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OCCUPATION MEASURES
IN AVERAGE COST MARKOV DECISION PROCESSES

FHEKRY BEHEH R £AKINGESTU SOH)
FHEAY BEFEF RIKEMHMASANORI HOSAKA)

ABSTRACT. We consider the average cost Markov decision processes (MDP’s) with gen-
eral state and action spaces. Extending the idea in Borkar’s excellent paper [3,4]. We de-
fine an extended occupation measure associated with the class of policies for MDP’s and
an annexed index (called a power), by which the validity for optimization is measured.
Also, by construction of an extended occupation measure, the policy with robustness
for the cost function is given. The proofs are done without continuity and compactness
and universally and/or analytically measurable policies are unnecessary to describe the
results, which are new in this paper.

1. INTRODUCTION AND NOTATION

Studies on Markov decision processes(MDP’s) are done mainly in the case of the known cost
function (see [9]). But in many applicable areas, it often occurs that the cost function is unknown
or partially unknown. In such a case, the policy with robustness for the cost function will be
useful. In this paper, we consider average cost MDP’s with general state and action spaces and
try to construct the policy robust for the cost function.

For the sake of this purpose, extending the idea of occupation measures in Borker [3,4], we
introduce an extended one associated with the class of policies for MDP’s and an annexed index
(called a power), by which the validity for optimization is measured. Also, constructing the
occupation measure by the method of obtaining a measure from a pre-measure (see [7,8]), the
policy with robustness for the cost function is given. The discussion in this paper is done under
some minorization conditions which is often used in the study of ergodicity of Markov chains
((10]).

The case of general state and action spaces is usually discussed under analytic or universal
measurability (for example, see [1,6]). But, in this paper, the proofs are done only under
Borel measurability. Also, the hypotheses of continuity and compactness are excluded from our
discussion. These fact are new as far as we are aware.

A Borel set is a Borel subset of some complete separable metric space. For any Borel set X
and Y, let Bx be the set of all Borel subsets of X, P(X) and B,(X) the sets of all probability
measures and non-negative real valued and bounded Borel measurable functions on X respec-
tively, and T(X|Y') the set of all stochastic kernels on Bx XY, i.e., ¢ € T(X|Y) means that
for each y € Y, ¢(-|y) ia a probability measure on By and for each D € By, ¢(D|-) is a Borel
measurable function on Y.

Let (S,A4,¢,Q) be MDP’s, where S and A are Borel sets, ¢ € B1(S x A) and Q € T(S]|S5 x A).
The state of the process is denoted as a point in S. If, in state x € S, we take action a € A, the
process incurs a cost ¢(2,a) and moves to state z’ on the next transition with the probability
Q(-|z,a). We treat the case of the cost function being unknown, so that ¢ is thought of as a
variable. For each t > 0, let denote by X, and A, the state and action at ¢-th time respectively.

The sample space is the product space 2 = (§ x A)*°, where X; and A, are projections from
2 on the t-th factors S and A.
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A policy 7 = (mg, 71, - ) denotes a rule of taking actions that depend on both the current state
and the past history of the process and which can be randomized, so that 7, € T(A|(S X A)* x 5)
fort > 0.

For any & € T(A|S), if we choose the action randomly according to @(-|z) in a current state
z € §, regardless of the past history, such a policy is called randomized stationary and denoted
by (=),

Let denotes by B(S — A) the set of all Borel measurable functions u : § — A. A ran-
domized stationary policy (> is called stationary if there exists an f € B(S — A) such that
®({f(z)}|z) = 1 for all z € S. Such a policy will be written by f(*).

For each policy 7 € II and initial state distribution v € P(S), we can define the probability
measure P on the sample space 2 in an obvious way.

We shall consider the following average cost criterion: For any 7 € II, v € P(S) and ¢ €
B, (S x A), let

T-1

. 1 x
(1.1) U(v,m,c) 1= ll;n_’sip T Z E[e(X,, AL)],

t=0

where EJ is the expectation operator w.r.t. PJ. Let
U(v,c):= }EJfTW(lI,ﬂ’,C).
For any subspace B C B, (S x A), v € P(S§) and € > 0, we say that #* € I is (v,e)-optimal for
B, if V
U(v,m*,c) <¥(v,c)+¢ forall c€ B.
Also 7 € II is e-optimal for B, if
V(z,m,c) <¥(z,c)+¢e forall c€ Bandz € S,

where the degenerate initial distribution concentrated at the point z is denoted by z. As a
subclass of B, (S x A) in the above, the following will be of interest :

BY :={ce By(Sx A)|e(z,a) <M forall (z,a) € Sx A} for M >0.
We will need the following well-known results which is used in the sequel.

Lemma 1.1 ([2]). For any ¢ € T(A|S) and u € B, (S x A), there exists an f € B(S — A)
such that

u(z, f(z)) < /u(w,a)@(da]x) forallz € S.

Lemma 1.2 (Tauberian theorem, cf. [11]). Let {a;} be a bounded sequence of real
numbers. Then:

: L = 1R
(1) hIngllnf(l - ﬂ);ﬂ’at > hq{rl.lol.}f TZ; ax,
=} 1 T-1
(i) limsup(l1 - 8))_ f'a; <limsup = > a, and
2} t=0 7w T 13
1 T-1 00 1 T-1
(iif) if Th-{%o T ; a; exists, 15?11(1 -~ ﬂ)gﬂta, = Th—-nt}o T ; a;.

In Section 2, an occupation measure associated with the class of policies is given and its validity
for optimization is discussed under a minorization condition. In Section 3, we are concerned
with the construction of an occupation measure. In Section 4, optimization is discussed in the
treatment of an occupation measure.
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2. OCCUPATION MEASURE : DEFINITION

In this section, we define the occupation measure of the average cost case by considering it
from the discounted one, and give its validity for optimization under a minorization condition.
For any (0 < 8 < 1),v € P(S), 7 € Il and g € B, (S X A), let

(2.1) | LEp(9) = 2 FElo(Xi, A and
(2.2) Ly (g) = liminf(1 ~ B)L; 5(g).

For any D € Bsxa, when g = Ip in (2.2), we write it simply by L7(D), where Ip is the indicator
ie, Ip(z)=1ifz € Dand Ip(z)=0ifz ¢ D.
Let I' C II,v € P(S) and p € P(S X A). Then, if there exists a constant K > 0 such that

(2.3) | K / gu(d(z,0)) < inf Li(g) forall g € By(S x A),

4 is called an occupation measure associated with 1I' and v. When II' = I , i is simply called
an occupation measure associated with v. Let

K*(Il',v) := max{K | K satisfies (2.3)}.

In order to prove one of the main results we need the following minorization condition which
is often used in the study of ergodicity of Markov chains (for example, see [10]).

Condition A.  There exists a measure 4(-) on § such that ¥(S) > 0 and Q(D|z,a) > v(D)
for all D € Bs and (z,a) € S x A. ‘
Under Condition A, the following holds (for example see [10}):

1 T-1

(2.4) (1,8, c) = lim 7 E?[e(X,,4,)] for all v € P(S),® € T(A|S).

t=0
For the rest of this section we assume that Condition A holds. Let
Q(|lz,a) :== Q(-|z,a) — ¥(-) for any (z,a) € § x A.
Then, if we put o := Q(S|z,a), clearly 0 < a < 1.
Theorem 2.1. Suppose that Condition A holds. Then, for the occupation measure y associated
with II' C I, v € P(S), there exists a randomized stationary policy ®(*) satisfying
\ — K* (Hl, V))
l-«

(2.5) ‘ !F(z/, =) ¢) < ienlgl Y(v,m,c)+ lleli@

for all ¢ € B,(S x A), where || - || is the supremum norm.

We observe from (2.5) that the occupation measure u becomes as more powerful for optimiza-
tion as K*(II',v) nears to 1. So, we will call it a power of u.

We provide a proof of Theorem 2.1 in a series of Lemmas, some of independent interests. For-
any @ € T(A|S), the t-step transition w. 1. t. @ are defined by

(2.6) 9V (fz,#) = / 0|z, a)®(dajz) and
(2.7) (12, 9) = [QV(le, 97 (dzle,®) (2 0)

where 5(0)(Dla:,d§)\:= Ip(z) for all D € Bs.

We have the follbwing lemma:
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Lemma 2.1. For any & € T(A|S),z € Sandt >0,
(i) -Q-(t)(Sl:v,dS) =a' and

(if) E?[e(X,, A)] = / o(z,8)0(dz|c, ) + B, , where

< (k)

B, := Z//c(z,¢)Q (dz|z,®)y(dz), c(2,P) = /c(z,a,)@(da|z).

k=0
Proof. The proof proceeds by induction. For ¢t = 0,1, (i) is obviously true. Suppose that (i)
holds for ¢ > 0. By (2.7),

(Sl #) = o [T daile, @) = o,

which shows that (i) holds for ¢t + 1. Let B; := B(X,, A0, " ,Xi-1,4:-1,X;) and B :=
B(X,, Ao, -, X, A;), where B(Z) is the sub-o-field generated by the random element Z. For
simplicity, put E := Ef(w). Then, clearly it holds that

Ele(X1, A0)] = B[ [ (2 #)0(d=1Xo, A0) + [ e(z,8)7(d2)

= [ (27" (dl2,8) + By,
which implies that (ii) holds for t = 1. Suppose that (ii) holds for ¢.
Ele(Xet1, Avt1)] = E[E[e(Xi41, Ar41)1Bigi]] = E[E[e(Xi41, )|Bi]]

= B[ [ (2, 8)Q(d21X,, 8] + [ e(z,8)(d2)
= Bla(X, )]+ [ el 9)2(d2),
where E(m,a):/c(z,@)@(dzm,a).

Here, using the inductive assumption and (2.7), we get

Ele(Xi41, Ary1))

= [ 0@ Wle,#) + 3 o200 dely, @)2(d0) + [ elz,Dr(d2)

t
= [ ez 00" (dele,#) + 3 [ o(z, 07" dely, B)y(dy) + [ elz, B1(d2)
k=1
_ / o(2,8)0" ) (dz|z, 8) + By
This shows that (ii) holds for t +1. O

Let the discounted total cost hs(z, ) with S(0 < B < 1) be

hg(z, ) := Zﬂ‘Ef(m)[c(Xt,At)], for each z € 5,9 € T(A|S).

t=0

By Lemma 2.1(ii), hg can be rewritten as follows:

(2.8) hs(z, &) = iﬂ‘ / o(2, 80" (dz|z, ) + fj 3'B,.
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In order to argue the average cost case from the discounted cost one, we define the following
functions with suppression of ®:

(2.9) ho(y, ) := ho(y, 8)) = hy(z,8),
(2.10) h@)i= Y. [ etz 80 (del2, 9),
(2.11) h(y,z) := h(y) — h(z).

By Lemma 2.1(i), sup,¢s lfc(z,é)a(t)(dzlx,sﬁ)l < |le|let, (t > 0), so that h(z) is well-defined,
where || - || is the supremum norm.

Lemma 2.2. For any ¢ € T(A|S),
(i tim llhs( ) = Al =0 and
(ii) lim [|(1 = B)ha(:, ) = ¥(-, 8, || = 0.
Proof. For (i), by (2.8) we get
ho(v2) = 3" [ oz, 0@ (dely,0) - L8 [ c(2,8)0 ez, ),

so that, from Lemma 2.1(i),

hs(y,z) — h(y, )|

L t t T+
<31 - B ol 90 el @) + [ el 27 ez, 8] + T el
T T+1
<2Aell (1 -89+ 22l forany T2 1,

which shows that (i) holds.
For (ii), from (2.5) and Lemma 1.2(iii),

lim (1 = B)hy(z, &) - ¥(2,8),0)] = 0.

Also, observing the representation of hs(z, $(°)) in (2.8), (ii) follows. O

Proof of Theorem 2.1 .
We decompose the occupation measure p into vy € P(S) and & € T(A|S) such that (for
example,see [1]),

u(Dy % Dy) = /D &(Ds|z)vo(dz) for all Dy € Bs, Dy € Ba.
For this @, define hy(z, ), hs(z,y), h(z) and h(z,y) by (2.8) to (2.11) respectively. Then
hy(z, 8)) = / [e(z,a) + B / b (y, 8°)Q(dy|2, )] 8(dale) for all @ € S.
So that putting
pa(e,0) i= c(z,0) + 8 [ ha(y, 8)Qdlz,0) — ha(2,8),
we have

(2.12) / ps(z,a)u(d(z,a)) = 0.
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Also, wé have:

(2.13) L7 o(ps) = LT p(c) = L5 (c).
Now, let us prove (2.13). For simplicity, put hg(z) := hs(z,®()). Clearly it holds that, for
any given 7 € II,
(2.14) L 5(0) = ES7ha(Xo)] = [ ho(@)w(dz) = E}[ha(Xo))
Let _
Wt = ,BtC(Xt,At) + ﬂt+1hp(X¢+1) - ﬂthﬂ(Xt) for each ¢ 2 0.

Then, since
T

T
W, =3 Be(Xi, A)) + BT ho(Xr41) = hs(Xo),
0 t=0

we have

T T
E] [Z Ble(Xe Ad)] = EJ[he(Xo)) = E7 [‘; W] = BT E] [hg(Xr41))-

As T — oo in the above, it follows from (2.14) that
- (o) T — T — T
Lu,ﬁ(c) - Lf,/i (C) = Eu [Z Wt] = Eu [Z Eu [WtIBt]]?
t=0 t=0
where B; = 0(X,,A, : s <t). From the definition of W;, we observe that for each ¢ > 0,

E: [Wt |Bt] = ﬂtpﬁ(X,, At)-

Therefore, we get (2.13).
Here, we define:

(2.15) p(z,a) = c(x,a) + /h(y,a:)Q(dyIa:,a) - y'l(a:,di(""),c).
Then, the following holds:

Lemma 2.3.

(i) Lim |lps(+,-) = p(, )l = 0.
(i [ pe,au(d(z,a) = 0.
(iii) lirlx}Tilnf(l = B)L} 5(pp) = lirgTilnf(l ~B)L; 5(p) uniformly for = € II.

Proof. For (i),

pa(a,0) = c(2,0) + B [ ho(y,2)Q(dylz,a) + (B = Dhg(z,8).
So: "

Ipa(,0) = p(z,0)] < B [ Iha(y,2) = h(y, ) Q(dlz, 0

+ (1= B)lh(y, )| + (1 = B)h(z,8)) — ¥(z, 8, ¢)].

Thus, from Lemma 2.2, (i) follows. Also, by(2.12) and (i), clearly (ii) holds. Observing (i),
for any € > 0, there exists §; < 1 such that ||ps(-,-) — p(-,*)|| < € for all B with 8, < 8 < 1.
Therefore, for 8(f; < 8 < 1).

|L3.p(ps) — L7 5(P)| < ez:ﬂ’ =e(1-8)7,
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so that
\ (1= B)L5(ps) — (L = B)L7 5(p)| < &,
which shows (iii). O

Let us return to the proof of Theorem 2.1. By Lemma 1.2 and (2.4), we get
(2.16) | lim(1 - B)LES (¢) = ¥(v,8),c) and

(2.17) ]jrgTilnf(l = B)L; 5(c) < ¥(v,m,c).
It holds from (2.16) that
o liminf(1 - A)LT(c) — ¥ 8, 0) = liminf(1 — B)LT 5(p),
which yields by (2.17) and Lemma 2.3(iii) that
(2.18) V(v,m,c)— ¥(v,d) ¢) > hmmf(l ~ B)L} 5(ps) = L} (p)-
By (2.8), (2.10) and Lemma 1.2, it holds
“ ¥(2,8,0) = [ h(z)i(de),
so that, observing (2.15), we have
p(e0) = ol20) + [ HoQ(esle,) - (o).

Since h(z) < <

o Ple,a) +

i - (00)
7r1‘:;15,/!17(1/, m,c) W(V (2 c)

> 0. Thus, we obtain, from (2.18)

IR

= mell’ -« :
2 K [0+ i L) udte, ) - LU from (2.9
= ﬂ from Lemma 2.3(ii),
l-a
which completes the proof of Theorem 2.1. O

3. CONSTRUCTION OF OCCUPATION MEASURES

In this section we construct an occupation measure defined in Section 2 applying the method
of obtaining a measure from a pre-measure (see [7] in detail). From this purpose we need a
sub-class of policies which is used in the sequel.

For any (2°,a°) € § X A, integer d > 1 and positive number 5 > 0, let

{z°,a°,d,n} := {r € I | P*(X, =2°,A, = a° forsome nd <t < (n+1)d)>1n
- ' forall n > 0 and z € S}.

Using a policy = in II{z°,a°,d,n} means the probability that we take action a° in state z°
during each d-period is no less than 7. We define a set function 7 on Bsx4 by

(D) := WEH{:}:El,Et’,d,n} L}(D) forall D € Bsxa
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Then, 7(0) = 0 and 0 < 7(D) <-1, so T is a pre-measure. Note that T satisfies the superadditiv-
ity:
(3.1) (U D) 2 ) (D)

i=1 i=1
for any sequence {D;} with D; € Bsxa and D; N D; = 0(i # j). Using the pre-measure 7, we
define the set function ji on the collection of all subsets of S x A by

(3.2) (D) :=supp’(D), DCSxA,
550
where p°(D) = inf Y 7(Ci), d(C) = sup d(z,y), C C § x Aand disamet-
Ci€Bsxa,d(Ci)<6,Dcl i i z,yeC ’

ricon S X A.
Since all Borel sets are ji-measurable, the restriction of i to Bsx4 is a measure on Bgya (see
[7] in detail). We have the following lemma. '

Lemma 3.1.

(i) (D)< 1(D) forall D€ Bsys and

(ii) n/d < (S x 4) < L.

Proof. Clearly (i) follows from (3.1). For (ii), let 7 € II{z°,a°,d,n}. Then, for any D € Bgy4
with (z°,a°) € D, we have: ’

L3(D) = liminf(1 — )L} 5(D)
FT—l

3 3 1 m o o
> ’h’%ri’g}ff ; PI(X; =z° A; = a°), from Lemma 1.2,

(52 (n+1)d-1

. . 1 T o o
2l%gffz Z P/(X;=2° A4, =4a%,

n=0 t=nd
(5
> li}ging "2:1) P (X, =z°,A; = a° for some nd <t < (n + 1)d),

> n/d,
which implies 7(D) > n/d by considering = € II{z°,a°,d,n}. Thus, (ii) holds by the definition
of . O
Now, we can state the main result in this section.

Theorem 3.1. Forv € P(S5), there exists an occupation measure associated with II{z°,a°,d,n}
and v.

Proof. Let i be the measure defined by (3.2) with v. And define g € P(S x A) by u(-) =
A()/(S x A). From Lemma 3.1(ii), we see p is well-defined. The proof is completed by
showing that p satisfies the inequality (2.3).

Let g be a non-negative valued simple function defined by

o(2) = Y auln, (o),

where D; € Bsxa, DiND; =0(i # j),Ui=; Di = S X A and o; > 0(1 < i < m). Then, we have
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L;(g9) = inf lu[rilTllana,(l - B)L; 5(D;),

7rEH{:':" a" dn} €M {z°a,d,n}

from the additivity of L] 89

> Za,'T(D,') > Za,-ﬁ(D,-), from Lemma 3.1(i),

i=1 i=1
= KZagp(Di) = K/gdu, where K = ji(§ x A).
i=1

For any g € B, (S5 x A), let {g,} be a non-decreasing sequence of non-negative real valued simple
functions with lim g, = g. Then by the above result, it holds that

K/gndu < inf  I*g.) < inf _ L%(g) forall n> 1.

€l {z°,a°,d,n} re{z°,a°,dn}

As n — oo in the above, applying the monotone convergence theorem, we get

K / gdp < inf  L7(g),

KEH{I",G“,d,ﬂ}

which completes the proof. O
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