Periodic behavior of solutions to a continuous casting problem

千葉大自然科学 篠田淳一 (Junichi Shinoda)

1. Introduction

In this paper we consider a continuous casting problem

$$(P)^{\nu} \begin{cases} \partial_{t} \eta + \nu \partial_{z} \eta - \Delta \theta = 0 & \text{in } Q_{\infty} :=]0, \infty[\times \Omega, \\ \eta \in \beta(\theta) & \text{in } Q_{\infty}, \\ \frac{\partial \theta}{\partial n} + g(t, x, \theta) = 0 & \text{on } \Sigma_{\infty}^{N} :=]0, \infty[\times \Gamma_{N}, \\ \theta = M & \text{on } \Sigma_{\infty}^{0} :=]0, \infty[\times \Gamma_{0}, \\ \theta = -m & \text{on } \Sigma_{\infty}^{L} :=]0, \infty[\times \Gamma_{L}, \end{cases}$$

under periodic (in time) boundary condition

$$g(t+T, x, \theta) = g(t, x, \theta)$$
 on $\Sigma_{\infty}^{N} \times \mathbf{R}$,

for a given period T>0. Here $\Omega=]-l, l[\times]0, L[, \Gamma_N=\{l,-l\}\times]0, L[, \Gamma_0=]-l, l[\times\{0\}, \Gamma_L=]-l, l[\times\{L\}, L, l>0, x=(y,z); \nu, m \text{ and } M \text{ are given constants with } \nu\geq 0 \text{ and } m, M>0; \beta \text{ is a maximal monotone graph of the form}$

$$eta(r) = egin{cases} \lambda + \int_0^r b(au) d au & ext{if } r > 0, \ [0, \lambda] & ext{if } r = 0, \ \int_0^r b(au) d au & ext{if } r < 0, \end{cases}$$

for a given constant $\lambda > 0$ and a locally bounded measurable function b such that

(1.1)
$$b(r) \ge b_* > 0$$
 for a.e. $r \in \mathbf{R}$.

Furthermore $g = g(t, x, \theta)$ is a given function on $\mathbf{R}_+ \times \Gamma_N \times \mathbf{R}$ such that $(g1) \ g(t, x, \cdot)$ is a nondecreasing function for a.e. $(t, x) \in \mathbf{R}_+ \times \Gamma_N$;

(g2)
$$g(\cdot, \cdot, \theta) \in L^2_{loc}(\mathbf{R}_+; L^2(\Gamma_N))$$
 for all $\theta \in \mathbf{R}$;

(g3) For any K > 0 there is a constant $C_g(K) > 0$ such that

$$|g(t, x, \theta_1) - g(t, x, \theta_2)| \le C_g(K) |\theta_1 - \theta_2|$$

for all $\theta_1, \theta_2 \in [-K, K]$ and a.e. $(t, x) \in \mathbf{R}_+ \times \Gamma_N$;

(g4) There exist constants K_1 , $K_2 > 0$ such that

$$g(t, x, -K_1) \leq 0$$
, $g(t, x, K_2) \geq 0$ for a.e. $(t, x) \in \mathbf{R}_+ \times \Gamma_N$.

For details of continuous casting problems, see Rodrigues [5], Rodrigues-Yi [6], Yi [9] and the literatures in their references. We remark here that problem $(P)^0$ is a Stefan problem. For results to periodic solutions of Stefan problems we refer to Aiki *et al.* [1], Damlamian-Kenmochi [2] and Haraux-Kenmochi [3]. In the following chapters, we shall discuss problem $(P)^{\nu}$ due to Shinoda [7,8].

2. Main results

Throughout this paper we denote $Q_S =]0, S[\times \Omega, \Sigma_S^N =]0, S[\times \Gamma_N, \text{etc. for } S \in]0, +\infty].$ Now let us give a notion of a weak solution on an interval of the form [0, S] or $[0, +\infty[$.

Definition 2.1. Let S be a positive number. Then a couple $(\theta, \eta) \in L^2(0, S; H^1(\Omega)) \times L^{\infty}(Q_S)$ is called a weak solution of $(P)^{\nu}$ on [0, S] when the following four conditions are satisfied:

(w1) $\eta \in C_w([0, S]; L^2(\Omega))$, that is, η is a weakly continuous function from [0, S] to $L^2(\Omega)$;

$$\text{(w2) }\theta=M \text{ a.e. on } \Sigma^0_S \quad \text{ and } \quad \theta=-m \text{ a.e. on } \Sigma^L_S;$$

(w3)
$$\eta \in \beta(\theta)$$
 a.e. in Q_S ;

 $(\text{w4}) \text{ for any } \varphi \in W_S := \big\{ \varphi \in H^1(Q_S); \varphi(S,\cdot) = 0 \text{ a.e. in } \Omega, \ \varphi = 0 \text{ a.e. on } \Sigma^D_S \big\},$

$$-\int_{Q_S} \!\! \eta(\partial_t \varphi + \nu \partial_z \varphi) dx dt + \int_{Q_S} \!\! \nabla \theta \nabla \varphi dx dt + \int_{\Sigma_S^N} \!\! g(\cdot, \cdot, \theta) \varphi d\Gamma dt = \int_{\Omega} \eta(0, \cdot) \varphi(0, \cdot) dx,$$

where $\Sigma_S^D =]0, S[\times \Gamma_D, \Gamma_D = \Gamma_0 \cup \Gamma_L]$. In the case when $S = +\infty$, (θ, η) is called a weak solution of $(P)^{\nu}$ on \mathbb{R}_+ , if (θ, η) is a weak solution of $(P)^{\nu}$ on [0, S] for any finite S > 0.

Definition 2.2. Let $0 < S \le +\infty$ and let (θ_0, η_0) be a pair of functions in $L^{\infty}(\Omega)$ satisfying $\eta_0 \in \beta(\theta_0)$ a.e. in Ω . Then we call a pair (θ, η) a weak solution for $CP(\theta_0, \eta_0)^{\nu}$ on [0, S] (\mathbf{R}_+ if $S = +\infty$) if (θ, η) is a weak solution of $(P)^{\nu}$ on [0, S] and the initial conditions $\theta(0, \cdot) = \theta_0$ and $\eta(0, \cdot) = \eta_0$ are satisfied, respectively.

Concerning the existence and the uniqueness results for $CP(\theta_0, \eta_0)^{\nu}$, we quote them from Rodrigues-Yi [6]. The first proposition assures the existence of a weak solution for $CP(\theta_0, \eta_0)^{\nu}$.

Proposition 2.1. (cf. [6;theorem 1]) Let $(\theta_0, \eta_0) \in (L^{\infty}(\Omega))^2$ be any pair of functions such that $\eta_0 \in \beta(\theta_0)$ a.e. in Ω . Choose two positive constants \widetilde{K}_1 and \widetilde{K}_2 so that $\widetilde{K}_i \geq \max\{m, M, K_i\}, i = 1, 2, \text{ and that}$

$$\beta(-\widetilde{K}_1) \le \eta_0(x) \le \beta(\widetilde{K}_2)$$
 for a.e. $x \in \Omega$.

Then, there exists at least one weak solution (θ, η) for $CP(\theta_0, \eta_0)^{\nu}$ on \mathbf{R}_+ such that

$$\beta(-\widetilde{K}_1) \le \eta(t,x) \le \beta(\widetilde{K}_2)$$
 for a.e. $(t,x) \in Q_{\infty}$,

hence

$$-\widetilde{K}_1 \leq \theta(t,x) \leq \widetilde{K}_2$$
 for a.e. $(t,x) \in Q_{\infty}$.

Remark 2.1. In view of the proof of [6;theorem 1] we may assume that the solution (θ, η) obtained in proposition 2.1 is constructed as a limit of an approximate solution

$$\begin{cases} \partial_t \beta_{\varepsilon}(\theta_{\varepsilon}) + \nu \partial_z \beta_{\varepsilon}(\theta_{\varepsilon}) - \Delta \theta_{\varepsilon} = 0 & \text{in } Q_{\infty}, \\ \frac{\partial \theta_{\varepsilon}}{\partial n} + g_{\varepsilon}(t, x, \theta_{\varepsilon}) = 0 & \text{on } \Sigma_{\infty}^N, \\ \theta_{\varepsilon} = M & \text{on } \Sigma_{\infty}^0, \\ \theta_{\varepsilon} = -m & \text{on } \Sigma_{\infty}^L, \\ \theta_{\varepsilon}(0, \cdot) = \theta_{0\varepsilon} & \text{in } \Omega, \end{cases}$$

in the sense that for some subsequence $\{\varepsilon_n\}$ of $\{\varepsilon\}$

(2.1)
$$\beta_{\varepsilon_n}(\theta_{\varepsilon_n}) \to \eta \quad \text{weakly* in } L^{\infty}_{loc}(\mathbf{R}_+; L^{\infty}(\Omega));$$

(2.2)
$$\theta_{\varepsilon_n} \to \theta$$
 weakly in $L^2_{loc}(\mathbf{R}_+; H^1(\Omega)) \cap H^1_{loc}(Q_\infty);$

(2.3)
$$g_{\varepsilon_n}(\cdot,\cdot,\theta_{\varepsilon_n}) \to g(\cdot,\cdot,\theta) \text{ in } L^2_{loc}(\mathbf{R}_+;L^2(\Gamma_N)).$$

Here $\{\beta_{\varepsilon}\}$, $\{g_{\varepsilon}\}$ and $\{\theta_{0\varepsilon}\}$ are smooth approximations to β , g and θ_{0} , respectively. Furthermore, $\{\beta_{\varepsilon}\}$ satisfies (1.1) with $b_{\varepsilon} = \beta'_{\varepsilon}$, $\beta_{\varepsilon}(0) = 0$, $\beta'_{\varepsilon} \leq 1/\varepsilon$ and

$$\beta_{\varepsilon}(r) \to \beta(r)$$
 for any compact interval in $\mathbb{R} \setminus \{0\}$ as $\varepsilon \to 0$;

 $\{g_{\varepsilon}\}$ satisfies (g1) \sim (g4) and

$$g_{\varepsilon}(\cdot,\cdot,\theta) \to g(\cdot,\cdot,\theta)$$
 in $L^2_{loc}(\mathbf{R}_+;L^2(\Gamma_N))$

uniformly with respect to θ on any compact set in **R** as $\varepsilon \to 0$;

 $\{\theta_{0\varepsilon}\}$ satisfies the compatibility conditions

(2.4)
$$heta_{0\varepsilon} = M \quad \text{on } \Gamma_0 \quad \text{and} \quad heta_{0\varepsilon} = -m \quad \text{on } \Gamma_L$$

and

$$\beta_{\varepsilon}(\theta_{0\varepsilon}) \to \eta_0$$
 in $L^2(\Omega)$ as $\varepsilon \to 0$.

The second proposition is the continuous dependence of the weak solutions. This requires the following condition to a weak solution (θ, η) of $(P)^{\nu}$:

For some positive constants δ , $\rho > 0$,

(2.5)
$$\theta(t, y, z) \ge \rho > 0$$
 a.e. in $Q_{\infty}^{\delta} := \{(t, y, z) \in Q_{\infty}; 0 < z < \delta\}.$

Proposition 2.2. (cf. [6;theorem 2]) Fix $\nu > 0$. Let (θ_1, η_1) and (θ_2, η_2) be two weak solutions for $CP(\theta_{10}, \eta_{10})^{\nu}$ and $CP(\theta_{20}, \eta_{20})^{\nu}$, respectively. If at least one of (θ_i, η_i) satisfies (2.5), then the following is valid:

(2.6)
$$\int_{Q_{\infty}} |\eta_1 - \eta_2| \, dx dt \leq \frac{L}{\nu} \int_{\Omega} |\eta_{10} - \eta_{20}| \, dx.$$

As a direct corollary we have:

Corollary 2.1. If at least one of the weak solution (θ, η) for $CP(\theta_0, \eta_0)^{\nu}$ on \mathbf{R}_+ satisfies (2.5), then (θ, η) is the only weak solution for $CP(\theta_0, \eta_0)^{\nu}$ on \mathbf{R}_+ .

Using well-known L^1 -space technique, we have in the manner similar to that of [1]:

Proposition 2.3. Let $\nu > 0$, and let (θ_1, η_1) , (θ_2, η_2) be two weak solutions for $CP(\theta_{10}, \eta_{10})^{\nu}$ and $CP(\theta_{20}, \eta_{20})^{\nu}$ on \mathbf{R}_+ satisfying (2.5), respectively. Then we have

$$\left|\left[\eta_1(t,\cdot)-\eta_2(t,\cdot)\right]^+\right|_{L^1(\Omega)}\leq \left|\left[\eta_1(s,\cdot)-\eta_2(s,\cdot)\right]^+\right|_{L^1(\Omega)} \quad \text{for any } s,\ t\in\mathbf{R}_+ \text{ with } s\leq t,$$

and

$$|\eta_1(t,\cdot)-\eta_2(t,\cdot)|_{L^1(\Omega)}\leq |\eta_1(s,\cdot)-\eta_2(s,\cdot)|_{L^1(\Omega)}\quad \text{ for any } s,\ t\in\mathbf{R}_+ \text{ with } s\leq t.$$

In particular, if $\eta_{10} \leq \eta_{20}$ a.e. in Ω then

$$\eta_1 \leq \eta_2$$
 hence $\theta_1 \leq \theta_2$ a.e. in Q_{∞} .

Remark 2.2. Propositions 2.1, 2.3 and corollary 2.1 are also valid for $\nu = 0$. We can prove them by using similar techniques to those in the proofs of [6;theorem 1,4;theorem 4.2,1;lemma 2.1], respectively.

Next we state a definition of a T-periodic weak solution of $(P)^{\nu}$ on \mathbf{R}_{+} .

Definition 2.3. Let T be a given positive number (period). Then (θ, η) is called a T-periodic weak solution of $(P)^{\nu}$ on \mathbf{R}_{+} provided that (θ, η) is a weak solution of $(P)^{\nu}$ on \mathbf{R}_{+} and satisfies the periodic conditions $\theta(t + T, \cdot) = \theta(t, \cdot)$ and $\eta(t + T, \cdot) = \eta(t, \cdot)$ for all $t \in \mathbf{R}_{+}$.

Finally we mention the main results for the T-periodic weak solution of $(P)^{\nu}$ on \mathbf{R}_{+} .

Theorem 2.1. Let $\nu > 0$. Assume that the periodicity condition

(2.7)
$$g(t+T,x,\theta) = g(t,x,\theta)$$
 for all $\theta \in \mathbb{R}_+$ and a.e. $(t,x) \in \mathbb{R}_+ \times \Gamma_N$

holds. Then there exists one and only one T-periodic weak solution $(\theta_p^{\nu}, \eta_p^{\nu})$ of $(P)^{\nu}$ on \mathbf{R}_+ .

Theorem 2.2. Assume that the same conditions as in theorem 2.1 hold. Then for any weak solution (θ, η) satisfying (2.5) for some positive constants δ , $\rho > 0$, we have

$$\eta_p^\nu(t,\cdot)-\eta(t,\cdot)\to 0\quad\text{and}\quad \theta_p^\nu(t,\cdot)-\theta(t,\cdot)\to 0\quad\text{in }L^q(\Omega)\text{ for all }q\ge 1\text{ as }t\to +\infty.$$

Remark 2.3. Yi [9] treated the periodic solutions under the Dirichlet boundary condition. He proved there the existence of periodic solutions using Schauder fixed point theorem.

Remark 2.4. There exists a T-periodic weak solution (θ_p^0, η_p^0) of $(P)^0$ on \mathbb{R}_+ under the periodicity condition (2.7). But for the uniqueness of T-periodic weak solutions of $(P)^0$ on \mathbb{R}_+ , we can only prove that of $g(\cdot, \cdot, \theta_p^0)$ on Σ_{∞}^N and moreover that of θ_p^0 in Q_{∞} (see [7,8] and also [2]).

3. Lemmas

In this chapter we prepare some lemmas to prove theorems 2.1 and 2.2.

Firstly we define a function $g_* = g_*(\theta)$ by $g_*(\theta) = C_g(K_3)[\theta + K_3]^+$ for $\theta \in \mathbf{R}$, where $K_3 = \max\{M, m, K_1, K_2\}$. Then the following is valid.

Lemma 3.1. g_* defined as above is nondecreasing and satisfies

$$g(t, x, \theta) \leq g_*(\theta)$$
 for all $\theta \leq K_3$ and a.e. $(t, x) \in \mathbf{R}_+ \times \Gamma_N$,

Next we construct a smooth function $\theta_* = \theta_*(x)$ satisfying for any $\varepsilon > 0$ the following system

(3.1)
$$\begin{cases} \nu \partial_z \beta_{\varepsilon}(\theta_*) - \Delta \theta_* \leq 0 & \text{in } \Omega, \\ \frac{\partial \theta_*}{\partial n} + g_*(\theta_*) \leq 0 & \text{on } \Gamma_N, \\ \theta_* \leq M & \text{in } \overline{\Omega}, \\ \theta_* < -K_3 & \text{on } \Gamma_L. \end{cases}$$

Choose a function $\chi = \chi(y) \in C^{\infty}([-l, l])$ such that

$$0 \le \chi \le \frac{M}{2} \quad \text{in }] - l, l[,$$

and

$$\pm \frac{\partial \chi}{\partial y}(\pm l) + g_*(M) \le 0.$$

For a positive parameter μ , let us define θ_* by

$$\theta_*(y,z) = -\mu z + \chi(y) + \frac{M}{2}.$$

Then we see that θ_* satisfies for some constants δ , $\rho > 0$

(3.2)
$$\theta_*(y,z) \ge \rho \quad \text{in } \Omega_\delta := \{(y,z) \in \Omega; 0 < z < \delta\}.$$

Moreover it is readily seen that (3.1) is fulfilled for sufficiently large μ dependent upon ν . Thus we have the following lemma.

Lemma 3.2. There is a smooth function $\theta_* = \theta_*(x)$ on Ω which is independent of ε and satisfies (3.1) and (3.2) for some positive constants δ , ρ .

Put $\eta_* = \beta(\theta_*)$. We remark that η_* is a.e. defined since the Lebesgue measure of the set $\{x \in \Omega; \theta_*(x) = 0\}$ is zero. Then we have:

Lemma 3.3. The unique weak solution (θ, η) for $CP(\theta_*, \eta_*)^{\nu}$ on \mathbf{R}_+ satisfies (2.5) for some δ , $\rho > 0$.

Proof. Let $\{\theta_{0\varepsilon}\}\subset C^{\infty}(\overline{\Omega})$ such that $\theta_{*}\leq\theta_{0\varepsilon}$ in Ω , $\beta_{\varepsilon}(\theta_{0\varepsilon})\to\eta_{*}$ in $L^{2}(\Omega)$ as $\varepsilon\to0$, and that (2.4) holds. Recalling proposition 2.1 and remark 2.1, we get a weak solution (θ,η) for $CP(\theta_{*},\eta_{*})^{\nu}$ on \mathbf{R}_{+} as a limit of an approximate solution $\theta_{\varepsilon_{n}}$ corresponding to initial value $\theta_{0\varepsilon_{n}}$ in the sense of (2.1)~(2.3) for some subsequence $\{\varepsilon_{n}\}$ of $\{\varepsilon\}$. We note that for any $\varepsilon\in]0,1]$

$$(3.3) \partial_t(\beta_{\varepsilon}(\theta_*) - \beta_{\varepsilon}(\theta_{\varepsilon})) + \nu \partial_z(\beta_{\varepsilon}(\theta_*) - \beta_{\varepsilon}(\theta_{\varepsilon})) - \Delta(\theta_* - \theta_{\varepsilon}) \leq 0 \text{in } Q_{\infty}.$$

Now let us denote by $\{\sigma_m\}$ a sequence of smooth functions on \mathbf{R} such that $\sigma_m(0) = 0$, and for any $r \in \mathbf{R}$, $\sigma'_m(r) \geq 0$, $-1 \leq \sigma_m(r) \leq 1$ and

$$\sigma_m(r) o \sigma_0(r) := \left\{ egin{array}{ll} 1 & ext{for } r>0, \ 0 & ext{for } r=0, \ -1 & ext{for } r<0, \end{array}
ight. ext{as } m o +\infty.$$

Multiply (3.3) by $\sigma_m([\theta_* - \theta_{\varepsilon}]^+)$ and integrate it over Q_t . By lemma 3.1 and 3.2,

$$\begin{split} &-\int_{Q_{t}} \Delta(\theta_{*}-\theta_{\varepsilon})\sigma_{m}([\theta_{*}-\theta_{\varepsilon}]^{+})dxd\tau \\ &\geq \int_{\Sigma_{t}^{N}} (g_{*}(\theta_{*})-g_{\varepsilon}(\cdot,\cdot,\theta_{\varepsilon}))\sigma_{m}([\theta_{*}-\theta_{\varepsilon}]^{+})d\Gamma d\tau \\ &\geq \int_{\Sigma_{t}^{N}} (g_{*}(\cdot,\cdot,\theta_{\varepsilon})-g_{\varepsilon}(\cdot,\cdot,\theta_{\varepsilon}))\sigma_{m}([\theta_{*}-\theta_{\varepsilon}]^{+})d\Gamma d\tau \\ &\rightarrow \int_{\Sigma_{t}^{N}} (g_{*}(\cdot,\cdot,\theta_{\varepsilon})-g_{\varepsilon}(\cdot,\cdot,\theta_{\varepsilon}))\sigma_{0}([\theta_{*}-\theta_{\varepsilon}]^{+})d\Gamma d\tau \quad \text{as } m \rightarrow +\infty. \end{split}$$

By the strict monotonicity of β_{ε} ,

$$\int_{Q_{t}} \partial_{z} (\beta_{\varepsilon}(\theta_{*}) - \beta_{\varepsilon}(\theta_{\varepsilon})) \sigma_{m}([\theta_{*} - \theta_{\varepsilon}]^{+}) dx d\tau$$

$$\rightarrow \int_{Q_{t}} \partial_{z} (\beta_{\varepsilon}(\theta_{*}) - \beta_{\varepsilon}(\theta_{\varepsilon})) \sigma_{0}([\theta_{*} - \theta_{\varepsilon}]^{+}) dx d\tau \quad \text{as } m \to +\infty$$

$$= \int_{Q_{t}} \partial_{z} (\beta_{\varepsilon}(\theta_{*}) - \beta_{\varepsilon}(\theta_{\varepsilon})) \sigma_{0}([\beta_{\varepsilon}(\theta_{*}) - \beta_{\varepsilon}(\theta_{\varepsilon})]^{+}) dx d\tau$$

$$= \int_{0}^{t} \int_{-l}^{l} [\beta_{\varepsilon}(\theta_{*}) - \beta_{\varepsilon}(\theta_{\varepsilon})]^{+} dx' d\tau \Big|_{z=0}^{L} = 0,$$

and

$$\int_{Q_{t}} \partial_{t} (\beta_{\varepsilon}(\theta_{*}) - \beta_{\varepsilon}(\theta_{\varepsilon})) \sigma_{m}([\theta_{*} - \theta_{\varepsilon}]^{+}) dx d\tau
\rightarrow \int_{Q_{t}} \partial_{t} (\beta_{\varepsilon}(\theta_{*}) - \beta_{\varepsilon}(\theta_{\varepsilon})) \sigma_{0}([\theta_{*} - \theta_{\varepsilon}]^{+}) dx d\tau \quad \text{as } m \to +\infty
= \int_{Q_{t}} \partial_{t} (\beta_{\varepsilon}(\theta_{*}) - \beta_{\varepsilon}(\theta_{\varepsilon})) \sigma_{0}([\beta_{\varepsilon}(\theta_{*}) - \beta_{\varepsilon}(\theta_{\varepsilon})]^{+}) dx d\tau
= \int_{\Omega} [\beta_{\varepsilon}(\theta_{*}) - \beta_{\varepsilon}(\theta_{\varepsilon}(t, \cdot))]^{+} dx$$

Therefore we have for all $t \in \mathbf{R}_+$

$$\int_{\Omega} [\beta_{\varepsilon}(\theta_{*}) - \beta_{\varepsilon}(\theta_{\varepsilon}(t,\cdot))]^{+} dx + \int_{\Sigma_{t}^{N}} (g_{*}(\cdot,\cdot,\theta_{\varepsilon}) - g_{\varepsilon}(\cdot,\cdot,\theta_{\varepsilon})) \sigma_{0}([\theta_{*} - \theta_{\varepsilon}]^{+}) d\Gamma d\tau \leq 0.$$

Taking $\varepsilon = \varepsilon_n$ and letting $n \to +\infty$ we have by lemma 3.1

$$\int_{\Omega} [\eta_* - \eta(t, \cdot)]^+ dx \le 0 \quad \text{for all } t \in \mathbf{R}_+,$$

which implies that

(3.4)
$$\eta_* \leq \eta$$
 hence $\theta_* \leq \theta$ a.e. in Q_{∞} .

Because of lemma 3.2, we thus have

$$\theta(t,y,z) \geq \rho$$
 a.e. in Q_{∞}^{δ}

for the same constants δ and ρ as in (3.2). By corollary 2.1 we see that (θ, η) is the unique weak solution for $CP(\theta_*, \eta_*)$ on \mathbf{R}_+ .

4. Proof of main theorems

Let us prove theorems 2.1 and 2.2.

Proof of theorem 1.1. Firstly we construct a T-periodic weak solution of $(P)^{\nu}$ on \mathbf{R}_{+} . Let (θ, η) be as in lemma 3.3, that is, the unique weak solution for $CP(\theta_{*}, \eta_{*})^{\nu}$ on \mathbf{R}_{+} . For each $m \in \mathbf{N}$ we denote by (θ_{m}, η_{m}) the weak solution for $CP(\theta(mT, \cdot), \eta(mT, \cdot))^{\nu}$ on [0, T]. By proposition 2.1 and (3.4), we have

$$\eta_* \leq \eta \leq \beta(K_3)$$
 a.e. in Q_{∞} .

In particular

$$\eta_* \leq \eta(T, \cdot) \leq \beta(K_3)$$
 a.e. in Ω .

Applying proposition 2.3 to η and η_1 ,

$$\eta_* \leq \eta \leq \eta_1 \leq \beta(K_3)$$
 a.e. in Q_T .

Recursive use of this procedure derives that

$$\eta_* \le \eta \le \eta_1 \le \eta_2 \le \dots \le \eta_m \le \dots \le \beta(K_3)$$
 a.e. in Q_T ,

hence

$$\theta_* \leq \theta \leq \theta_1 \leq \theta_2 \leq \cdots \leq \theta_m \leq \cdots \leq K_3$$
 a.e. in Q_T .

Then we can define $\eta_{\infty}(t,x) = \lim_{m \to +\infty} \eta_m(t,x)$ and $\theta_{\infty}(t,x) = \lim_{m \to +\infty} \theta_m(t,x)$ for a.e. $(t,x) \in Q_T$. It is easily verified that $\eta_{\infty} \in \beta(\theta_{\infty})$ a.e. in Q_T , $\eta_{\infty}(0,\cdot) = \eta_{\infty}(T,\cdot)$ and $\theta_{\infty}(0,\cdot) = \theta_{\infty}(T,\cdot)$ a.e. in Ω . Further we have estimates

$$\eta_* \leq \eta_m \leq \beta(K_3)$$
 hence $\theta_* \leq \theta_m \leq K_3$ a.e. in Q_T ,

$$|\theta_m|_{L^2(0,T;H^1(\Omega))} \le C_1,$$

and for any bounded subdomain A with $\overline{A} \subset Q_T$,

$$|\theta_m|_{H^1(A)} \le C_2 := C_2(A),$$

where C_i , i=1,2 are positive constants independent of m. Then we easily see that $(\theta_{\infty}, \eta_{\infty})$ is a weak solution of $(P)^{\nu}$ on [0,T]. Consequently, T-periodic extension $(\theta_p^{\nu}, \eta_p^{\nu})$ of $(\theta_{\infty}, \eta_{\infty})$ onto \mathbf{R}_+ is a T-periodic weak solution of $(P)^{\nu}$ on \mathbf{R}_+ .

Next we prove the uniqueness of T-periodic weak solutions. To do this, we shall show that any T-periodic weak solution (θ, η) is equal to $(\theta_p^{\nu}, \eta_p^{\nu})$ constructed as above. Since θ_p^{ν} satisfies (2.5), (2.6) holds for $\theta_1 = \theta_p^{\nu}$ and $\theta_2 = \theta$, from which it follows that

(4.1)
$$\int_{mT}^{(m+1)T} \int_{\Omega} \left| \eta_p^{\nu} - \eta \right| dx dt \to 0 \quad \text{as } m \to +\infty.$$

On the other hand, by T-periodicity of η_p^{ν} and η_p

$$\int_0^T\!\!\int_\Omega \left|\eta_p^
u-\eta
ight| dxdt = \int_{mT}^{(m+1)T}\!\!\int_\Omega \left|\eta_p^
u-\eta
ight| dxdt.$$

So we must have $\int_0^T \! \int_\Omega \left| \eta_p^{\nu} - \eta \right| dx dt = 0$. Therefore $\eta_p^{\nu} = \eta$ a.e. in Q_T . Again, by T-periodicity of η_p^{ν} and η , $\eta_p^{\nu} = \eta$ a.e. in Q_{∞} . Hence $\theta_p^{\nu} = \theta$ a.e. in Q_{∞} . Thus the proof has been completed.

Proof of theorem 2. Let (θ, η) be an arbitrary weak solution of $(P)^{\nu}$ on \mathbf{R}_{+} satisfying (2.5). From proposition 2.3 we find that

$$d:=\lim_{t\to+\infty}\left|\eta_p^\nu(t,\cdot)-\eta(t,\cdot)\right|_{L^1(\Omega)}$$

exists. Further as $m \to +\infty$ we have

$$\int_{mT}^{(m+1)T} \int_{\Omega} \left| \eta_p^{\nu} - \eta \right| dx dt \ge T \left| \eta_p^{\nu} ((m+1)T, \cdot) - \eta ((m+1)T, \cdot) \right|_{L^1(\Omega)} \to dT.$$

Note that (4.1) also holds for η_p^{ν} and η , hence we deduce d=0. That is $\eta_p^{\nu}(t,\cdot)-\eta(t,\cdot)\to 0$ in $L^1(\Omega)$. On account of the boundedness of η_p^{ν} and η in Q_{∞} , we obtain

$$\eta_p^{\nu}(t,\cdot) - \eta(t,\cdot) \to 0$$
 in $L^q(\Omega)$ for all $q \ge 1$ as $t \to +\infty$.

From (1.1), it results that

$$b_* \left| \theta_p^\nu(t,x) - \theta(t,x) \right| \leq \left| \eta_p^\nu(t,x) - \eta(t,x) \right| \quad \text{for a.e. } (t,x) \in Q_\infty,$$

consequently

$$\theta_p^{\nu}(t,\cdot) - \theta(t,\cdot) \to 0$$
 in $L^q(\Omega)$ for all $q \ge 1$ as $t \to +\infty$.

q.e.d.

In the rest of this chapter we study the convergence of the T-periodic weak solution of $(P)^{\nu}$ on \mathbb{R}_{+} to that of the Stefan problem when $\nu \to 0$. The result is as follows.

Theorem 4.3. Assume that (2.7) holds. When $\nu \to 0$, $(\theta_p^{\nu}, \eta_p^{\nu})$ converges to some periodic solution (θ_p^0, η_p^0) of the Stefan problem $(P)^0$ in the following sense:

$$\theta_p^{\nu} \to \theta_p^0$$
 weakly in $L^2(0,T;H^1(\Omega))$ and strongly in $L^q(Q_T)$ for all $q \geq 1$,

$$g(\cdot, \cdot, \theta_p^{\nu}) \to g(\cdot, \cdot, \theta_p^0)$$
 in $L^2(\Sigma_T^N)$,

and there exists a subsequence $\{\nu_k\}$ of $\{\nu\}$ such that

$$\eta_p^{\nu_k} \to \eta_p^0 \quad \text{weakly in } L^{\infty}(Q_T).$$

We claim that the following estimates hold for $\{(\theta_p^{\nu}, \eta_p^{\nu})\}$:

$$\beta(-K_3) \leq \eta_p^{\nu}(t,x) \leq \beta(K_3)$$
 hence $-K_3 \leq \theta_p^{\nu}(t,x) \leq K_3$ a.e. in Q_T ,

$$\left|\theta_p^{\nu}\right|_{L^2(0,T;H^1(\Omega))} \le C_3,$$

and for any bounded subdomain A with $\overline{A} \subset Q_T$,

$$\left|\theta_p^{\nu}\right|_{H^1(A)} \le C_4,$$

where $C_i > 0$, i = 3, 4, are constants independent of $\nu \in]0,1]$. Hence there exist a subsequence $\{\nu_k\}$ of $\{\nu\}$ and $(\theta, \eta) \in L^2(0, T; H^1(\Omega)) \times L^\infty(Q_T)$ such that

$$\eta_p^{\nu_k} \to \eta \quad \text{weakly* in } L^{\infty}(Q_T),$$

 $(4.2) \qquad \theta_p^{\nu_k} \to \theta \quad \text{weakly in } L^2(0,T;H^1(\Omega)) \text{ and strongly in } L^q(Q_T) \text{ for all } q \geq 1,$

(4.3)
$$g(\cdot, \cdot, \theta_p^{\nu_k}) \to g(\cdot, \cdot, \theta) \text{ in } L^2(\Sigma_T^N).$$

We easily see that (θ, η) is a weak solution of $(P)^0$ on [0, T]. Moreover, since $(\theta_p^{\nu}, \eta_p^{\nu})$ is T-periodic, (θ, η) is also T-periodic. On account of remark 2.4 we can replace $\{\nu_k\}$ with $\{\nu\}$ in (4.2) and (4.3). Therefore T-periodic extension of (θ, η) onto \mathbf{R}_+ is a desired one.

References

- [1] T. Aiki, J. Shinoda and N. Kenmochi, Periodic stability for a class of degenerate parabolic equations with nonlinear flux, Nonlinear Anal. T.M.A. 17 (1991), 885-902.
- [2] A. Damlamian and N. Kenmochi, Periodicity and almost periodicity of solutions to a multi-phase Stefan problem in several space variables, Nonlinear Anal. T.M.A. 12 (1988), 921-943.
- [3] A. Haraux and N. Kenmochi, Asymptotic behaviour of solutions to some degenerate parabolic equations, Funk. Ekvac. 34 (1991), 19-38.
- [4] M. Niezgodka and I. Pawlow, A generalized Stefan problem in several space variables, Applied Math. Optim., 9 (1983), 193-224.
- [5] J. F. Rodrigues, An evolutionary continuous casting problem of Stefan type, Quart.Appl. Math. 44 (1986), 109-131.
- [6] J. F. Rodrigues and F. Yi, On a two-phase continuous casting Stefan problem with nonlinear flux, Euro. J. Appl. Math. 1 (1990), 259-278.
- [7] J. Shinoda, Periodic solution to a two-phase continuous casting Stefan problem, preprint.
- [8] J. Shinoda, On a continuous casting problem with periodicity in time, to appear in Proceedings of International Conference on "Nonlinear Mathematical Problems in Industry" Iwaki Japan.
- [9] F. Yi, An evolutionary continuous casting problem of two phases and its periodic behaviour, J. Part. Diff. Eq. 2 (1989), 7-22.