<table>
<thead>
<tr>
<th>Title</th>
<th>Skeletons of some relatives of the n-cube (Optimization Theory and its Applications in Mathematical Systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>DEZA, Antoine; DEZA, Michel</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1995), 899: 114-120</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/84512</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Skeletons of some relatives of the n-cube

Antoine DEZA * \hspace{1cm} Michel DEZA *

(アントワーヌ・デザ) \hspace{1cm} (ミッシェル・デザ)

* 東京工業大学理工学研究科情報科学専攻 \hspace{1cm} * フランス科学研究庁 Ecole Normale Supérieure, Paris, France

January 1995

Abstract

We study the skeleton of several polytopes related to the n-cube, the halved n-cube, and the folded n-cube. In particular, the Gale polytope of the n-cube, its dual and the duals of the halved n-cube and the complete bipartite subgraphs polytope.

1 Introduction

The general references are [2, 6, 12] for polytopes, [4] for graphs and [5] for lattices. We first recall some basic properties of the cube and the halved cube.

The vertices of the n-cube $\gamma_n = [0,1]^n$ are all the 2^n characteristic vectors χ^S for $S \subset N = \{1,2,\ldots,n\}$, that is, $\chi_i^S = 1$ for $i \in S$ and 0 otherwise. With $|S\Delta S'|$ denoting the size of the symmetric difference of the subsets S and S', two vertices χ^S and $\chi^{S'}$ are adjacent if and only if $|S\Delta S'| = 1$. The skeleton of γ_n is denoted by $H(n,2)$ and the skeleton of its dual, the cross-polytope $\beta_n = \gamma_n^*$, is $K_{2\times n}$, which is also called the Cocktail-Party graph. The diameter of the n-cube and its dual are, respectively, n and 2.

The halved n-cube $h\gamma_n$ (see Section 8.6 of [6]) is obtained from the n-cube γ_n by selecting the vertex of even cardinality on each edge, that is, $h\gamma_n$ is the convex hull of all the 2^{n-1} characteristic vectors χ^S for $S \subset N = \{1,2,\ldots,n\}$ and $|S|$ even. Two vertices χ^S and $\chi^{S'}$ are adjacent if and only if $|S\Delta S'| = 2$. The skeleton of the halved n-cube is denoted by $\frac{1}{2}H(n,2)$; its diameter is $\lceil \frac{n}{2}\rceil$.
2 Skeleton of the dual halved \(n\)-cube

The halved 3-cube is a regular tetrahedron \(\alpha_3\). The halved 4-cube is the simplicial polytope \(h\gamma_4 = \beta_4\). For \(n > 4\), the facets of \(h\gamma_n\)-cube are partitioned into the following two orbits of its symmetry group \(2^{n-1}\text{Sym}(n)\). The orbit \(O_1^n\) consists of the 2\(n\) facets belonging to the facets of the \(n\)-cube and defined by the inequalities:

\[
x_i \leq 1 \quad \text{for } i \in N, \\
x_i \geq 0 \quad \text{for } i \in N.
\]

The orbit \(O_2^n\) consists of the 2\(n-1\) facets cutting off the vertices of odd cardinality from the \(n\)-cube and defined by the inequalities:

\[
\sum_{i=1}^{n} x_i(1 - 2\chi_{i}^{A}) \leq |A| - 1 \quad \text{for } A \subset N \text{ and } |A| \text{ odd.}
\]

The facets defined by the inequalities (1), (2) and (3) are respectively denoted by \(F_{1}^{i}\), \(F_{0}^{i}\) and \(F^{A}\). Since the symmetries of a polytope preserve adjacency and linear independence, we can describe the properties of its facets by simply considering a representative facet of each orbit. The facets \(F_{1}^{i} \simeq F_{0}^{i} \simeq h\gamma_{n-1}\) (here and in the following " \(\simeq\) " denotes the affine equivalency) and each facet \(F^{A}\) is the simplex containing the \(n\) vertices: \(\chi_{i}^{A \cup \{i\}}\) for \(i \in \bar{A}\) and \(\chi_{i}^{A \setminus \{i\}}\) for \(i \in A\).

The skeleton of the dual halved \(n\)-cube, denoted by \(h\gamma_n^*\), is the graph whose nodes are the facets of \(h\gamma_n\), two facets being adjacent if and only if their intersection is a face of codimension 2. This skeleton is given below.

Lemma 2.1 The facets of \(O_1^n\) and \(O_2^n\) form, respectively, the coclique \(K_{2n}\), and the coclique \(K_{{2n-1}}\); each facet \(F^{A}\) is adjacent, either to \(F_{1}^{i}\) if \(i \in A\), or to \(F_{0}^{i}\) if \(i \in \bar{A}\) for each \(i \in N\).

Corollary 2.2 For \(n \geq 4\), the skeleton of the dual halved \(n\)-cube is a bipartite graph of diameter 4.

Proof. Since the valency of a facet belonging to \(O_1^n\), respectively to \(O_2^n\), is half the size of \(O_2^n\), respectively of \(O_1^n\), we have \(\delta(h\gamma_n^*) \leq 4\). On the other hand, the facets \(F_{1}^{i}\) and \(F_{0}^{i}\), having no common neighbour, we get \(\delta(h\gamma_n^*) > 3\).

Corollary 2.3 The halved \(n\)-cube has \(n 2^{n-2}\) faces of codimension 2 which are all simplices, that is \(h\gamma_n\) is quasi-simplicial. For \(n \to \infty\), \(h\gamma_n\) is asymptotically simplicial.
3 Gale transform of the n-cube

Let A be a $(2^n - n - 1) \times 2^n$ matrix which rows form a basis for the space of all the affine dependencies on the vertices of the n-cube. A Gale transform of γ_n is the collection of the 2^n points in \mathbb{R}^{2^n-n-1} which are the columns of A.

We consider the matrix A induced by the following $2^n - n - 1$ affine dependencies on the vertices of γ_n:

\[(1 - |T|)\chi^\emptyset + \sum_{i \in T} \chi^{\{i\}} - \chi^T = 0 \quad \text{for } T \subset N \text{ and } |T| \geq 2. \tag{4}\]

Since each column of A corresponds to a vertex χ^S of γ_n for $S \subset N$, we simply denote by v^S the vector formed by this column of A. For example, the first column of A corresponds to χ^\emptyset and forms the vector $v^\emptyset = (1 - |T|)$, where \mathbb{R}^{2^n-n-1} is naturally indexed by $T \subset N$, $|T| \geq 2$.

A *Gale polytope, Gale(P)*, of a polytope P is the convex hull of a Gale transform of P. In the following we consider Gale(γ_n) associated to the affine dependencies (4). The polytope Gale(γ_n) is a prism over a tetrahedron; see also Example 5.6 in [3] for relation with Lawrence polytopes. For $n \geq 4$, we introduce some edges and facets of Gale(γ_n) in order to compute its diameter and the one of its dual.

Consider the following inequalities, where x_T for $T \subset N$ and $|T| \geq 2$ are the coordinates of a point x in \mathbb{R}^{2^n-n-1} indexed by $T \subset N$, $|T| \geq 2$.

\[-x_A \leq 1 \quad \text{for } |A| = 2, \tag{e_1}\]
\[x_{A \setminus \{i\}} - x_A \leq 1 \quad \text{for } |A| \geq 3 \text{ and } i \in A, \tag{e_2}\]
\[x_A \leq 1 \quad \text{for } |A| = 2, \tag{e_3}\]
\[x_{A \cup \{i\}} - x_A \leq 1 \quad \text{for } |A| \geq 2 \text{ and } i \notin A, \tag{e_4}\]
\[2 \sum_{j \in N} x_{\{j\}} - 2x_{\{i\}} + (n-1)(x_N-1) \leq 0 \quad \text{for } i \in N, \tag{e_5}\]
\[\sum_{|T| \geq 2} x_T - 2^n(x_A + x_B) \leq 2^n - 1 \quad \text{for } |A|, |B| \geq 2 \text{ and } 2(|A| + |B|) \leq n + 3. \tag{e_6}\]
One can easily check that each of those inequalities induces an edge of $Gale(\gamma_n)$. More precisely, (e_1) and (e_2) induce the edges $[v^\emptyset, v^A]$ for $|A| \geq 2$, $(e_3), (e_4)$ and (e_5) induce the edges $[v^i, v^A]$ for $|A| \geq 1$ and $i \not\in A$ or $A = N$ and (e_6) induce the edges $[v^A, v^B]$ for $|A|, |B| \geq 2$ and $2(|A| + |B|) \leq n + 3$.

Property 3.1 The diameter of $Gale(\gamma_n)$ is at most 2. Moreover, $\delta(Gale(\gamma_3)) = 2$ and $\delta(Gale(\gamma_4)) = 1$.

Proof. The vertices v^\emptyset and v^A are respectively linked by the edges $[v^\emptyset, v^N]$ and $[v^N, v^A]$ for $|A| = 1$ and by the edge $[v^\emptyset, v^A]$ for $|A| \geq 2$. The vertices v^i and v^j always form an edge, v^i and v^A are linked by $[v^i, v^j]$ and $[v^j, v^A]$ with $j \not\in A$, for $2 \leq |A| \leq n - 1$, and $[v^i, v^N]$ form an edge. Finally, the vertices v^A and v^B are linked by the edges $[v^A, v^\emptyset]$ and $[v^\emptyset, v^B]$ for $|A|, |B| \geq 2$.

We then consider the following 2^{n-1} inequalities.

$$2^{n-1}x_A - \sum_{|T| \geq 2} x_T \leq 1$$

for $A \subset N$ and $|A| \leq 1$,

$$2^{n-1}(x_A + x_{\overline{A}}) - \sum_{|T| \geq 2} x_T \leq 1$$

for $A \subset N$ and $2 \leq |A| \leq n - 1$.

One can easily check that each of those inequalities induces a facet G^A of $Gale(\gamma_n)$ for $A \subset N$ and $|A| \leq n - 1$. Since each facet G^A contains all vertices except the pair $\{v^S, v^S\}$, we call them the huge facets.

Lemma 3.2 The huge facets form the clique $K_{2^{n-1}}$ in the skeleton of $Gale^*(\gamma_n)$.

Proof. Let us first consider $g = G^A \cap G^B$ with $A, B \subset N$ and $2 \leq |A|, |B| \leq n - 1$. The face g contains all the vertices of $Gale(\gamma_n)$ except $\{v^A, v^A, v^B, v^B\}$. We show that g is of codimension 2 by exhibiting a family V of $2^n - n - 2$ affinely independent vertices belonging to g, this will imply that G^A and G^B are adjacent. Namely, V is formed by the vertices v^S with $S \not\subset \{A, \overline{A}, B, \overline{B}\}$ and $|S| \geq 2$ and the vertices $\{v^i, v^j\}$ with $1 \leq i < j \leq n$ such that $v^i_A = v^i_B = 1$ and $v^j_B = v^j_A = 0$. In the case $0 \leq |A|, |B| \leq 1$, V is formed by the vertices v^S with $S \not\subset \{A, \overline{B}\}$ and $|S| \geq 2$. Finally, in the case $0 \leq |A| \leq 1$ and $2 \leq |B| \leq n - 1$, V is formed by the vertices v^S with $S \not\subset \{\overline{A}, B, \overline{B}\}$ and $|S| \geq 2$ and the vertex v^\emptyset.

Property 3.3 The huge facets form a dominating clique in the skeleton of $Gale^*(\gamma_n)$.

Proof. Since the pairs $\{v^S, v^S\}$ form a partition of all the vertices of $Gale(\gamma_n)$, for any facet F, at least one huge facet G^A satisfies $|G^A \cap F| = |F| - 1$. This implies that G^A is adjacent to F; in other words, the huge facets form a dominating clique.

\(\square\)
Corollary 3.4 The diameter of $Gale^*(\gamma_n)$ is at most 3. Moreover, it is 2 for $n = 3, 4$.

Conjecture 3.5 For $n \geq 4$, the diameters of the Gale polytope of the n-cube and of its dual are 1 and 2, respectively.

4 Complete bipartite subgraphs polytope

We recall that the folded n-cube \square_n is the graph whose vertices are the 2^{n-1} partitions of $N = \{1, \ldots, n\}$ into two subsets, S and \bar{S}; two partitions being adjacent when their common refinement contains a singleton. In particular, $\square_4 = K_{4,4}$ and $\square_5 = \frac{1}{2}H(5,2)$, also called the Clebsch graph.

The complete bipartite subgraphs polytope c_n, which is also called the cut polytope of the complete graph, is a relative of the folded n-cube. More precisely, the vertices of c_n are the 2^{n-1} incidence vectors $\delta(S)$ in $IR^\left(\binom{n}{2}\right)$ of the partitions of N, that is, $\delta(S)_{ij} = 1$ if exactly one of i, j is in S and 0 otherwise for $1 \leq i < j \leq n$. It is easy to check that the squared Euclidian distance between two partitions, seen as vertices of c_n, is $d(n - d)$, where d is their path distance, in the graph \square_n. Now, $c_3 = h\gamma_3 = \alpha_3$ and c_4 is combinatorially equivalent to the simplicial 6-dimensional cyclic polytope with 8 vertices. The symmetry group of c_n is isomorphic to the automorphism group of \square_n, see [10]. See [11] for a detailed treatment of c_n.

The skeleton of c_n is the clique K_{2^n-1}, see [1]. The determination of all the facets of c_n for large n seems to be hopeless, but a wide range of facets has been already found (including all for $n \leq 7$). It seems that the huge majority of them are simplices for large n, that is, c_n is asymptotically simplicial, as well as $h\gamma_n$. In [7] it was conjectured (and proved for $n \leq 7$) that $\delta(c_4^*) \leq 4$; moreover, $\delta(c_4^*) = \delta(c_5^*) = 2$ and $\delta(c_5^*) = 3$. Actually, the skeleton of c_4^* is the line graph of the folded 4-cube.

Remark 4.1 Using the basis of the space of affine dependencies on c_5 given in [8], we found by computer that $Gale(c_5) \simeq h\gamma_5$; recall that $\overline{\gamma_5} = \frac{1}{2}H(5,2)$. Clearly, $Gale(h\gamma_4) \simeq \alpha_3$ and $Gale(h\gamma_5) \simeq c_5$; more generally, for n odd, $Gale(h\gamma_n)$ can be obtained from the following basis of $2^{n-1} - n - 1$ affine dependencies:

$$(n - 1) \sum_{i \in X} x_{N\setminus \{i\}} - |A| \sum_{i \in N} x_{N\setminus \{i\}} + (n - 1)x_A = 0 \text{ for } |A| \text{ even, } 2 \leq |A| \leq n - 2.$$
Finally, we mention cont_m, the contact polytope of the lattice $\mathbb{Z}(V_m)$ in \mathbb{R}^n studied in [9], where V_m denotes the set of vertices of c_m, that is, cont_m is the convex hull of all vectors of this lattice having the minimal length $\mu = \min(4, m-1)$. Clearly, it comes from the construction A given in Chapters 5, 7 of [5] with V_m seen as a linear binary code with $n = \binom{m}{2}$, $M = 2^{m-1}$ and $d = m - 1$. We have,

- $\text{cont}_2 = \text{conv}\{\pm e_1\} = \beta_1$ and $\mathbb{Z}(V_2) = \mathbb{Z} = A_1$,
- $\text{cont}_3 = \text{conv}\{\pm e_i \pm e_j : 1 \leq i \neq j \leq 3\}$ is the cubo-octahedron (the vertices of this Archimedean solid are the midpoints of the edges of γ_3) and $\mathbb{Z}(V_3)$ is the face-centered cube lattice $A_3 \cong D_3$,
- $\text{cont}_4 = \text{conv}\{\pm \delta(i), \pm \delta(i) - 2e_{ij} : 1 \leq i \neq j \leq 4\} \simeq h\gamma_6$,
- cont_5 is a 10-polytope with the following 100 vertices: $\{\pm 2e_{ij} : 1 \leq i \leq j \leq 5\} \cup \{\delta(i) - 2\sum_{\{jk\} \in X} e_{jk} : 1 \leq i \leq 5, X \subset E(K_{\{1,2,3,4,5\}-i})\}$. So, cont_5 is the union of $2\beta_{10}$ and five 4-cubes γ_4, this polytope has 4 624 facets divided into 4 orbits of its symmetry group $2^5\text{Sym}(5)$, moreover, the orbit formed by the 384 facets equivalent to the one induced by the inequality $\sum_{\{ij\} \in C_{1,2,3,4,5}} x_{ij} \leq 2$ forms a dominating set in the skeleton of cont_5^*,
- for $m \geq 6$, $\text{cont}_m = \text{conv}\{\pm 2e_{ij} : 1 \leq i \leq j \leq m\} \simeq \beta_{\binom{m}{2}}$.

So, the kissing number of the lattice, that is the number of vertices of cont_m, is $\tau = 2, 12, 32, 100, m(m - 1)$ for $m = 2, 3, 4, 5, \geq 6$.

Figure 4.1: The contact polytope of $\mathbb{Z}(V_3)$ is a cubo-octahedron
References

ANTOINE DEZA
Tokyo Institute of Technology, department of information sciences, Meguro-ku, Ookayama, Tokyo, Japan. E-mail: deza@is.titech.ac.jp

MICHEL DEZA
CNRS, Ecole Normale Supérieure, département mathématiques et informatique, 45 rue d’Ulm, Paris, France. E-mail: deza@dmi.ens.fr