goooboooogn
0 8980 19950 13-26 13

Periodic behavior of solutions to a continuous casting problem

FEXREAMYE #HHEHE—  (Junichi Shinoda)

1. Introduction

In this paper we consider a continuous casting problem

(Oin+v0,n— A0 =0 in Qu :=]0,co[x1,
n € B(6) in Qoo
(P)” < -g—f; +g(t,z,60)=0 on XN :=]0, co[xI'y,
=M on XY :=]0, co[x Ty,
(0 =—-m on XL :=]0,00[x Ty,

under periodic (in time) boundary condition
g(t+T,z,0) =g(t,z,6) on XY xR,

for a given period T > 0. Here =] —1,{[x]0, L[, Ty = {l, =1} x]0, L], Tp =] —,{[x {0},
Iy =]—-LI[x{L}, L,1 >0, 2 =(y,2); v, m and M are given constants with » > 0 and
m, M > 0; # is a maximal monotone graph of the form
/\+/T b(r)dr if r >0,
B(r) =< [0,A] i if r =0,
/T b(r)dr if r <0,
0

for a given constant A > 0 and a locally bounded measurable function b such that
(1.1) b(r) > b, >0 forae r€R.

Furthermore g = g(¢, z,6) is a given function on R4 x 'y x R such that

(gl) g(t, z,-) is a nondecreasing function for a.e. (f,z) € Ry x I'y;
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(82) g(-,-,08) € L}, .(Ry; L*(Tw)) for all € R;

loc

(g3) For any K > 0 there is a constant C;(K) > 0 such that
|g(t) 27,91) - g(ta €T, 92)| S Cg(K’) lgl - ‘92|

for all 64, 0, € [-K, K] and a.e. ({,z) € Ry x I'y;

(g4) There exist constants K1, Ky > 0 such that
g(t,z,— K1) <0, g(t,z,Ky)>0 forae ({,z) Ry xTy.

For details of continuous casting problems, see Rodrigues [5], Rodrigues-Yi [6], Yi [9]
and the literatures in their references. We remark here that problem (P)° is a Stefan
problem. For results to periodic solutions of Stefan problerﬁs we refer to Aiki et al. 1],
Damlamian-Kenmochi [2] and Haraux-Kenmochi [3]. In the following chapters, we shall

discuss problem (P)” due to Shinoda [T7,8].

2. Main results
Throughout this paper we denote Qs =)0, S[xQ, =¥ =]0, S[x 'y, etc. for S €]0, +ox).

Now let us give a notion of a weak solution on an interval of the form [0, S] or [0, +o0[.

Definition 2.1. Let S be a positive number. Then a couplé (8,n) € L¥0,S; H'(2)) x
L>(Qgs) is called a weak solution of (P)” on [0,S] when the following four conditions
are satisfied:

(wl) n € Cyu([0,S]; L2(Q)), that is, 5 is a weakly continuous function from [0, 5] to
L*(Q); |

(w2) § =M ae.on X% and 6= -m ae. onX%;

(w3) n € B(8) a.e. in Qs;
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(w4) for any p € Ws := {¢ € H}(Qs);¢(S,") =0 a.e. in Q, ¢ =0 a.e. on X2},

—/n(8t90+1/(9z80)dwdt+/V9V<pda:dt+/
Qs

Qs =y

9, B)pdTdt = /ﬂ 7(0, )00, -)dz,

where ¥ =0, S[xT'p, I'p = ToUT;. In the case when S = +o0, (8, 7) is called a weak

solution of (P)” on Ry, if (8,7) is a weak solution of (P)” on [0, S] for any finite S > 0.

Definition 2.2. Let 0 < S < +00 and let (6g,7m0) be a pair of functions in L (2)
satisfying no € f(6o) a.e. in Q. Then we call a pair (8, n) a weak solution for C'P(fq, 10)"
on [0,S5] (R4 if S = +400) if (6,7) is a weak solution of (P)” on [0,S] and the initial
conditions 6(0,-) = 6y and 7(0,-) = 9o are satisfied, respectively.

Concerning the existence and the uniqueness results for C'P (8, 10)", we quote them

from Rodrigues-Yi [6]. The first proposition assures the existence of a weak solution for

CP(HO’%)".

Proposition 2.1. (cf. [6;theorem 1]) Let (6o, 70) € (L>°(€2))? be any pair of functions
such that no € B(0o) a.e. in 2. Choose two positive constants I~{1 and I?z so that

K; > max{m, M, K;}, 1 = 1,2, and that
B(—K1) < no(z) < ,B(Rz) for a.e. ¢ € Q).
Then, there exists at least one weak solution (8,n) for CP(8p,m0)” on R4 such that »
B(=K1) <t ) < B(Ky)  for ae. (1,2) € Qu,

hence

—K; <0(t,2) <K, forae (t,2) € Qeo.
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Remark 2.1. In view of the proof of [6;theorem 1] we may assume that the solution

(6,m) obtained in proposition 2.1 is constructed as a limit of an approximate solution

(0., B:(8:)) of

(01B:(0:) +v0,B:(0:) —Ab. =0 in Qn,
6;5 +g.(t,x,6.) =0 on X
n .
4 b. =M on X9 |
f. =—m on L
\96(0;') 2906 n Q,

in the sense that for some subsequence {¢,} of {e}

(2.1) Be.(8:,.) — n weakly® in L5 (Ry; L*());

(2.2) 0, — 0 weakly in Li,.(R; H'(2)) N Hp,o(Qo);

n

(23) | gEn('J " gen) - g('a ) 0) in leoc(R+; LZ(I‘N))

Here {8.}, {9:} and {fp.} are smooth approximations to 3, g and 6, respectively.

Furthermore, {8.} satisfies (1.1) with b, = ., 8:(0) =0, 8. < 1/¢ and
Be(r) — B(r) for any compact interval in R\{0} as ¢ — 0;
{g.} satisfies (gl)~(g4) and

ge(') 79) - g(y?g) in L?oc(R+;L2(I‘N))

uniformly with respect to # on any compact set in R as ¢ — 0;
{60} satisfies the compatibility conditions

(2.4) oo =M onTy and 6y =—m onTy
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and

Be(foe) — mo  in L2(Q) as € — 0.

The second proposition is the continuous dependence of the weak solutions. This re-
quires the following condition to a weak solution (8, n) of (P)”:

For some positive constants 8, p > 0,

(2.5) B(t,y,2) > p>0 ae in Q) :={(t,y,2) € Qu;0 < z < 6}.

Proposition 2.2. (cf. [6;theorem 2]) Fix v > 0. Let (61, 71) and (83, 72) be two weak
solutions for C P(619,110)" and CP(020,n20)", respectively. If at least one of (6;,1;)

satisfies (2.5), then the following is valid:

L
(2.6) / lm — n2| dadt < —/ [mo — n20| dz.
Qoo ‘ vi/a

As a direct corollary we have:

Corollary 2.1. If at least one of the weak solution (6,n) for CP(8y,m0)” on R,

satisfies (2.5), then (8, n) is the only weak solution for CP(fg,m0)” on Ry.
Using well-known L'-space technique, we have in the manner similar to that of [1]:

Proposition 2.3. Let v > 0, and let (61,7m1), (62,72) be two weak solutions for

CP(010,m0)” and CP(820,720)" on R, satisfying (2.5), respectively. Then we have

“”h(t’ ) - Wz(t; .)]+IL1(Q) < HTh(S, ) - 772(51 ')]+|L1(Q) for any s, t € R+ with s <t

and

Im(t,) = 1ot Mgy < Im(s,) = ma(s, )y for any s, t € Ry with s <t.
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In particular, if 710 < 730 a.e. in €} then
m <mne hence 6, <0 ae inQu.

Remark 2.2. Propositions 2.1, 2.3 and corollary 2.1 are also valid for » = 0. We can
prove them by using similar techniques to those in the proofs of [6;theorem 1,4;theorem

4.2 1;lemma 2.1], respectively.
Next we state a definition of a T-periodic weak solution of (P)” on R,.

Definition 2.3. Let T be a given positive number (period). Then (8, 7) is called a
T-periodic weak solution of (P)” on R provided that (4, 7) is a weak solution of (P)”
on R, and satisfies the periodic conditions 8(¢ + T,-) = 8(¢,-) and n(t + T,-) = n(t,")

forallt € Ry.
Finally we mention the main results for the T-periodic weak solution of (P)” on R.

Theorem 2.1. Let v > 0. Assume that the periodicity condition
(2.7) gt +T,2,0)=g(t,z,0) forall €R, and ae (t,z) € Ry x Iy

holds. Then there exists one and only one T-periodic weak solution (8,7, ) of (P)” on

R,.

Theorem 2.2. Assume that the same conditions as in theorem 2.1 hold. Then for

any weak solution (6, 7) satisfying (2.5) for some positive constants 6, p > 0, we have

ny(t,-)—n(t,-)—0 and 6;(t-)—6(t-)—0 inL¥RQ) forallg>1ast— oo
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Remark 2.3. Yi [9] treated the periodic solutions under the Dirichlet boundary
condition. He proved there the existence of periodic solutions using Schauder fixed

point theorem.

Remark 2.4. There exists a T-periodic weak solution (67, 79) of (P)° on R, under
the periodicity condition (2.7). But for the uniqueness of T-periodic weak solutions of

(P)° on R, we can only prove that of g(-,-,89) on T and moreover that of § in Q

1y Vp

(see [7,8] and also [2]).

3. Lemmas
In this chapter we prepare some lemmas to prove theorems 2.1 and 2.2.
Firstly we define a function g. = g.(6) by g.(6) = Cy(K3)[0 + Ks]* for § € R, where

K3 = max{M,m, K;, K5}. Then the following is valid.
Lemma 3.1. g, defined as above is nondecreasing and satisfies
g(t,z,0) < g«(0) forall§ < K3 and a.e. (t,z) € Ry x 'y,

Next we construct a smooth function 6, = .(z) satisfying for any € > 0 the following

system
v0,B:(0s) — N6, <0 in
00, . '
«(0s) < ,
(3.1) 3 T (0.) <0 on 'y
b, <M in 0,
b, < —Kj3 onI'y.

Choose a function x = x(y) € C*°([—!,[]) such that

M
<y < —
0<x< 5

in]—11,
and

Ox |
£, ) + 9. (M) < 0.
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For a positive parameter p, let us define 6, by

M
0u(y,z) = —pz + x(y) + CR

Then we see that 6, satisfies for some constants 6, p > 0

(3.2) be(y,2) > p inQs:={(y,2) € Q0< z <6}

Moreover it is readily seen that (3.1) is fulfilled for sufficiently large u dependent upon

v. Thus we have the following lemma.

Lemma 3.2. There is a smooth function 0, = 6,.(z) on 2 which is independent of ¢

and satisfies (3.1) and (3.2) for some positive constants §, p.

Put n. = ((6+). We remark that 7, is a.e. defined since the Lebesgue measure of the

set {z € (;0.(z) = 0} is zero. Then we have:

Lemma 3.3. The unique weak solution (8,n) for CP(6.,n+)" on R satisfies (2.5)

for some 6, p > 0.

Proof. Let {0} C C*®(Q) such that 8, < 6. in ©, Bc(foc) — 7 in L2(R) as € — 0,
and that (2.4) holds. Recalling proposition 2.1 and remark 2.1, we get a weak solution
(6,n) for CP(f«,m+)” on Ry as a limit of an approximate solution ., corresponding
to initial value g, in the sense of (2.1)~(2.3) for some sui)sequence {en} of {e}. We

note that for any ¢ €]0,1]

(3-3) at(ﬁ&(a*) "ﬁE(GE))+V8Z(/HE(9*) _ﬂe(ge))"A(g* —95) S 0 in Qoo-

Now let us denote by {o,,} a sequence of smooth functions on R such that o,,(0) =0,

and for any r € R, a],(r) > 0, =1 < 0(r) <1 and

1 forr >0,
om(r) = oo(r) := {0 forr=0, asm— +oo.
-1 forr <O,



Multiply (3.3) by o, ([6x — 8.]*) and integrate it over Q,. By lemma 3.1 and 3.2,

| AG. = 6)m([e — 8.]F)dzdr
Q: ]

> [ (@00 = 0o 80) (6, = 0.1 ddr
>/ (gx(vy,0e) = ge (-, -, 0)) T ([84 — 6] )dTdT

-ﬁ/ (0a(-, -8 - 8.))00([8s — 8.]F)dTdr  as m — +oo.
By the strict monotonicity of 3.,

o 0.(B:(8x) — Be(0e))om ([0 — 8] T )dadr

=/ 0:(Be(0+) — Be(8e))oo([bs — 0e]T)dzdr  as m — o0

= 3(ﬂe( +) = Be(6:))o0([Be (85) — Be(6e)]F)dadr

//ﬁeﬁ)—ﬂe ]+dwdr o,

z=0

and

6,5(,35(9*) - ﬁe (95))0m([9* — 9€]+)dwd'r

Q:
— o 0:(B:(84) — B (6))o0([f« — 0.])dzdT as m — +00
= [ 868.00.) = BN o(5.02) ~ B.(8)])dudr

- /Q [B.(6.) — Be(6e(t, )] * da

Therefore we have for all ¢ € R4

[18:6.) = o0t dat [ (0.(10) = g2 8)0((0: = 0.1 )ddr < 0.
Q =y

Taking € = €, and letting n — 400 we have by lemma 3.1

| /[77 —n(t,)]tdz <0 forallt€ Ry,
Q

21
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which implies that
(3.4) 7« <n hence 0,<0 ae in Q.

Because of lemma 3.2, we thus have

0(t,y,2z) > p ae in Q%

for the same constants § and p as in (3.2). By corollary 2.1 we see that (6, 7) is the

unique weak solution for CP(f.,n.) on Ry. g-e.d.

4. Proof of main theorems

Let us prove theorems 2.1 and 2.2.

Proof of theorem 1.1. Firstly we construct a T-periodic weak solution of (P)” on Ry.
Let (8, 7) be as in lemma 3.3, that is, the unique weak solution for CP(f,,7.)” on R.
For each m € N we denote by (6,,,7m) the weak solution for CP(8(mT, ), n(mT,-))”

on [0,T]. By proposition 2.1 and (3.4), we have

n <1< B(Ks) ae. in Q.

In particular

7 < n(T,:) < B(K3) a.e. in Q.
Applying proposition 2.3 to n and
M <n<m < B(Ks) ae in Qr.

Recursive use of this procedure derives that

M <N<Mm< < <np <o < B(K3) ae in Qr,
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hence

9*39391S92§39mSSK3 a"e-inQT~

Then we can define 7, (¢,z) = lir_ri_l mm(t,z) and 0., (t,z) = lir_ri_l 6, (t, z) for

a.e. (t,z) € Qr. It is easily verified that 7. € f(0x) a.e. in Qr, 1o(0,-) = Neo(T} )

and 0, (0,-) = 0o(T),-) a.e. in 2. Further we have estimates

N < m < B(K3) hence 0, <0, <Kz ae inQr,

lgmlLQ(O’T;Hl(Q)) S Cl;

and for any bounded subdomain A with 4 C Qr,
|0m |14y < C2 := Ca(A),

where C;, ¢ = 1,2 are positive constants independent of m. Then we easily see that
(foo, Neo ) 1s a weak solution of (P)” on [0, T]. Consequently, T-periodic extension (6,7 )
of ‘(000, oo ) onto R+' is a T-periodic weak solution of (P)” on Ry.

Next we prove the uniqueness of T-periodic weak solutions. To do this, we shall show

that any T-periodic weak solution (6, ) is equal to (6,7, ) constructed as above. Since

g, satisfies (2.5), (2.6) holds for #; = 87 and 6, = 6§, from which it follows that

p

(m+1)T
(4.1) / |ny — | dzdt -0 as m — +oo.
mT 2

On the other hand, by T-periodicity of 7, and 7,

T (m+1)T
// |n;,’ —77|d:z;dt=/ / [77}'; —77|da:dt.
0JQ mT Q

T
So we must have // |17;,’ - 7]| dzdt = 0. Therefore 7, = 5 a.e. in Qr. Again, by
- JoJa
T-periodicity of m, and 7, n, =1 a.e. in Q. Hence 01’,’ = f a.e. in (Jo,. Thus the proof

has been completed. v q.e.d.
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Proof of theorem 2. Let (6,7) be an arbitrary weak solution of (P)” on R satisfying

(2.5). From proposition 2.3 we find that

d:= lm Iﬂg(t:) —n(t")lLl(Q)

t—400

exists. Further as m — 400 we have

(m+1)T
/T A |ny — n| dadt > T |0y ((m +1)T,-) — n((m + 1T, -)|L1(Q) — dT.

Note that (4.1) also holds for ; and 7, hence we deduce d = 0. That is 9, (2, ) —n(t,-) —

0in L'(2). On account of the boundedness of 5} and 7 in Qu, we obtain
m (t,-) —n(t,-) =0 in LI(Q) for all ¢ > 1 as ¢ — +oo.

From (1.1), it results that

b. |9;(t,m) — (¢, w)| < |771','(t,m) - (¢, a:)l for a.e. (t,2) € Quo,
consequently
6,(t,-) —0(t,-) =0 in LY(Q) for all g > 1 as t — +oo.

g.e.d.

In the rést of this chapter we study the convergence of the T-periodic weak solution
of (P)” on R4 to that of the Stefan problem when v — 0. The result is as follows.
Theorem 4.3. Assume that (2.7) holds. When v — 0, (6,,7,) converges to some

periodic solution (89,72) of the Stefan problem (P)° in the foHowihg sense:

67 — 6  weakly in L*(0,T; H'(Q)) and strongly in L(Qr) for all ¢ > 1,

4
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g(-+0,) — (v 391(2)) in LZ(EJJY))

y 9 Yp

and there exists a subsequence {1} of {v} such that
Ny — 171(,’ §Veak1y in L= (Qr).
We claim that the following estimates hold for {(6;, 7, )}:
B(—Ks) <nu(t,z) < B(Ks) hence —K3<0i(t,z)<Ks ae inQr,

4 < Cs,

IL?(OT H(Q)) =

and for any bounded subdomain A with AcCQr,

|6V|H1(A) < Cy,

where C; > 0, i = 3,4, are constants independent of v €]0,1]. Hence there exist a

subsequence {vy} of {v} and (8, n) € L2(0,T; H'(Q)) x L*=(Qr) such that

n,* — 0 weakly* in L= (Qr),
(42) 62 — 0 weakly in L*(0,T; H'(2)) and strongly in LY(Qr) for all ¢ > 1,

(4.3) (- 6;%) = g(,-,6) in L*(ZF).

We easily see that (6,7) is a weak solution of (P)? on [0, T]. Moreover, since (65, 75) is
T-periodic, (8, 7) is also T-periodic. On account of remark 2.4 we can replace {v;, } with

{v} in (4.2) and (4.3). Therefore T-periodic extension of (8, 7) onto Ry is a desired

one.
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