)\cross E$ to $\mathbb{R}$ . We shall always assume that $f$ is at least continuous.

Suppose that a hypersurface $\Gamma$ is given as a zero level set of $u$ in $\mathbb{R}^{n}$ such that the gradient

$\nabla u\neq 0$ on $\Gamma$ and $n=\nabla u/|\nabla u|$ . Then as in [GGl], the second fundamental form (in the

direction of n) is of the form

$A=-Q_{\overline{p}}(\nabla^{2}u)/|\nabla u|$
$-$ with $\overline{p}=\nabla u/|\nabla u|$ , (3)

where $\nabla^{2}u$ denotes the Hessian of $u$ in space variables.

We recall the notion of parabolicity of the equation

$V=f(t, n, -A)$ (4)

for evolving hypersurface $\Gamma_{t}$ . It is convenient to introduce the level set equation

$u_{t}+F_{f}(t, \nabla u, \nabla^{2}u)=0$ (5)

with $F_{f}(t,p,X)=|p|f(t,p/|p|, Q_{\overline{p}}(X)/|p|)$. (6)

This equation is uniquely determined if each level set of $u$ moves by (4) and a super level

set $u>c$ is “inside” the level set $u=c$. Sign in (6) are different from those in [CGG]

because our convention of $n$ is opposite.

We say (4) is strictly parabolic (uniformly in t) if for each $M>0$ there is $\mu>0$ such

that

$F_{f}(t,\overline{p},X+Y)-F_{f}(t,\overline{p},X)\leq-\mu$ trace$(Q_{\overline{p}}(Y))$ (7)
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for all $Y\geq 0,$ $|X|\leq M,$ $|\overline{p}|=1,$ $t\in[0, \infty)$ , where $|X|$ is the operator norm of $X$ as a

selfadjoint operator. If (7) holds for $\mu=0$ we say (4) is (degenerate) parabolic. A level set

method [CGG], [ES] provides a unique global generalized solution. The following version

is taken from [GGl].

2.1. Unique global existence. Suppose that (4) is parabolic. Let $\Gamma_{0}$ be the boundary

of a bounded open set in $\mathbb{R}^{n}$ . Then there is a unique generalized solution $\{\Gamma_{t}\}_{t\geq 0}$ of (4)

starting from $\Gamma_{0}$ .

If $f$ and $\Gamma_{0}$ are smooth enough and (4) is parabolic, there is a local-in-time classical solu-

tion $\Sigma_{t}$ (see e.g. [GG2]). Moreover $\Sigma_{t}$ agrees with $\Gamma_{t}$ as far as the former exists $[G_{\backslash }G2]$ (see

also [ES] for the mean curvature flow). So our generalized solution is a natural extention

of classical solution.

3. Instability of stationary solution

We say that $C^{2}$ hypersurface $S$ is stationary for

$V=f(n, -A)$ (8)

if $f(n, -A)=0$ on $S$ . Let $U(\alpha)$ denote a tubular neighborhood of $S$ of the form

$U(\alpha)=\{x\in \mathbb{R}^{n}$ ; dist $(x,$ $S)<\alpha\}$ ,

where dist denotes the distance. We say that $S$ is Lyapunov stable for (8) if for each $\epsilon>0$

there is $\delta>0$ such that a (generalized) solution $\Gamma_{t}$ with initial data $\Gamma_{0}$ stays in $U(\delta)$ for all

$t>0$ provided that $\Gamma_{0}$ is contained in $U(\epsilon)$ . If not, $S$ is called unstable. If $\alpha$ is a supremum

of $\alpha’$ such that every point of $U(\alpha’)$ has a unique nearest point on $S,$ $\alpha$ is called the reach

of $S$ and dented by reach $S$ .

3.1. Instability Theorem.Suppose that (8) is strictly parabolic. Let $S$ be a stationary
$C^{2}$ hypersurface of (8) such that $S=\partial D$ for some open set $D$ in $\mathbb{R}^{n}$ . Suppose that
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reach $S=\alpha_{0}>0,$ $infs|A|=\sigma>0$ and that $|A|$ is bounded on $S$ (if $S$ is not compact).

For $0<\alpha<\alpha_{0}$ let

$\Gamma^{\alpha}=\{x\in D$ ; dist $(x,$ $S)=\alpha\}$ . (9)

Let $\Gamma_{t}^{\alpha}$ be a (generalized) solution of ($8j$ starting from $\Gamma^{\alpha}$ . Then there are $\alpha_{1}(0<\alpha_{1}<\alpha_{0}$

$)$ and $c_{0}=c_{0}(f, \sigma, S)>0$ such that

dist $(\Gamma_{t}^{\alpha}, S)\geq(\alpha+c_{0}t)\wedge\alpha_{1}$ for all $t>0$ (10)

where $a \wedge b=\min(a, b)$ . The same inequality holds if $D$ in (9) is replaced by its comple-

ment.

3.2. Corollary. Suppose that $S$ is a stationary $C^{2}$ closed hypersurface for (8) with non-

vanishing second fundamental form. Then $S$ is (Lypunov) unstable provided that (8) is

strictly parabolic.

Of course Lyapunov instability follows from (10).

3.3. Remark on noncompact surface.Following formula for distance function is a key

for the proof of Theorem 3.1. Let $v$ be the signed distance function of $S$ , i. e.,

$v(x)=\{\begin{array}{l}dist (x, S) for x\in D- dist (x, S) otherwise.\end{array}$

If $S$ is $C^{2}$ , then so is $d$ which is proved in [GT; \S 14].
Even for a non bounded open set generalized solution can be constructed by levelset

method; see Ilmanen [I] and Ishiiand Souganidis [IS].
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3.4. Lemma.For a general $C^{2}$ hypersurface $S=\partial D$ with an open set $D$

$\nabla^{2}v(y)(I-v(y)\nabla^{2}v(y))^{-1}=\nabla^{2}v(x)$ , $y=x+vn,$ $x\in S$

for $|v|<$ reach $S$ .

This is also a key in [GG2], where the local existence of classical solution is proved for

(2) by a level set method.

3.5. Proof of Theorem 3.1. We set

$w(t, x)=v(x)-\rho(t)$ with $\rho(t)=\alpha+c_{0}t$ .

Our goal is to take $c_{0}>0$ so that $w$ is a supersolution of the level set equation of (8):

$u_{t}+F(\nabla u, \nabla^{2}u)=0$ , $F=F_{f}$

in a set $U_{+}(\alpha_{1})\backslash U_{+}(\alpha/2)$ , where

$U_{+}(\alpha)=\{x\in D$ ; dist $(x,$ $S)<\alpha\}$ .

If such a $c_{0}$ exists, comparison principle ([CGG], [GGl]) implies that $\Gamma_{t}^{\alpha}$ is contained in

$\{w\geq 0\}$ . This yields (10).

Since $S$ is stationary, we see

$F(\nabla v, \nabla^{2}v)=0$ on $S$ .

By Lemma 3.4 this yields

$F(\nabla v, \nabla^{2}v(I-v\nabla^{2}v)^{-1})=0$ in $U(\alpha_{0})$ .

This implies

$w_{t}+F(\nabla w, \nabla^{2}w)=-c_{0}+F(\overline{p},X)-F(\overline{p}_{2}X(I-vX)^{-1})$ in $U_{+}(\alpha_{0})$ . (11)
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with $\overline{p}=\nabla v,$ $X=\nabla^{2}v$ .
We take $\alpha_{1}>0$ small so that

$|\nabla^{2}v|\geq\sigma/2$ in $U_{+}(\alpha_{1})$ (by $inf|A|$ ), (12)

$(I-v\nabla^{2}v)^{-1}\geq I/2$ in $U_{+}(\alpha_{1})$ . (13)

Since $X\overline{p}\otimes\overline{p}=0$ by $|\nabla v|=1$ , we see

$Q_{\overline{p}}(X^{2}(I-rX))^{-1}=X^{2}(I-rX)^{-1}=- \frac{1}{v}(X-X(I-vX)^{-1})$

By parabolicity

$F(\overline{p}_{2}X)-F(\overline{p}_{2}X(I-vX)^{-1})\geq\mu v$ trace $Q_{\overline{p}}[X^{2}(I-rX)^{-1}]$

$=\mu v$ trace $X^{2}(I-rX)^{-1}$ on $U_{+}(\alpha_{1})$ .

with $M= \sup_{U_{+}(\alpha_{1})}|\nabla^{2}v|$ . Using (12), (13) we see

trace $X^{2}(I-rX)^{-1} \geq\frac{1}{2}(\frac{\sigma}{2})^{2}=c_{1}$

which yields

$F(\overline{p}, X)-F(\overline{p}, X(I-vX)^{-1})\geq\mu c_{1}v$ on $U_{+}(\alpha_{1})$ .

If we set $c_{0}=\mu c_{1}\alpha/2$ , from (11) it follows that $w$ is a classical supersolution of the level

set equation of (8) in $U_{+}(\alpha_{1})\backslash \overline{U_{+}(\alpha/2)}$.
The proof for the last statement is parallel so is omitted.

3.6. General instability Theorem. For (8) there is no stable stationary $C^{2}$ closed

hypersurface provided that (8) is strictly parabolic and that $f$ is $C^{1}$ .

Proof. By Corollary 2.2 we may assume that there is a point on at which

$(n, A)=(\overline{p}_{0}, O),$ $f(n, A)=(\overline{p}, O)$

for some $\overline{p}_{0}\in S^{n-1}$ . Since $S$ is stationary,

$f(\overline{p}_{0}, O)=0$ .

The following lemma implies the nonexistence of closed stationary solution, so the proof

is complete.
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3.7. Nonexistence Lemma. Suppose that (8) is strictly parabolic and $f$ is $C^{1}$ . Suppose

that $f(\overline{p}_{0}, O)=O$ for some $\overline{p}_{0}\in S^{n-1}$ . Then there is no stationary $C^{2}$ closed hypersurface

for (8)

Proof. Let $S$ be a stationary $C^{2}$ closed hypersurface. Since $S$ is compact, there is a half

space $H$ such that

$H=\{x+c\in \mathbb{R}^{n}; x\cdot\overline{p}_{0}\geq 0\}$ , $S\subset H$ with $c\in S$ .

Note that $\partial H$ is a stationary solution of (8) since $f(\overline{p}_{0}, O)=0\}$ . Since (8) is strictly

parabolic and $f$ is $C^{1}$ we may apply the strong maximum principle and conclude $S$ cannot

touch $\partial H$ for $t>0$ . This contradicts the existence of stationay closed hypersuface $S$ .

3.8. Remark.If $f$ is $C^{1}$ in $A$ , the parabolicty is equivalent to say that $\partial f/\partial A$ is positive

definite.

4. Instability of periodic solutions

We consider

$V=f(t, n, -A)$ , (14)

where $f$ : $[0, T]\cross Earrow \mathbb{R}$ is continuous and T-periodic, $i.e$ . $f(t,\overline{p}, -A)=f(t+T,\overline{p}, -A)$ .

We say $S_{t}(-\infty<t<\infty)$ is a T-periodic $C^{2,1}$ solution of (14) such that $S_{t}=S_{t+T}$ where
$C^{2,1}$ implies that $C^{2}$ in space and $C^{1}$ in time. Note that the signed distance function $v$ of

$S_{t}$ is now a $C^{2,1}$ function.

Let $U(\alpha, t)$ denote the $\alpha$-tubular neighborhood of $S_{t}$ . We say $S_{t}$ is Lyapunov stable for

(14) if for each $\epsilon>0$ there is $\delta>0$ such that a generalized solution $\Gamma_{t}$ with $\Gamma_{t}|_{t=t_{0}}=\Gamma_{0}$

always stays in $U(\epsilon, t)$ for all $t>t_{0}$ provided that $\Gamma_{t_{0}}\subset U(\delta, t_{0})$ .

In some cases $S_{t}$ is called $S_{t}$ is called T-periodic even if $S_{t}$ is T-periodic up to T-periodic

translation $a(t)$ , i. e., $S_{t+T}=S_{t}+a(t)$ . Here $a(t)$ is asuumed to have the form

$a(t)=b(t+T)-b(t)$

110



for some $C^{1}$ function $b(t)$ . If we set

$\Sigma_{t}=S_{t}-b(t)$

then $\Sigma_{t}=\Sigma_{t+T}$ and $\Sigma_{t}$ solves

$V=f+n\cdot b(t)$ .

Thus by T-periodic solution we shall always mean T-periodic with no ambiguity of trans-

lation.

4.1. Instability Theorem.Suppose that (14) is strictly parabolic. Let $S_{t}$ be a T-periodic
$C^{2}$ solution of (8) of closed hypersurfaces surrounding an bounded open set $D$ in $\mathbb{R}^{n}$ .

Suppose that $\inf_{S_{t}}|A|=a(t)\not\equiv O$ . Let $\alpha_{0}>0$ denote the minimum of reach $S_{t}$ in $t$ . For

$0<\alpha<\alpha_{0},$ $t_{0}\in \mathbb{R}$

$\Gamma^{\alpha}=\{x\in D$ ; dist $(x,$ $S_{t_{0}}=\alpha\}$ for $t>t_{0}$ .

Let $\Gamma_{t}^{\alpha}$ be a (generalized) solution of (14) with $\Gamma_{t}^{\alpha}=\Gamma^{\alpha}$ at $t=t_{0}$ . Then there are

$\alpha_{1}(S_{t})(0<\alpha_{1}<\alpha_{0})$ and nonnegative T-periodic function $c_{0}(t)(\not\equiv 0)$ depending only on

$f,$ a
$,$

$S_{t}$ such that

dist $( \Gamma_{t}^{\alpha}, S_{t})\geq(\alpha+\int_{0}^{t}c_{0}(\tau)d\tau)\wedge\alpha_{1}$ for all $t>0$ .

The same inequality holds if $D$ in the definition of $\Gamma^{\alpha}$ replaced by $\mathbb{R}^{n}\backslash D$ .

Proof. As in the proof of Theorem 3.1 we set

$w(x,t)=v(x,t)-\rho(t)$ , $\rho(t)=c_{0}’\int_{0}^{t}a(\tau)^{2}d\tau$,

and choose $c_{0}’>0$ in suitable way so that $w$ is a supersolution of the level set equation of

(14). Here $v$ denotes the signed distance function of $S_{t}$ .
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4.2. Corollary.Suppose that (14) is strictly parabolic. If $S_{t}$ is a T-periodic $C^{2,1}$ solution

of (14) consisting of closed hypersurfaces, then $S_{t}$ is Lyapunov unstable if $\inf_{S_{t}}|A|\not\equiv 0$ as

a function of time.

This is an imediate from Theorem 4.1.
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