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OPTIMIZING MULTIPLE SELECTIONS
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Abstract

The optimal stopping rmles with multiple selections of m > 1 objects with the objective
to maximize the probability of obtaining the best object are studied for two problems with
an unknown number of objects:the problem with random number of objects, and the problem
where the objects arrive according to a homogeneous Poisson process with unknown intensity
A. These two problems are variation of the so-called secretary problem. This article introduces
easier method based on the one-stage look-ahead fitnction (defined herein) depending on m
and its recursive relation on the number m, to find the optimal stopping rule for all m, without
direct solution of equations suggested by a common dynamic programming approach.

SECRETARY PROBLEM; OPTIMAL STOPPING

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60G40; SECONDARY 62115

1. Introduction

A man observes the sequence of independent random variables, X;, Xy, - -+, X,, and
must decide whether to accept or not after each observations with the objective to maximize
the probability of obtaining the best object, that is, max{X;,---, X,,} when at most
m (> 1) selections are allowed, where m is a predetermined number. This problem has
been studied by Gilbert and Mosteller [1]. When m = 1, this is a well-known classical
secretary problem. However, they are not the originators of the classical secretary problem.
Information on the foundations of the problem can be found in Ferguson [2]. They have
investigated the multiple selection models for the so-called no-information case of secretary
problem or optimal selection problem. In the no-information case, X; is regarded the
relative rank of the ith objects among the first i objects (rank 1 being best) under the
assumption that the objects are observed sequentially in randoin order with all n! orderings
being equally likely and all that can be observed are the relative rank of the objects as
they are presented. Thus X; are independent random variables and the distribution of X;
isgiven by P(X; =j)=1/ifor j=1,2,--- jifori=1,2,--- ,n.
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For the problem with two selections, Haggstrom [3] has studied in the general setting
and Sakaguchi [4] has resolved the results of Gilbert and Mosteller [1] on the no-information
problem using one-stage look-ahead rule. Tatnaki [5] has solved the full-information prob-
lem with two selections by dynamie programmming approach. The one-stage look-ahead
rule is a special case of the monotone case of Chow et al [6] and is generally quite effective
to find the optimal stopping rule. For theorem and usage of the one-stage look-ahead rule,
Ferguson (7] has provided much insight and many examples.

The optimal rule for the no-information secretary problem with m(> 1) selections can
be summarized as follows: stop (=accept) the first relatively best object which appears
after or on s},, where s}, is a determined sequence of integers, non-increasing in m. It is
known that for large n, s} ~ ne™! -3/2, =47/ and s 2 ne~ 2701152 (gee
Sakaguchi [4]), and for large n, the maximum probability of obtaining the best object with
m selections under the optimal rule is sj/n + s5/n+---+ s}, /n.

, 85 = ne s3 & ne

Our motivation has come from that even if the optimal stopping rule of the problem
with m (> 3) selections may be estimated without difficulty but it doesn’t seem to be
easy to prove it. Ome of this difficulty may be the fact that when we employ the one-
stage look-ahead approach we have been confronted by complicated calculation to find
explicit solutions of corresponding differential or integral equations suggested by a common
dynamic programming principle. This article introduces easier method based on the one-
stage look-ahead function (defined later) depending on the number m, of selections and
its recursive relation on m to find the optimal stopping rule for all mn > 1, without direct
solutions of the equations. Ano and Tamaki [8] seems to be first to use this method.

In Section 2, we apply our method to the problem where the number of objects is a
random variable with known distribution éx = P(N = k),k = 0,1,--- and mp = 1, m =
Y o>k 6a. This problem has been studied by Presman and Sonin [11] who investigate the
case with a single selection and show that under the following Presman & Sonin condition

(PS) {d:}>, changes sign exactly once from negative to non-negative,

(i-e., if whenever d; > O thend; >0for j=i+1,i+2,---) where d; = §; — Ej?_ﬂ—l 6;/i
for i =0,1,--- and d_; = —1, the one-stage look-ahead rule is optimal. We say that the
sequence changes sign once from negative to non-negative, if and only if there exists a *
such that d; > 0 for all i > * and d; < 0 for all i < i* . We show under their condition
(PS) the optimal rule for the problem with m selections is the same formn as the one for
the no-information secretary problem with m selections. As an example, we investigate in
details the case in which the total number, N of objects is uniformly distributed on {1, Ng].

In this case, we see that as Ny — oo, 81/Ng — e~2 ~ .135335, 85 /Ny — e~ (1+V21/3)

079856 and s3/Ny — e~(1+(V135+42v21)/9) ~ 04951742 and for large Ny the maximum
probability of obtaining the best under the optimal stopping rule is —((s7/No) log(s}/No)+
(s3/No)log(s3/No) + - - - + (37./No) log(s}, /No)).

Section 3 considers another problem with unknown number of objects where the ob-
jects arrive according to a homogeneous Poisson process with unknown intensity A and a
prior exponential distribution, a exp{—aA}I(A > 0) where @ is a known nonnegative pa-
rameter. The objective is to maximize the probability of obtaining the best object from
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those (if any) available in the given interval [0, T]. The no-information version with single

selection is the problem studied by Bruss [12], which has succeeded to extend the results

of Cowan and Zabczyk [13] with known intensity A. Bruss [12] has shown that the optimal

rule for single selection is stationary and to accept (if possible) the first relatively best
object after time (T'+a)/e — a. Using our approach based on his developments and results

with single selection to which we refer in details, we see that the optimal stopping rules
with multiple selections have the following form: the optimal rule is to accept(if
possible) the first relatively best object after time s, = (T'+a)/ e®™ — a, where C(™ is
constant. For a = 0, it is interesting to see s} = T/e, 55 = T/e3/2 53 = T/e‘”/24 .-+ com-

pared with the values n/e, n/e®/%, n/e*"/?4, n/e281/1152 of the no—mformatlon secretary

problem,

2. Random number of objects

For the problemn with random number, N of objects, let W'i(m) be the maximum
probability of obtaining the best object among all IV objects when we confront a relatively
best object at ith observation and we can make more m selections hereafter. Similarly
when we cam make more m selections in the future, let U, (m) (V(m)) be the corresponding
probability when we accept(reject) the relatively best ob]e(t at ith observation. Suppose
that ith object is a relatively best object (.X; = 1). Then the conditional probability that
ith object is best of all N given N > i is

| ;5
(2.1) Y P(Xig1 > 1, X; >IN = )P(N=jIN 2 ) =Y 22,
>t izi’
Therefore
5
2.9 U.(m) — 1 + V(m l)
(2.2) : ‘; P

where Vi(o) = ( for all i. Assume we confront a relatively best object at ith observation,
then since the conditional probability that jth object is a first relatively best object after
ith object given N > j is (i7;)/(4(j — 1)),

2.3 v =y T gy,
(29) ' j‘; 3G — D

Throughout this article, the vacuous sum is assumed to be zero. By the principle of
optimality, we get the dynamic programming equation

(2.4) W™ = max{U™, Vv{™}, fori=1,2,--- ,and m > 1.

]

The one-stage look-ahead rule is the rule that calls for selecting when selecting immediately
is at least as good as waiting for the next relatively best to appear and then selecting. Thus
fori=1,---,n—1and m > 1, it requires us to select the ith object if

2.5 g™ =yt i U™ >
(25) ng JG = Dm
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where g( ) = 0 for all i and gf_"f )= —1forallm > 1. We define and call g(m) the one-stage

look-ahead function. It is well-known that if for fixed m, {gim)}__1 changes sign exactly
once from negative to non-negative, then the problem is monotone in the sense of Chow et
al, [5] and one-stage look-ahead rule is optimal having the following form of a threshold

‘stopping rule with threshold s, = min{i > 1: g§’") > 0} given a fixed m:

(2.6) , 'rg"‘) = min{k 2 s 1 X = 1}.

A stopping problem is defined to be monotone if the sets for a fixed m, GS’") ==
wfm™ > E(U,-T”Xl, .--,X;)} are monotone non-decreasing, i.e., G ¢ G{"™ ¢ --.
a.8. When the condition (PS) holds, Presman & Sonin problem with single selection is
monotone and one-stage look-ahead rule is optimal which is a threshold rule 'r,g;” with

threshold s} = min{i > 1 : gll) > 0}. The following theorem tells us that under the
condition (PS), Presman & Sonin problem with multiple selections is also monotone.

Theorem 1. If the distribution of the number of objects satisfies the Presman &

Sonin’s condition (PS), then the optimal rule for the problem with random number of

( )

objects when we make m more selections is a threshold rule Tes , where 8}, can be specified

as 8%, = min{i > 1:¢\™ > 0}. And s, is non-increasing in m.

Proof. 1t is shown by induction on m based on one-stage look-ahead function. When
m = 1, the assertion is the result of Presman & Sonin [11]. As induction hypotheses, we

assume that for fixed m > 1, { gg ) }25, changes sign once from negative to non-negative,and
for fixed i > 1 and all m > 1, gfm“) > g('") Consequently we assume Ti. ™ is optimal
rule and s}, > sy, ;. These hypotheses imply that since when i > s;,, Wt(m) U(m) nd
vim = Y imilimi /(35 - l)n.))U(m) and when i < %, W™ = y{™,

(2.7) wim™ —vi™ = g™ > s%), i=1,2,---,

where I(A) represents the indicator function of the event A.
On the other hand, from (2.5)

(m+1) _ iéj i m) ]6k (m)
: ?—; jm; ]E; JjU=-Dm 7 o J(J = l)m i
— o I/V(m) V(m)
% +ZJ(J"1)7V{ i

j>i

where g{V Ejg.'(i‘lj)/(j"i)-
- Substituting (2.7) into the above equation,

¥y
(2.8) g™t =gV + }: —T—~_~i-)—7—r~g§'").
jpmax(i+1,05,) 7 '
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It is convenient for the induction to condider the function A{™ = (;/i)g{™ for i > 1
and m > 1. Then the induction hypotheses reduce to:(Al) for fixed m > 1, {hgm)}fﬁ
changes sign exactle once from negative to non-negative, and (A2) for fixed ¢ > 1 and all
m> 1, hg"'“) > hgm). Note that s}, can be written as s}, = min{i > 1: h.f-"") > 0} and
&1 = 9ma1- Now equation (2.8) reduces to

(2.9) R =a0 N

j2max(i4-1,s%,)

1 (m)
:’—-:—-i-hj B

where hf.l) =3 ,>id;j/j and h(_";) =~1forallm > 1.
When m = 1, under the condition (PS), hgl) satisfies (AR1). By virtue of (2.7) we
find

1 1.¢
(2.10) W -nl= 30 <20,
j2max(i+1,s7)

because for j > sj, hg-” is non-negative. Hence the hypothesis (AR2) holds for m = 1.

We shall continue the induction. When i+ 1 > s}, from the induction hypotheses we
have hsm) > 0. Then the second hypothesis (AR2) implies that for j > i+ 1,

(211) 0 S hgm) S hg,m+1) = () _.<. h;m) _<. ll§m+1)

When i + 1 < s, we have h{™ < 0, which implies from the hypothesis (AR2) that
hgl) < 0). Then since hgl) < 0 implies d; < 0, we have for i 4+ 1 < s},

(2.12) R — pmD = D, — A = —d,/i > 0.

Therefore the first hypothesis holds with m replaced by m+1. Now hgm”) can be written
as

i

(2'13) h$m+2) = h(l) + Z : 1 h(-m+1).
Taking the difference the above equation fro (3.7),

(2.14) R i) 3 3—_13{}4."‘“’ ~ 1™y >0,

j_>_max(i+l,s:"+l)

The first inequality follows from s}, > s}, and the last one follows from the hypothesis
(AR2). Hence the proof is completed.
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Poisson, geometric and uniform distributions satisfy the condition (PS) (see Presman
and Sonin [11]). As an exainple we study the uniform distribution in details.

Uniform case: The total number, N of objects is assumed to be uniformly distributed
on [1, No}. Thus fork = 1,2,--., 8 = 1/Np and 7 = (Np —k+1)/Np. Then the condition
(PS) is easily verified, since d; = (1/Np)(1 — Z;vz"'.ﬂ(l/j)), i = 0,1,--+, Ny, which is
increasing in 7. We need another modification. Let H{™ = Noh{™ (= ((No—i+1)/i)g\™)
for all m. Then from (2.9)

No

1 (m
(2.15) CHERE S D -

J=max(i+1,s},)

where H(V = YN (1/7)(1 = Yoo, (1/k)). 1f we let i/No — = and write H(™)(z) =

i=1
limy, H,gm), where i = i(Ng). and 3}, = liiny, s},,/No, a Riemann approximation to the
equation (2.15) yields :

1
(2.16) H™D () = HD(z) + / -1—H(m)(y)dy,
max(x,s?, )
where
(2.17) HY(z) = —-;- log® & — log «.

Since 5% (33 = 1) is unique solution x between 0 and 3%,_, of the equation H("™)(z) = 0,

(2.18) 5y, =exp{—(1+ vV1+2C(m)},

where C(Y) = 0 and

1
(2.19) ctm = /

.
m-—1

1
=H"D(y)dy.
¥

Therefore we have 5} = e~? ~.135335 and

(2.20) c?® = / ) 1(-—1 log®y — log y)dy = 2
e~ Y 2 3

p—3

Then by (2.18),we see §; = e~(1+v21/3) v 079856. Using (2.16) and (2.17), we have

11002 4 o 2 ~2
HO(g) = —glogx logm+.3, r<e
Llog’z ~ logz, . T>e"2,
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Substituting H(?(x) into (2.19),

-2

A I | LS N |
(3) — =Zlog?y — 1 ~(=log®y —1 d
C /2 y( 210gy ogy+3)dv+/ y(ﬁlogy og y)dy

e

| 17
(2.21) =3+ ﬁ\/ii,

where we use the relation — 1 log” 55 — log 53 + % = 0. By (2.18), we have 5} = exp{—(1 +
(V35 4+ 42v/21)/9)} = .04951742.

Corollary 1. When the total number objects has a uniform distribution on [1, No], the
limiting mazimum probability of obtaining the best object under the optimal rule for the
problem with m selections 1s given by —(3] log 3] + 35 log5, + -+ -+ 5}, log 37,).

Proof. Let o\™ = ((No — i+ 1)/i)V{™ and u(m) ((Np — i + 1)/i)UL™, then we
bave

(2.22) o™ = Z __ﬁ,,,(,,{{,,m) (m)} and w{™ = z om0,
'—:+l J__l
The optimal rule with a threshold s}, gives

3on—1 1 (m) Ly . .
v(m) . { J=i+l 7=1 ] + Z]-—a 'J- j ’ 1 < S — 1,
RG>

No 1 (m) : : *
= 74 129

Then we have the fol*owing relation
(2.23) o™ = 20{™ =3{™ =... = (s}, - l)v(':)

Thus the maximum probability is given by

1 m S — 1 m
(2.24) vim = -N;v§ ) = &'}Vrv’(’*- y

If we let i/Ny — z and write v(™(z),u(™(z) and 35}, as limy, vE}',‘@,,,limN,, “5713., and

limy, s}, /No, we have

f m lv("l)(y)dy +j u("l)(y)dy €T < q"“

i

v(m)(m) =
fa- “(m)( )dy, x> 35,

where

1
ul™(x) = / %dy + o™= Y(2).
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From (2.24), the limiting probability is given by 3% v("™ (5%, )(= o™, a(®) = 0). Thus

1
(2.25) a™ = E:n/ —?}u('-"')(y)dy.

m

On the other hand, 3}, satisfies the equatlon
1 1 . 1 1
(2.26) / ;dy 4 o(m=D(5* ) - / —?;u(m)(y)dy = 0.

Now we know from (2.23) that v(™m=1D(0+) = zv("~1(x) for z € (0, 5%,_,]. Hence
(2.27) ™D =g omD(gn ) = g0 h(E).
Substituting (2.25) into (2.26) and using (2.27),

al™ = alm=1) _ 3% log 5%,

which yields the desired result.

From this corollary, as Np — oo we see the maximum probabilities VV( ) 270670,

W'(z) — .472509, and IV( ) .621329 for the probleln with one, two and three selections
respect1Vely

3. Poisson arrival model

Let 7y, 73,-++ denote the arrival times of a Poisson process in chronological order and
let {N(t)}:>0 be the corresponding counting process. For the unknown intensity A of
the process, we suppose a prior exponential distribution, a exp{—aA}I(A > 0) where a is a
known nonnegative parameter. Bruss [12] has succeeded to show that the optimal stopping
rule which maximizes the probability of obtaining the best object in the given time interval
[0, T] with single selection is to accept (if possible) the relatively best object after time
(T'+a)/e—a. Here we consider the Bruss’s problem with multiple selections. As is shown in
Bruss, the posterior distribution of N(T') generated by 71, - - - , 7; only depends on the values
of ¢ and 7; and equals negative binomial distribution with parameters (i, (s + a)/(T + a)),
that is, for 0 < s < T, '

P(N(T) = anl =y, Timg =y, T = .g)r..-_- P(N(T) - "lTi — 8)

o - ()serma- o

Let W',-(m)(s) denote the maximum probability of obtaining the best object when we
confront the relatively best object which is éth object arriving at time s (0 < s < T') and we
can select more m (> 1) objects hereafter. Similarly if m more selections are allowed, let
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U™ (s) (V™ (s)) be the corresponding probability when we accept (reject) the relatively
best object which is jth object arriving at time s. Using Bruss’s result we have

U™(8) = 36/ mP(N(T) = nlri = 5) + V""" (s)
n>i

_ 9 +a

" T+a

(3.2) + VI D).

Denote the transition probability given prior exponential distribution that (i 4 k)th object
arriving at time s4-u is the ﬁrqt relatively best object after ith object which is the relatively

best arrived at time s by p( ;)), then we have

(3.3) vimM(s) = / Zp{f;;’w,‘:;z(s + u)du
k21

andfork>1, 0<u<T~s,

d o [TRIOOI O ket
(o) ™ (k-1 (G+k-1D(E+k) i! ‘

. _ s+ a i+ k-2 sta ;. u k—1

(3.4) —_(3+a+u)2( k-1 )(.9+a+u.)(s+a+u) ’

where we apply the equation [ A+ exp{—A(s+a+u)}dA = T(k+i+1)/(s+a+u)k+it!
to the right hand side of the first equation above. Then we have the dynamic programming
equation for ¢,m > 1,0< s < T,

(3.5) Wi™(5) = max{U;™(5), V™ (5)},

with boundary conditions W™ (T) = 1 for i,m > 1 and W " (s) = 0 for all i and s. Let

ygm)(s) be the one-stage look-ahead function, that is,

o™ (s) = U™ (s) - / Y pEDULT s 4 updu

E>1
T—a
_fta (ku)s+a+u
-T+a /(; ,;('93)( T +a )u
T—s
/ Ef‘su)) 1(-:;:1)(3 + U) V,(:Z,"l)(s + U)}dll
k>1
s+a
- (T a)}
7_
(3.6) / ZPE:C.")) ’(:;c—l)(s +u) — t(+";c 1)(5 + u) }du,

k>1
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where we use Y, 5, pgf:‘)) = (8 + a)/(s + a + u)? (independently of i), since I)Eff)') =

(s+a)/(s+a+ u)? x {negative binomial distribution with parameters (k, u/(s+a+u))}.
Theorem 2. The optimal rule for the problem with random arrivals on [0, T] following

a Poisson process at intensity X\ > 0 having an exponential distribution with rate parameter
a 2> 0 when we can select m more objects hereafter is to accept(if possible) the first relatively

best object after time s;, = (T + a)/ec(m) —a (s =T), where C(™ is constant.

Proof. Let hsm)(s) =({(T+a)/(s+ a))g§m)(s). As induction hypotheses, we assuine
that 1{™(s) is independent of i and for fixed m

(APY) Mm(s) > 0= h™(s+u) >0 for uel0,T - s],

h(m)(s) for s € (0, 8},_,] has the following form,
s+ a

(m)(g) = Clm)
(AP2) hm(s)=C +log(T+a),

where C(™) is constant, and for all m
(AP3) RmEN (5) > R(M)(s).

From these hypotheses, we have s}, = inf{0 < s < s}, _, : h('")(s) >0} =T+
a)/e®™ — a and

WL (s +u) = VR s+ u) = g™ (s + w)l(s + u > 87,),

s+ u+ta
(3.7) | = (e

T+a Y™ (s 4 u)I(s + u > st,),

which follows when s + u > s},

T—8
m m m k,u
W,-(_Hc)(s + u) == Uz'(+k)(8 + u), V,-(J:k)(s +u) = /0 E I’Ei,s))Ui(:;c)(s + u)du.
k>1

Substituting (3.7) into (3.6),

(m+1) 1)y T+a, - T=s (k,u) g (m)
R (9) = B V(s) + ( ) > py B (s + u)du
(s

(i,9)
s + a :rl~")+ kzl

= K (o) 4 ( RO -+ u)du

T+a /T-” s+a s+u+ta
st+a (,.;”-,)+(8+U+a)2 T+a

T-s 1

(3.8) - =) + / K™ (s + u)du(= RH(s)),

J(ss,-s)+ ST U+
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being independently i, where

s4a
3.9 K (s) = 1 + log(o—
(3.9) 1(9) + Og(T+a)’

which is increasing in s. Therefore h(!)(s) satisfies the hypotheses (AP1) and (AP2) with
CM) = 1. Since AV(s) is non-negative for s > s}, by virtue of (3.8)

T~s 1

K2(s) = 0(s) = | R (s + wjdu > 0.

(3;_6).} s+u+ta

Thus the hypothesis (AP3) holds for m = 1.

To comnplete the induction, we shall show that these hypotheses hold for m replaced
by m + 1. Recalling (3.8), for s < s}, = (T + a)/cC(m) —a

T—s
! 1
’(m+l) — ’(1) +/ ______________"(m) + 1
1 (s) = h'"(s) Tbay/ect™) oy 3 ¥ uF 0 (3 + u)du
s+ a
.10 - S (m+l)
(3.10) log(T+u)+C ,
where
1 1
(3.11) CmD =14 / oy TRUUT + @)y~ a)dv,
e-c'™

where we change the variable from (s + u + a)/(T + a) to v in the integrand in (3.10).
(3.10) states (AP2) holds with m replaced by m + 1. Now we see h{™*+1)(s) is increasing
in s € (0,s%]. On the other hand, for s € [s%,,T], h{™*V)(s) is non-negative because by
the hypothesis (AP3)

0 < hi™(s) < Al (s),

Hence we have
(3.12) R (5) > 0= ™D (s 4 u) > 0 for u € [0,T - s,

which states (AP1) holds with m replaced by m + 1. Now h(™+2)(s) can be written as

T~-s 1
R (s 4 u)du.

3.13 him+2) gy = p(1) / 1
(3-13) {m¥2(s) (s) + (o1, —ayt S UFQ

Taking the difference the above equation from (3.8)

T—s 1

R (5) — RO (5) > / {7 (s + ) = ™ (s + u)}du 2 0,

(S:n‘+

1-—.9)*' s+u+a
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where the first inequality comes from s}, > s, ., and the second one comes from the
hypothesis (AP3). Thus (AP3) holds for all m and the proof completes.

As shown in the proof, s} = (T + a)/e — a. From (3.11),

1 1

(3.14) C? = 1+/

1

%h(l)((T +a)v—a)dv=1+ /

e~

1 1
—{1+1 dv =1+ —.
’v{ + log v}dv | —l—2

Then s3 = (T + a)/e3/? — a. By virtue of (3.8),
p(s) < | 2B 0<a e,
S 1-dleg’(3%2), s3<s<T.
Substituting the above into (3.11), for s < 8

(3.15) C‘3’=1+/ ~1-(—3-+logv)(lv+/

,—3/2 U e=1

1, 1, 4 23
;(l—ilog v)dv-—.l-}-ﬁf

Then s} = (T + a)/e*"/? — a.

For a = 0, it is of interest to compare the values s} = T'/e ~ .367879T, s} = T/e3/2 =
223137, s3 = T/e'"/2* ~ ,141093T, with the threshold values n/e =~ .367879n, n/e3/?
~ .22313n, n/e?"/?* ~ 141093n, of the no-information case.
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