Title

DISCONTINUITY OF SOLUTIONS OF PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH TIME DELAY IN HILBERT SPACE (Nonlinear Evolution Equations and Their Applications)

Author(s)

MARUO, Kenji

Citation

Issue Date

1995-02

URL

http://hdl.handle.net/2433/84494

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
DISCONTINUITY OF SOLUTIONS OF PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH TIME DELAY IN HILBERT SPACE

神戸商船大学 丸尾 健二 (Kenji MARUO)

0. Introduction and Theorem.

In this paper we consider the following integro-differential equation with time delay in a real Hilbert space H:

\[(0.1) \quad \frac{d}{dt} u(t) + Au(t) + A_1 u(t-h) + \int_{-h}^{0} a(-s) A_2 u(t+s) ds = f(t)\]

\[u(0) = x, \quad u(s) = y(s) \quad -h \leq s < 0.\]

Here, A is a positive definite self-adjoint operator and A_1, A_2 are closed linear operators with domains containing that of A. The notations h and N denote a fixed positive number and a large natural number respectively. Let $a(\cdot)$ is a real valued function belonging to $C^3([0, h])$.

The equations of the type (0.1) were investigated by G.Di Blasio, K.Kunisch and E.Sinestrari [2], S.Nakagiri [4], H.Tanabe [6] and D.G.Park and S.Y.Kim [5]. Particularly, G.Di Blasio, K.Kunisch and E.Sinestrari [2] showed the existence and uniqueness of a solution for $f \in L^2(0, T; H)$, $Ay \in L^2(-h, 0; H)$ and $x \in (D(A), H)_{1/2, 2}$ where $(D(A), H)_{1/2, 2}$ is an interpolation space.

Since the equation (0.1) is of parabolic type, we want x to be an arbitrary element of H. Then the integral in (0.1) exists only in the improper sense no
matter what nice functions f and Ay may be. Hence, it would be considered natural to investigate our problem under the following hypothesis:

$$f \in \cap_{\delta > 0} L^2(\delta, T; H) \quad \text{and} \quad Ay \in \cap_{\delta > 0} L^2(-h + \delta, 0; H),$$

$$f(t) \text{ and } Ay(t - h) \text{ are improperly integrable at } t = 0.$$

For the sake of simplicity we put

$$L^2_{loc}((0, T]; H) = \cap_{\delta > 0} L^2(\delta, T; H).$$

We first shall state the definition of a weak solution of (0.1).

DEFINITION. We say that a function u defined on $[-h, T]$ is a weak solution of the equation (0.1) if the following four conditions satisfied:(see Definition 1.1 in [3])

1) $u \in L^2_{loc}((nh, (n+1)h]; D(A)) \cap W^{1,2}_{loc}((nh, (n+1)h]; H) \cap C([0, Nh]; D(A^{-\alpha}))$

for $n = 0, 1, 2, \ldots, N - 1$ and any $\alpha > 0$.

2) $\lim_{t \to 0} A^{-\alpha}u(t) = A^{-\alpha}x$

for any $\alpha > 0$ and $u(s) = y(s)$ for $-h \leq s < 0$.

3) $Au(\cdot + nh) \in L^2_{loc}((0, h]; H)$ and $A^{1-\alpha}u(\cdot + nh)$ is improper integrable at $t = 0$.

4) The function u satisfies the equation (0.1) for a.e t.

In Theorem 1 in [3] we showed the existence and uniqueness of a weak solution for which $A^{-\alpha}u$ is continuous in $[0, T]$ for an arbitrary positive number α but this solution is not always in $C([0, T]; H)$.

As the notations we put

$$F_{-1} = \{ g \in L^2_{loc}((0, h]; H); \text{ there exists } \lim_{\epsilon \to 0} \int_\epsilon^0 g(s)ds \},$$
\[F_m = \{ g \in F_{m-1}; \lim_{t \searrow 0} \int_{t/2}^{1} (t-s)^m A_1^m S(t-s)g(s) ds = 0 \} \]

where \(S(\cdot) \) is an analytic semigroup of the positive defined self-adjoint operator \(A \) and \(m = 1, 2, \ldots, N - 1 \).

In Proposition 6.9 of [3] we also showed the following resultant.

Let \(f \) belong to \(F_{-1} \cap L^2_{loc}((0, Nh): H) \) and \(m \) is a nonnegative integer such that \(0 \leq m \leq N - 1 \). Then following two conditions are equivalent.

1) A weak solution of (0.1) is continuous on \([0, mh]\), but at \(t = mh \) this solution is discontinuous.

2) \(f - A_1 y(\cdot - h) \in F_{m-1} \), but \(f - A_1 y(\cdot - h) \notin F_m \).

In [3] we could not show that \(F_m \) is a proper subset in \(F_{m-1} \). The object in this paper is to show that \(F_m \) is a proper subset in \(F_{m-1} \) (i.e. there exists a inhomogeneous function \(f \) and an initial data function \(y \) such that the solution of (0.1) is continuous on \([0, mh]\), but at \(t = mh \) this solution is discontinuous on \(H \)).

Throughout this paper we assume

\(A - 1) \quad A = A_1 = A_2 \),

\(A - 2) \quad \) the operator \(A \) holds eigenvalues \(\{ \lambda_q \}_{q=1}^{\infty} \) such that

\[\lambda_q = C q^\alpha + o(q^\alpha), \quad \lambda_q \leq \lambda_{q+1} \]

where \(\alpha \) and \(C \) are some positive numbers. We denote normal eigenfunctions of eigenvalues \(\lambda_q \) by \(\varphi_j \).

\textbf{THEOREM} Under the assumptions \(A-1) \) and \(A-2) \) there exist a inhomogeneous function \(f \) and the initial valued function \(y \) such that the weak solution of (0.1) is continuous on \([0, mh]\), but at \(t = mh \) it is discontinuous.

1. Properties of eigenvalues.

We denote \(10^{-1} \) by \(\epsilon_0 \).
Lemma 1. Let ϵ_0 be a small positive number and t_0 be sufficiently small positive number. Then there exists a eigenvalue λ_q such that

$1 - \epsilon_0 < t \lambda_q < 1 + \epsilon_0$ for any $t: 0 < t < t_0$.

Proof. We suppose that there exists a small positive number t_0 such that

$t \lambda_q \leq 1 - \epsilon_0$ or $t \lambda_q \geq 1 + \epsilon_0$ for any natural number q.

We put $p = \max_q \{q : \lambda_q \leq (1 - \epsilon_0)/t\}$ and $r = \min_q \{q : \lambda_q \geq (1 + \epsilon_0)/t\}$. If t_0 is sufficiently small, p and r are sufficiently large natural number and $p + 1 = r$. From the assumption A-2) and (1.1) we get

$C p^\alpha + o(p^\alpha) \leq (1 - \epsilon_0)/t$ and $C(p + 1)^\alpha + o((p + 1)^\alpha) \geq (1 + \epsilon_0)/t$.

Then it follows

$(1 + \epsilon_0)(C(p + 1)^\alpha + o((p + 1)^\alpha))^{-1} \leq t \leq (1 - \epsilon_0)(C p^\alpha + o(p^\alpha))^{-1}$.

Since p is sufficiently large natural number we obtain that the above inequalities are contradiction. Thus the proof is complete.

Let θ and N be $1/3 - 4/(3N)$ and 10^3 respectively.

We choose a sequence $\{t_n\}$ such that $t_1 = t_0/2$ and $0 < t_{n+1} < t_n \theta^n/2$ for any $n = 1, 2, 3, 4, \ldots$.

where t_0 is of lemma 1

Lemma 2. Let j and n be natural number such that $0 < j \leq n$. Thus there exists a natural number $\ell(n, j)$ such that

$1 - \epsilon_0 < (\theta^j t_n) \lambda_{\ell(n, j)} < 1 + \epsilon_0.$
and if \((n_1, j_1) \neq (n_2, j_2)\) then \(\lambda_{t(n_1, j_1)} \neq \lambda_{t(n_2, j_2)}\).

where \(\epsilon_0 = 10^{-1}\).

Proof. Since \(t_0\) is sufficiently small positive number, from Lemma 1, we see that there exists \(\lambda_t\). Next we shall show the eigenvalue is unique. Suppose \((n_1, j_1) \neq (n_2, j_2)\) and \(n_1 \geq n_2\). Then if \(n_1 > n_2\) it follows \(t_{n_2} \theta^{j_2} > 2t_{n_1} \theta^{j_1}\).

If \(n_1 = n_2\) and \(j_1 > j_2\) it also follows \(t_{n_2} \theta^{j_2} > 2t_{n_1} \theta^{j_1}\). From (1.1) and the above inequalities we have

\[
\lambda_{t(n_2, j_2)} < (1+\epsilon_0)(t_{n_2} \theta^{j_2})^{-1} < (1+\epsilon_0)2^{-1}(t_{n_1} \theta^{j_1})^{-1} < (1+\epsilon_0)(1-\epsilon_0)^{-1}2^{-1}\lambda_{t(n_1, j_1)}.
\]

Thus it follows \(\lambda_{t(n_2, j_2)} < \lambda_{t(n_1, j_1)}\).

2. Constitution of functions.

We shall constitute our aim’s function which satisfies the following conditions:

\[
f \in F_{m-1} \cap L_{loc}^2((0, h]; H) \quad \text{but} \quad f \notin F_m.
\]

For the sake of simplicity we suppose \(h = 1\).

We first take a sequence \(\{x_{n,j}\}\) such that

\[
x_{n,0} = 2^{-1}t_n \quad \text{and} \quad x_{n,j} = x_{n,j-1} + (1+2/N)\theta^{j-1}t_n/3
\]

where \(n = 1, 2, \ldots\) and \(j = 1, 2, \ldots \leq n\).

REMARK 1. Since \(\sum_{j=1}^{n}(1+2/N)\theta^{j-1}/3 \leq 1/2\) it follows \(t_n/2 \leq x_{n,j} < t_n\) where \(j = 0, 1, 2, \ldots, n\).

For the sake of the simplicity we put \(\gamma_{n,j} = \theta^j t_n/(3N)\), and \(\Gamma_{n,j} = (1 + 1/N)\theta^j t_n/3\).

Let \(\chi_1\) and \(\chi_2\) be functions such that
1) $\chi_1, \chi_2 \in C^\infty([0,1])$,
2) $\text{Supp } \chi_1 \subset [2^{-1}, 1]$ and $\text{Supp } \chi_2 \subset [0, 2^{-1}]$,
3) $\chi_1(\cdot) = 1$ on $[2/3, 1]$ and $\chi_2(\cdot) = 1$ on $[0, 1/3]$.

We denote $\chi_1((t-x_{n,j})/\gamma_{n,j})$ and $\chi_2((t-x_{n,j}-\Gamma_{n,j})/\gamma_{n,j})$ by $\chi_{1,n,j}(t)$ and $\chi_{2,n,j}(t)$ respectively.

Let p be an arbitrary natural number. We define a function $f_{n,j}^p(t) \in C([0,1]; H)$ by

$$
0 \quad \text{if } t \in [0, x_{n,j}] \cup [x_{n,j}+1, 1],
$$

$$
\sum_{\alpha=0}^{p}(t-x_{n,j}-\gamma_{n,j})^\alpha A^{-p}a_\alpha \chi_{1,n,j}(t) \quad \text{if } t \in [x_{n,j}, x_{n,j}+\gamma_{n,j}],
$$

$$
A^{-p}S(t-x_{n,j}-\gamma_{n,j}+\epsilon_0 \theta^j t_{n}/3)\varphi_{t(n,j)} \quad \text{if } t \in [x_{n,j}+\gamma_{n,j}, x_{n,j}+\Gamma_{n,j}],
$$

$$
\sum_{\alpha=0}^{p}(t-x_{n,j}-\Gamma_{n,j})^\alpha A^{-p}b_\alpha \chi_{2,n,j}(t) \quad \text{if } t \in [x_{n,j}+\Gamma_{n,j}, x_{n,j+1}]
$$

where

$$a_\alpha = (\alpha!)^{-1}(-A)^\alpha S(\epsilon_0 3^{-1} \theta^j t_n)\varphi_{t(n,j)} \quad \text{and} \quad b_\alpha = (\alpha!)^{-1}(-A)^\alpha S((1+\epsilon_0) 3^{-1} \theta^j t_n)\varphi_{n,j}.$$

Remark 2. 1) a_α and b_α are α order's coefficients of Taylor expansion of the functions $S(s)\varphi_{n,j}$ at $s = \epsilon_0 \theta^j t_n/3$ and $s = (1+\epsilon_0) \theta^j t_n/3$ respectively.

2) From the constructive method of the function $f_{n,j}^p$ we see

$$(\text{Supp } f_{n_1,j_1}^p) \cap (\text{Supp } f_{n_2,j_2}^p) = \emptyset \quad \text{if} \quad (n_1, j_1) \neq (n_2, j_2).$$

3) $f_{n,j}^p \in C^p([0,1]; D(A^\infty))$ and it is piecewise sufficiently smooth at $t \in [0,1]$.

Lemma 3. Let q and k be nonnegative integers such that $q \leq p$. Then we have

$$
| (d/dt)^q A^k f_{n,j}^p(t) |_H \leq \text{Const} \lambda_{n,j}^{q+k-p}.
$$

$$(d/dt)(d/dt)^q A^k f_{n,j}^p(t) \in L^2(0,1; H).$$

Proof. We first shall show the former.

Let $t \in [x_{n,j}, x_{n,j}+\gamma_{n,j}]$. From the definition of $\chi_{1,n,j}$ and Lemma 1 it follows

$$
| (d/ds)^p \chi_{1,n,j} | \leq \text{Const}/\gamma_{n,j}^p \leq C\lambda_{t(n,j)}^p.
$$
If $\beta \leq \alpha$ we have

\begin{equation}
| (d/dt)^{\beta} (t - x_{n,j} - \gamma_{n,j})^{\alpha} | \leq \text{Const} \nu_{n,j}^{\alpha - \beta} \leq C \lambda_{\ell(n,j)}^{\beta - \alpha}.
\end{equation}

From the semigroup properties we see

\begin{equation}
| A^{k} S(s) \varphi_{n,j} |_{H} \leq \text{Const} \lambda_{t(n,j)}^{k} \exp(-s \lambda_{t(n,j)})
\end{equation}

Combining (2.1), (2.2) and (2.3) we get

\begin{equation}
| (d/dt)^{q} A^{k} f_{n,j}^{p} |_{H} \leq \text{Const} \lambda_{t(n,j)}^{k - p} \exp(-\gamma_{n,j} \lambda_{\ell(n,j)}) \sum_{\alpha=0}^{p} \sum_{\beta=0}^{q \wedge \alpha} \lambda_{t(n,j)}^{\beta - \alpha} \lambda_{t(n,j)}^{q - \beta} \leq \text{Const} \lambda_{t(n,j)}^{-p + q + k}.
\end{equation}

Using the similar method to the above, for $t \in [x_{n,j} + \Gamma_{n,j}, x_{n,j+1}]$, we also get the same estimate as the above.

For $t \in [x_{n,j} + \gamma_{n,j}, x_{n,j} + \Gamma_{n,j}]$, from (2.3), we also get the same estimate as (2.4).

Then the former is proved.

Next we shall show the latter.

If $q + 1$ is smaller than p, from the above, it is trivial. We suppose $q = p$. If $t \in (x_{n,j} + \gamma_{n,j}, x_{n,j} + \Gamma_{n,j})$ it follows

\begin{equation}
| (d/dt)(d/dt)^{p} A^{k} f_{n,j}^{p} (t) |_{H} \leq C \text{Const} \lambda_{t(n,j)}^{k + 1}.
\end{equation}

If $t \in (x_{n,j}, x_{n,j} + \gamma_{n,j}) \cup (x_{n,j} + \Gamma_{n,j}, x_{n,j+1})$ it follows

\begin{equation}
(d/dt)(d/dt)^{q} A^{k} f_{n,j}^{p} (t) = 0.
\end{equation}

Then the latter is proved.

Let b_{n} be a decreasing sequence such that

\begin{equation}
\lim_{n \to \infty} b_{n} = 0, \quad \inf_{n} n^{1/2} b_{n} \geq \delta_{0} > 0.
\end{equation}

From 2) of Remark 2 we know that there exists $\sum_{n=1}^{\infty} \sum_{j=1}^{n} f_{n,j}^{p}(t) b_{n}$. Thus we denote the above function by $f_{p}(t)$.

LEMMA 4. The function $f^p(\cdot)$ holds the following properties:

1) $f^p \in C^q([0, 1]; D(A^k)) \cap C^p((0, 1]; D(A^\infty))$ where $q + k \leq p$.

2) Let δ be any positive small number. This function is piecewise sufficiently smooth on $[\delta, 1]$.

3) $(d/dt + A)^k f^p \in C([0, 1]; H)$ and $\lim_{t \to 0} (d/dt + A)^k f^p(t) = 0$

where $k = 0, 1, \cdots, p$.

4) $(d/dt)(d/dt + A)^p f^p \in L^2_{loc}((0, 1]; H)$.

Proof. Combining 2), 3) of Remark 2 and lemma 3 and noting (2.5) we get the proof of 1). Since the sum of f^p is finite on $[\delta, 1]$, from 3) of Remark 2, the proof of 2) is complete. From Lemma 3 and (2.5) the proof of 3) is complete. Noting the sum of f^p is finite on $[\delta, 1]$ and Lemma 3 we can prove 4).

LEMMA 5. Let t be any positive number such that $0 < t \leq 1$. Then there exists

$$\lim_{\epsilon \to 0} \int_{\epsilon}^{t} (d/ds)(d/ds + A)^k f^p(s) ds = 0$$

where $k = 0, 1, \cdots, p$.

Proof. From 2) and 3) of Lemma 4 it is easy to prove this lemma.

LEMMA 6.

$$| A \int_{t_{n}/2}^{t_{n}} S(t_{n} - s) A^p f^p(s) ds | \geq \delta n^{1/2} b_n$$

where δ is a positive constant independent of n.

Proof. From the definition of f^p we have $f^p = \sum_{j=1}^{n} f^p_{n,j} b_n$ on $[t_{n}/2, t_{n}]$. We put

$$\int_{x_{n,j}}^{x_{n,j+1}} A S(t_{n} - s) A^p f^p_{n,j} ds =$$

$$(\int_{x_{n,j}}^{x_{n,j} + \gamma_{n,j}} + \int_{x_{n,j} + \gamma_{n,j}}^{x_{n,j} + \Gamma_{n,j}} + \int_{x_{n,j} + \Gamma_{n,j}}^{x_{n,j+1}}) \{ A S(t_{n} - s) A^p f^p_{n,j}(s) \} ds$$
\[= I_1 + I_2 + I_3.\]

We first shall estimate \(I_1\). From the definition of \(f_{n,j}^p\) on \([x_{n,j}, x_{n,j} + \gamma_{n,j}]\) and semigroup properties we have

\[
| AS(t_n - s)A^p f_{n,j}^p |_H
\leq \sum_{\alpha=0}^{p} 1/(\alpha!) |s - x_{n,j} - \gamma_{n,j}|^\alpha \lambda_{n,j}^{\alpha+1} \exp(-(t_n - s + \epsilon_0 \theta^j t_n/3) \lambda_{n,j}).
\]

Since \(s - x_{n,j} \geq \lambda_{n,j}\) and \(\gamma_{n,j} \lambda_{t(n,j)} \leq 1/N\) we see

(2.6) \[| I_1 |_H \leq \sum_{\alpha=0}^{p} \text{Const}(\gamma_{n,j})^{\alpha+1} \lambda_{t(n,j)}^{\alpha+1} \leq \text{Const}/N.\]

where \text{Const} is a constant independent of \(n, j\) and \(N\). Using the similar method to the above we get

(2.7) \[| I_3 |_H \leq \text{Const}/N.\]

Let us estimate \(I_2\). Using the semigroup properties we get

\[AS(t_n - s)A^p f_{n,j}^p = \exp(-(t_n - x_{n,j} + (\epsilon_0 - 1/N)\theta^j t_n/3) \lambda_{n,j})) \lambda_{n,j} \varphi_{n,j}.\]

Since \(t_n - x_{n,j} = (1 + 2/N)(1 - \theta)^{-1} \theta^j t_n/3\), from lemma 2 and the above equality we have

\[| I_2 |_H \geq (1 - \epsilon_0) \exp(-\delta_1)/3\]

where \(\delta_1 = (1 - \epsilon_0)\{1/3(1+2/N)(1-\theta)^{-1} + (\epsilon_0 - 1/N)\}\). Then combining (2.6),(2.7) and the above inequality and noting \(N\) is a sufficiently large number there exists a constant \(\delta_0\) such that

\[| I_1 + I_2 + I_3 |_H^2 \geq (| I_2 |_H - | I_1 |_H - | I_3 |_H)^2 \geq ((1 - \epsilon_0) \exp(-\delta_1) - 2\text{Const}/N)^2 = \delta_0^2.\]
Thus we complete the proof of this lemma.

Lemma 7. Let k be a nonnegative integer such that $k \leq p$. Then we get the following equality:

\[
\int_{t/2}^{t} (t - s)^{k} A^{k+1} S(t - s) (d/dt + A)^{p} f^{p}(s) ds \\
= - \sum_{q=0}^{k-1} (t/2)^{k-q} A^{k-q} S(t/2) (d/ds + A)^{p-q-1} A^{k+1} f^{p}(t/2) C_{q} \\
+ C_{k} \int_{t/2}^{t} S(t - s) (d/ds + A)^{p-k} A^{k+1} f^{p}(s) ds
\]

where $C_{q} = k!/(k-q)!$.

Proof. Using the integration by parts we get the following recurrence formula for q.

\[
\int_{t/2}^{t} (t - s)^{k-q} A^{k+1} S(t - s) (d/ds + A)^{p-q} f^{p}(s) ds \\
= -(t/2)^{k-q} A^{k+1} S(t/2) (d/ds + A)^{k-q-1} f^{p}(t/2) \\
+(k-q) \int_{t/2}^{t} (t - s)^{k-q-1} A^{k+1} S(t - s) (d/ds + A)^{p-q-1} f^{p}(s) ds.
\]

Solving the above recurrence formula we get the proof of this lemma.

Lemma 8. We get the following inequality:

\[
\lim_{t \to 0} \sup_{t} | \int_{t/2}^{t} (t - s)^{p} A^{p} S(t - s) d/ds (d/ds + A)^{p} f^{p}(s) ds |_{H} > 0.
\]

Proof. From the definition of f^{p} it follows, for any nonnegative integer α,

\[
(2.8) \quad ((d/dt)^{\alpha} f^{p})(t_{n}/2) = 0 \quad \text{and} \quad ((d/dt)^{\alpha} f^{p})(t_{n}) = 0.
\]

Let p be 0. Using the integration by parts and (2.8) we see

\[
| \int_{t_{n}/2}^{t_{n}} S(t_{n} - s) d/ds f^{0}(s) ds |_{H} = | -A \int_{t_{n}/2}^{t_{n}} S(t_{n} - s) f^{0}(s) ds |_{H}.
\]
From Lemma 6 it follows the right term of the above equation is uniformly positive about \(n \).

Let \(p \) be larger than 1. Then from the integration by parts and (2.8) we have

\[
\int_{t/2}^{t} (t-s)^p A^p S(t-s) d/ds (d/ds + A)^p f^p(s) ds
\]

\[= p \int_{t/2}^{t} (t-s)^{p-1} A^p S(t-s) (d/ds + A)^p f^p(s) ds
\]

\[- \int_{t/2}^{t} (t-s)^p A^{p+1} S(t-s) (d/ds + A)^p f^p(s) ds = I_1 + I_2.\]

From Lemma 7 and (2.8) we get

\[I_1 = \text{Const} \int_{t/2}^{t} S(t-s) (d/ds + A) A^p f^p(s) ds.\]

On the other hand from the integration by parts it follows

\[\int_{t/2}^{t} S(t-s) (d/ds + A) A^p f^p(s) ds = 0.\]

Then \(I_1 = 0 \).

Combining Lemma 6 we obtain \(|I_2| \geq \delta_0 \). The proof is complete.

Lemma 9. Let \(k \) be a nonnegative integer smaller than \(p - 1 \). Then it follows

\[\lim_{t \searrow 0} \left| \int_{t/2}^{t} (t-s)^k A^k S(t-s) d/ds (d/ds + A)^p f^p(s) ds \right|_H = 0.\]

Proof. From the integration by parts we get

\[
\int_{t/2}^{t} (t-s)^k A^k S(t-s) d/ds (d/ds + A)^p f^p(s) ds = -(t/2)^k A^k S(t/2) (d/ds + A)^p f^p(t/2)
\]

\[+ k \int_{t/2}^{t} (t-s)^{k-1} A^k S(t-s) (d/ds + A)^p f^p(s) ds = I_1 + I_2.\]

On the other hand we have the operator norm: \(|s^k A^k S(s)|_{H \rightarrow H} \geq \text{Const} \). Combining 3) of Lemma 4 and the above result we obtain \(\lim_{t \searrow 0} I_1 = 0 \). From Lemma 7 and 3) of Lemma 4 we get \(\lim_{t \searrow 0} I_2 = 0 \). Thus the proof is complete.
3. Proof of Theorem.

We take a function f defined on $[0,1]$ such that

$$f(t) = (d/dt)(d/dt + A)^p f^p(t).$$

From then 4) of Lemma 4, Lemma 5, Lemma 8 and Lemma 9 we get

$$f \in F_{p-1} \quad \text{and} \quad f \notin F_p.$$

Combining Proposition 6.9 in [3] and the above result we obtain the proof of Theorem is complete.

References

