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THE CAUCHY PROBLEM FOR A
WEAKLY CLOSED OPERATOR

}}Eiﬁ; TR SHIGEO KANDA (/)FEP VY %&’ Z\;)

INTRODUCTION

We consider the Cauchy problem

(d/dt)u(t) = Au(t) fort € [0,00),
(CP)
’U,(O) = Ug,
in the largest space V* of a triplet {V, H,V*} such that V C H C V*, where

the domain of A is the smallest space V and the initial value ug is an element

of H. In [3], we gave an existence theorem of solutions to

(d/dt)u(t) = Au(t) forte[0,T), 0< T < oo,

(CP)r

u(0) = o,
for a weakly closed operator A with range condition and “integrability” condition
in a reflexive Banach space X. Moreover, in [4] we improved it and applied the
result to the proof of existence of weak solutions of Navier-Stokes equations in
a bounded domain in RV(N = 2 or 3). The purpose of this report is twofold.
First, we give two existence theorems of solutions to (CP). Second, we apply
them to the proof of existence of weak solutions of Navier-Stokes equations in

an unbounded domain in R®. We note that the existence of weak solutions of
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Navier-Stokes equations is well known, see Leray [7], Hopf [2] and Temam [10],
for example. The process of argument here is essentially along the same line
as in [4]. We believe, however, that the applications to Navier-Stokes equations

have become more elegant than in [4] because of two existence theorems.
1. Preliminaries

Let V be a reflexive Banach space with norm || ||y and H a Hilbert space
with inner product ( , )g and norm || ||, V C H, V dense in H with continuous
injection. Let V* be the dual of V' with norm || |}y~. Identifying H with its dual

H*, by the Riesz representation theorem we have
(1) VCH=H*"CV"*,

where each space is dense in the following one and the injections are continuous.
Such a family {V, H,V*} is called a triplet. The scalar product between u € V*

and v € V is denoted by (u,v)y= yv. We note that

(2) (h,v)y« v = (h,v)y forallh€ H andveV.

Definition. Let {V H, V*} be a triplet. Let A be a single valued operator in
V* with domain V and let uy be an element of H. We say that u : [0,00) — V*

is a solution of (CP), if the following five conditions are satisfied.

(i) u:[0,00) — V* is absolutely continuous;
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(i1) u(t) € V for almost all ¢ € [0, c0);
(i11) (d/dt)u(t) = Au(t) in V* for almost all ¢t € [0, 0);
(iv) u(0) = ug;

(v) u(t) € H for all ¢ € [0,00).
In order to show the main theorems we use the following.

Theorem A [4, Corollary]. Let 0 < T < oo. Let X be a reflexive Banach
space with norm || | and u} € X for n,k =1,2,3,---. Let A be a single valued
operator in X with domain D(A) and range R(A). Suppose the following three

conditions hold.

(H.1) there exists a subset Xo C X such that
D(A)C Xo CD(A) and R(1-XA)D X, for >0,

where D(A) denotes the closure of D(A);
(H.2)
n T n n
ug = upg € Xo and 1—;A uy =uy_y fornk=1,2,3,---,

and there exist a positive number C(ug) and a constant p € (1,00) such

that

(1) TS JAuplP < Cluo) forn=1,2,3,--
n
k=1
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(H.3) A is a weakly closed operator, ie., if z, € D(A), zn, — x weakly and

Az, — y weakly, then * € D(A) and Az = y.

Define the function u" : [0,T] — X, setting

=in bl

n n

up forte(
u'(t) =

ug fort=0.

Then there exist a subsequence {u™?)} of {u™} and an absolutely continuous

function u : [0,T] — X which satisfy the following:
(i) w-limjeou™@)(t) = u(t) for all t € [0, T);
(i1) u(t) € D(A) for almost all t € [0,T1;

(iii) (d/dt)u(t) = Au(t) for almost all t € [0,T);
(iv) u(0) = uo;

(v) Au € LP([0,T]; X).

Remarks 1. (i) The symbol w-lim denotes weak limit.

(i) See {3, Lemma 2] for Theorem A(v).

2. The main theorems

Theorem 1. Let 0 < T < oco. Let {V,H,V*} be a triplet. Let A be a single
valued operator in V* with domain V. Suppose the following four conditions

hold.



(A.1)
R(1-XA)D H for >0
(A.2) for each ug € H and a sequence {u}}n x>1 in V defined by
n T n n ;
ug =ug and (1 — ;A) uy =up_, fornk=1,23,.--,
there exist a positive number C(ug) and a constant p € (1,00) such that

T n
(I4) =3 | Auglh < Cluo) forn=1,2,3,--;
n k=1
(A.3) A is a weakly closed operator in V*, i.e, ifz, €V, z, — = weakly in V*

and Az, — y weakly in V*, then x € V and Az = y;

(A.4) there exist two constants a € R and § > 0 such that

(Au,uyy« v < a|ull} + B forallu € V.

Given ug € H, define the function u™ : [0,T] — V*, setting
k—1_ k
up forte€ (—T, -—-T] ,
u"(t) — n n :
ug fort=0.

Then there exist a subsequence {u™")} of {u™} and a solution u : [0,00) — V'*

of (CP) which satisfy the following:
(1) u € Cw([0, 00); H);

(i) w -limj_oo u™9)(t) = u(t) in H for all t € [0,T);
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(iii) Au € L?. ([0,00); V*);

loc

(iv)
lu(®)l3 < llwoll?y + 28t for all t € [0,00), if a = 0;

oo+ 2 < (Il +2)  orallt € 0.00), i 0.
a a
Remark 2. The symbol Cy in (i) denotes weak continuity.

Theorem 2. Let V be a separable reflexive Banach space and let {V,H,V*}
be a triplet. Let A be a single valued operator in V* with domain V and let ug

be an element of H. Suppose the following three conditions hold:

(A.5) there exist o', 3’ > 0 and v > 0 such that

(Au,u)ye v < a'|lull} + 8" = 7||lu||}, forallu € V;

(A.6) the operator A:V — V* is weakly continuous, i.e.,

if w-llimy, oo up = u in 'V, then w-lim,,_,o Au, = Au in V*;

(A.2) there exist an increasing function ¢ : [0,00) — [0,00) and a constant

p € (1,00) such that

(IP) I Aullv. < ¢ (lull?) (||u||2V/” + 1) for all u € V.

Then there exists a solutionu : [0,00) — V* of (CP) which satisfies the following:

(i) v € Cw([0, 0); H),
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(i) u € L, ([0, 00); V),

loc

(iii) Au € L? ([0,00);V*).

loc
Moreover, taking o € R and 8 > 0 such that
(Au, )y~ v < auly +8 forallueV,
we have the following:

(iv)
w3 < lluol|3 + 26t for all t € [0,00),if a = 0,

Jutol + 2 < 2ot (ol +2) torattt€ f0,00) it 20,

(v) if a =0, then

IO+ 23 [ (o) < 2082 + 2(afuolly + 40+ ol
for all t € [0,00), and if a # 0, then
Il + 25 [ IuColas
(o= 1) (lolfy + 2) +2 (8= 22 ) 1+ Juolly

S —
«

Q|8

for all t € [0, 00).

Remark 8. If the injection V — H 1is compact, (v) above may be replaced by

the following condition:

(v)" if @ =0, then
t
lu()I% + 24 / ()12 dr

< 20/8(t — )" + 2 (o [Juls)llF + B') (£~ 5) + IIU(S)II%



for s = 0, almost all s > 0, and all t > s; if @ # 0, then

Il + 25 [ TG

< Lot 1) (jutsiy + 2) +2 (5 22 ) (0= )+ o)l
for s =0, alrﬁost all s >0, and all t > s.
Inequalities in Theorem 2(v) and in (v)' correspond to the energy inequal-

ities in Navier-Stokes equations (see Ladyzhenskaya [6], and Shinbrot &

Kaniel [9] for energy inequality).

Remarks 4.
(i) Condition (A.5) implies condition (A.4).
(ii) Condition (A.5) corresponds to the coerciveness on V', see Lions-Magenes

[8, Definition 9.2, p.202].

Lemma 1. Let 0 < T < co. Let {V,H,V*} be a triplet. Let A be a single
valued operator in V* with domain V. Suppose that conditions (A.1) and (A.4)
are satisfied. Let ug be in H. Set ul} = uy and take a sequence {u}}n x> in V

such that

T\, »
(3) (1—%—A>uk=u2_1 forn,k=1,2,3,---.
Then the following hold:

n n 28T
(4) Nuild < lup_illf + -



fora =0andn,k=1,2,3,---;

22T~
®) gl + £ < (1= 25)  (huioali+ £)

(%

fora #0,n > 2aT and k =1,2,3,---.

Lemma 2. Let {V,H,V*} be a triplet. Let A be a single valued operator in
V* with domain V. Suppose that conditions (A.5) and (A.6) hold.

Then A is a weakly closed operator in V*.

Lemma 3. Let 0 < T < oo. Let {V,H,V*} be a triplet. Let A be a single
valued operator in V* with domain V. Suppose that conditions (A.1) and (A.5)
hold. Let ug and {u}} be the same as in Lemma 1. Then the following hold:

k
T
gl + 20— 3 i
i=l+1

. k . . . .
T ) KT T .
<2l 3ttty + 20 (L - L) 4 i
i=I+1

(6)

forn>1andk>1>0.

Combining Lemmas 1 and 3, we obtain the following.

Lemma 4. Under the same assumptions as Lemma 3, taking « € R and f > 0

such that

(Au,u)v= v < alul|y +8 forallu e,

we have the following.
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If a =0, then
k
n T n
gl + 27 3 Il
1=I[+1
@ g (T _1T) (G4 1T
- n n n n
kT 1T n
(@l +8) (5 - ) + I

forn>1,k>12>0, and if a # 0,then

k
T n
legly +29= 3 Il
=141

© <3 ((1 -2 1) (It +2)

o'f kT IT n
+2 (ﬁ' — "g‘) <—n— - 7) + luf |y

forn > 2aT and k > 1> 0.

Lemma 5. Let 0 < T < co. Let {V,H,V*} be a triplet. Suppose that condi-
tions (A.1), (A.2) and (A.5) are satisfied. Then the following hold.

If a =0, then

T < o 1
= > lAugle <2277 (o (luollhy + 267))°
(9) k=1

1 1
(a8 (14 2) 22 4 (@l + 8 +2) T + Sl )
and if a # 0, then

(10)

T n
=>4l
n

k=1

< (o (- 220 (i £) 4 2))

! 2la|T\ ™" | ' 1
(i (- 2) " s ) (557 42) 7+ o




for n > 2|a|T.
The following lemma is proved by the Galerkin method.

Lemma 6. Let V be a separable reflexive Banach space and let {V,H,V*} be
a triplet. Let A be a single valued operator in V* with domain V. Suppose that
conditions (A.5) and (A.6) hold.

Then for any f € V* and A > 0 with o'\ < 1, there exists an element u € V

' such that (1=XA)u=f.

Proof. Since V is a separable Banach space and {V, H,V*} is a triplet, there

exists a subset {ey,ea, -+ ,en, -} of V satisfying the following two conditions:
(0.1) if (u,en)v+ v =0 for each n, then u = 0;

1, if ¢ =3,
(0.2) (eire;)n = dij =
0, otherwise.
Let V,, be a linear space spanned by ey, ez, -- , e, and equipped with the inner
product and the norm induced by H. We denote the inner product and the
norm of V,, by (', )v,,|| llv,, respectively. Set
‘ n
(11) Po(u) =) (1= AA)u— f,e;)y=ve; forallueV.

Jj=1

Then by (A.6), P, is a continuous mapping from V into V,, which satisfies

(12) (Pn(u),v)v, = (1 = A)u = f,v)y»y forallueV and v e V,.
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Furthermore, noting that on the space V,, all norms are equivalent, we also see
that P, is a continuous mapping from V,, into itself. Taking v =u € V,, in (12)

and noting that A > 0 and 1 — Aa' > 0, by (A.5) we have

> |lullyy — MalullF + 8" = Allully) = [ Fllvelullv
(13)
= Mlully + (1 = 2a)ullfr = Ifllv-llullv — A8’

> Mllully = 1 fllv-llullv = A8"

Thus there exists a positive number My such that

(14) (Pp(u),u)v, >0 for u € V,, with ||lully > M.

In particular, we have .

(15) (Pr(u),u)y, >0 for u € V, with ||ul|y, > CM,,

where C is a positive constant such that

(16) lulla < C'Hu”v forallu € V.

By [10, Lemma 1.4, p.164], (15) and (14), there exists u, € V,, such that
(17 C Pau) =0 and Junlly < My,

Taking u = u, in (12)? by (17) we get

(18) {(1=XA)uy, — f,v)ye v =0 forallveV,.

Since V is a reflexive Banach space and the sequence {u,} is bounded in V,

there exist a subsequence {u,(j)} of {un} and an element u € V such that

(19) Upjy = v weakly in V.
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By (18) we have

(20) (1= XA)ungjy — f,v)v*’,v =0 forn(j)>nandv € V,.
Letting j — oo, by (19), (20) and (A.6) we obtain

(21) (1= AA)u - f,0)y- v =0 mumgeﬁp
Taking v = e, in (21), we have

(22) (1=XA)u— f,ex)ysv=0 forn=1,2,3,---

It follows from (O.1) that

(1-Au=f O

Remark 5. By Lemmas 2, 5, and 6, if V is a separable reflexive Banach space
and conditions (A.5), (A.6) and (A.2)' hold, all the assumptions of Theorem 1
are satisfied essentially. In fact, we use condition (A.1) only for small A > 0 in

Theorem 1. Thus the assumptions of Therem 2 yield the conclusions of Theorem

1.

In order to prove Theorem 2(v) and Remark 3(v)’, we use the following

lemma.

Lemma 7. Make the assumptions of Theorem2. Let u be the solution of (CP)
in Theorem 2 and let {u™?)} be the sequence of functions in Theorem 1(ii).
Then we have

w- lim ™ = v in L*[0,T); V).

J—0
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To show Remark 3, we need two lemmas besides Lemma 7. In the following
let u and ™) be the functions as in Lemma 7. We shall denote by S all the

numbers s € [0, 7] which satisfy the following:

(C) there exists a subsequence {n(j(k,s))}, depending on s, of {n(j)} such that

lim w"0*)(s) = y(s) in H.

k—o0

We note that 0 € S.

Lemma 8. Make the assumptions of Theorem 2. If the injection V. — H is

compact, almost every s € [0, T] belongs to S.

Lemma 9. Make the assumptions of Theorem 2. Let « and 8 be the numbers
as in (A.4). Then the following inequalities hold:

if « =0, then

(23) lu@er < lu()lIF + 26(t — 5)

for s € S and s <t; if a #0, then

(24) ()1 + g < e2alt=9) (||u(s)||§, +h )

@
for s € S and s <'t.
Remark 6. From the construction of solution u and Lemma 8, if the injection

V — H is compact, inequalities (23) and (24) hold for s = 0, almost all s > 0,

and all £ > s.
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3. Applications to Navier-Stokes equations

We are concerned with the Cauchy problem for Navier-Stokes equations in

an unbounded domain  in R?® with boundary 99:

%?:Au—(u-V)u—gradp in (0,00) x Q,

(NS) divu=0 1in (0,00)x Q,
u=0 on [0,00) x 090,
u(0,2) = up(z) in Q,
where u = u(t, z) = (u1(t, z), ua(t, z), u3(t, z)) is the velocity field, p = p(t, z) is

the pressure, and uo = ug(z) is the initial velocity.
3.1 Notation

The Lebesgue space LP()) denotes the vector functions on § with finite

1/p
ol 2y = ( / |u<x)|de) |

3 1/2
ju(e)] = (Z |m-(x)|2> |

Let C§°(€2) be the space of infinitely differentiable functions on §2 with a compact

norm:

where

support in £2. Let
Con()) = {u € Cg°(Q); div u = 0},
H = L%(Q) = the closure of Cop(f2) in L2(Q)‘.
Then H is a Hilbert space with the inner product and the norm induced by

L%(Q). Let .
Ju

Oz;

HY(Q) = {u; u, € L*(Q) fori= 1,2,3} ,



3
_ Ou Ov Ou; Ov;
(Vu, Vo)iaga) = Z (5mi’ 31:;) 2 Z / Bz (%.,d
=1 L (Q)
IVull 2@y = {(Ve, Vi) gy } 2

Then H(Q) is a Hilbert space with inner product

(u,v)mre) = (4, 0)12(0) + (Vu, Vo) r2(q),
and the corresponding norm is given by

1/2
lullzn @) = (ullFgay + IVullfem)

Let

H}(Q) = the closure of C§(2) in H'(),
V= H&U(Q) = the closure of C7%,(2) in H;(Q).

Then V is a separable Hilbert space with the inner product and the norm induced
by H'(Q). Moreover, if V* denotes the dual of V, the family {V,H,V*} is a

triplet. For each u in V, the form
veV — —(VU,VU)Lz(Q) eR

is linear and continuous on V; therefore, there exists an element of V* which we

denote by Au such that
(25) (Au,v)y« y = —(Vu, Vv)12q) forallve V.

By the Sobolev imbedding theorem, for u,v € V, there exists an element of V'*

which we denote by B(u,v) such that

(26) (B(u,v),w)y~y = Z / u,axledm for all w € V.

1,j=1
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We set
Bu = B{u,u) foruelV,
and ‘
{A:A—&
D(A)=V.

We consider the abstract Navier-Stokes equations

(d/dt)u(t) = Au(t) fort € [0,00),

(NS)U{ U(O) = Uy,

in V*, where ug 1s an element of H.

3.2 Existence of a solution of (NS),

We use the following (see {10, Ch.II, §1; Ch. III, §3], [1] and [4]):

(27) (B(u,v),w)y+ v = —(B(u,w),v)ys v for u,v,w €V,

in particular,

(Bu,u)y+ v =0 forueV,

(28) | B(w,v)||ve < lullpaey - llvllze) foru,v eV,
(29) | Bu — Bollv+ < (|lullea) + vl ze@)llv — vl 2@ f(?r u,v €V,
(30) lull sy < 3728Vl g lulltq,  for all u € HE(Q),

(31) . ”u”L‘*(Q) < 2_1”u”H1(Q) for all u € H&(Q),



(32) || Au]

V* S ||u||v + ”U;”%ﬂ(g) for all u € V.
In order to show the existence of a solution of (NS),, we check that the
following conditions (a), (b) and (c) hold.
(8) (Au,uhyey = luly = lull} forall u € V3

(b) the operators A:V — V*and B:V — V* are weakly continuous, so that

A is also weakly continuous;

(©) lAullv~ < @+ ul ) ulli/* +1) forallue V.

Proof of (a). Let u € V. Then, by (25) and (27) we have
(Au,u)y» v = (Au - Bu,u)y. v

= —[IVullZ2(0) = lulll = llully. O

We write down the proof of (b) for the sake of completeness, although it is

seen essentially in [10].

Proof of (b). Let
(33) uu€V andu” —u .Weakly in V.
For any v € V we have

(34) (Au™ — Au,v)ys v = (Av,u" —u)ys vy =0 asn - co.
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Since V* is a reflexive Banach space, it follows from (34) that A : V — V* is
weakly continuous. We now prove that the operator B : V' — V* is weakly con- -
tinuous. Let f € C3%,(2) and let g be a bounded open subset of §) containing
the support of f. Then, by the same argument as in [10, Lemma 1.7, Ch. II, §1]

we have
(35) lim J[u® — 1200 = 0.

Furthermore, by the Cauchy-Schwarz inequality we get

|<B(un —u, f)’un>V*,V‘

af;

(36)
] Oz;

53 max ||un»~U”L2(Qo)““n||L2(Qo)'

1<i,5<3

L= (2)

From (35) and (36) it follows that
(37) lim (B(u" —u, f),u™)y. v = 0.
Combining (37) and (33) we get
(Bun - Bu)f)V*,V
(38) = (B(u - un} f)1un>V*,V + <B(uaf)7u - uﬂ) V=V

— 0 asn— oo.

Thus, by (29) and (31), for any v € V we have

I(Bun — Bu,v)v*,vl
< {Bu" — Bu,v ~ f)vs v|+ [(Bu™ — Bu, f)v+ v|
(39)
< (lu™lza@) + llullLs@)lle”™ = ullzs@)llv = fllv + [{(Bu™ — Bu, f)v- v|

< (l"llv + lullv)llw®™ = wlivilv = fllv + [(Bu™ = Bu, fyv= v|.
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From (38) and (39) we get
(40) Tm [(Bu" — Bu,v)ve v| < sup(([u"llv + llullv)llw" = ullv) v = fllv-

Since the sequence {u"} is bounded in V and C§%,(f2) is dense in V/, it follows

from (40) that
lim (Bu"™ — Bu,v)y+y =0. O
Proof of (c). For u € V, we have

| Au]

ve <lullv + ffull oo
’ 3/2 1/2 .
< ully + [Vl 350 lull Yot

< Ul + (14 lulY?) i
2
= (14 lulyf?) (2 + ull¥?).

This completes the proof of (¢). O

From (a), (b) and (c), applying Theorem 2 to the operator A we find that

there exists a solution of (NS),.
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