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We have studied the ability of two one-dimensional (1-D) time-stepping models, both based on the concept of magnetic viscosity, to
reproduce dynamic loops and losses in grain-oriented (GO) electrical steels under arbitrary magnetization regimes. We found that GO
steels (0.3 mm thick) can be modeled quite accurately at magnetizing frequencies up to 200 Hz by a thin sheet representation, which is
applied to a bulk material. At higher frequencies, acceptable results can be obtained through a finite-difference solver of a 1-D penetra-
tion equation whose applicability to GO steels can be explained in terms of domain wall bowing. Because of the inertial effect introduced
by the magnetic viscosity, the average error in the loss prediction is reduced from 40% for the conventional classical method to 5% for
the methods we studied. We demonstrated the accuracy of the models using two GO steels whose losses and B-H characteristics were

measured by computer-controlled Epstein and single-sheet testers.

Index Terms—TFinite-difference time-domain analysis, grain-oriented steel, losses, magnetic hysteresis.

I. INTRODUCTION

RAIN-ORIENTED (GO) electrical steel is almost univer-
G sally used for power transformer and converter cores due to
its superior magnetic properties when magnetized along the strip
rolling direction. Although the need for an accurate description
of magnetization processes in GO steel has grown with its devel-
opment, it remains until now a largely unsolved physical and en-
gineering problem. From an engineering viewpoint, an adequate
solution of the problem would be amodel, which is able to predict
details of dynamic magnetization curves (or B—H loops) under
arbitrary magnetization conditions and which canbeincorporated
into a transient simulator (electric circuit) where these conditions
are notknown in advance. Among a wide range of technical prob-
lems which could be solved with such a model, iron loss evalua-
tion is perhaps the most important, especially in view of the wide
variety of magnetization conditions encountered inmodern appli-
cations. Although the prediction of the specific energy loss (that
is the area enclosed by the dynamic hysteresis loop) is not a suf-
ficient criterion of the adequacy of the model, the loss aspect is
always at the focus of the consideration of more general problem
of the loop shape prediction.

Historically, the first (classical) magnetodynamic model [1]
of a thin ferromagnetic sheet was based on the solution of the
one-dimensional (1-D) Maxwell equation for plane electromag-
netic waves penetrating a homogeneous (nondomain) material
through the sheet surfaces. The plane nature of the waves is illus-
trated in Fig. 1(a), where dashed lines show the imaginary sur-
faces (parallel to the surface of the sheet) each point of which is
characterized by equal values of the magnetic induction B and
magnetic field H (both normal to the sheet cross section shown
in Fig. 1).

It was revealed long ago that the total loss calculated with this
model is invariably underestimated, even if an accurate static
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Fig. 1. (a) Classical and (b) domain representations of the loss calculation
problem in a thin sheet.

hysteresis model (SHM) is used to link the values of B and H
in the 1-D Maxwell (penetration) equation. The difference be-
tween measured and calculated losses, the so-called anomalous
or excess loss, becomes unacceptably large when the conven-
tional classical approach is applied to GO steel, Permalloy, and
many other commercial materials.

While the earlier explanations of the excess loss have been
suggested in terms of a modification of the classical eddy-cur-
rent theory (corresponding works are reviewed in [1]), this ap-
proach was later discarded in the hope of building a completely
new magnetization model without using the excess loss con-
cept. An alternative has been found in the framework of the
domain approach according to which changes in magnetization
are mainly confined within the thin domain walls (DWs), which
separate moving bar domains alternately magnetized at positive
and negative saturation. It is assumed that local electromotive
forces (EMFs) induced by such a motion are the source of mi-
croscopic eddy currents and corresponding losses. The loss cal-
culation in a regular domain structure of GO steel was initiated
by the well-known model of Pry and Bean (PB) [2], where the
motion of rigid DWs normal to the sheet surfaces, Fig. 1(b),
was analyzed. Contrary to the 1-D classical model with its plane
waves penetrating info the sheet depth, the 2-D PB model and its
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modifications are based on an array of magnetic domains whose
rigid or bowing walls move parallel to the sheet surface.

Despite numerous attempts to improve the PB model (for a
review, see [3]), its oversimplified nature was finally realized,
and the loss calculation techniques based on the continuous mo-
tion of regular domain structures are accepted today as being
of limited validity [4]. One reason for inaccuracy of the known
DW models is that most of them disregard the rotation of the
magnetization vector (domain rotation) which contributes con-
siderably at high magnetic induction levels. They also ignore
wall pinning on defects and different types of inhomogeneities
distributed over the sheet cross section [5]. These pinning sites
cause a discontinuous motion of domain walls or parts of walls
up to the jumps characterized by the energy dissipated by relax-
ation damping [6], [7], [34], [35]. The energy loss can also be
caused by the magnetostrictive deformation within DWs. Ac-
cording to [6], [34], and [35], this friction type mechanism is
responsible for the excess loss and a substantial part of the hys-
teresis loss. The main part of hysteresis phenomena may be ex-
plained by DW pinning that gives rise to a friction force op-
posing the wall motion [8]. The situation is further complicated
if we take into account the finite length of domains, their dif-
ferent orientations in different grains, the presence of flux clo-
sure domains [9], the unequal speed of different DWs, and do-
main nucleation and annihilation [10].

The energy loss, apart from that caused by eddy currents,
is due to phonon dissipation as a result of domain processes.
Since these factors can participate simultaneously in the mag-
netization process [11], it is practically impossible to combine
them within a single deterministic model. For this reason, it was
found expedient to deal with the loss problem in the framework
of a statistical approach and the loss separation principle [12],
in which the total loss, W, is decomposed into the components,
known as hysteresis loss, Wy, classical eddy-current loss, W15,
and excess loss, Wey.. Although the use of the classical com-
ponent is by no means obvious when the domain structure of
Fig. 1(b) is assumed, the loss separation is widely employed for
GO steel.

Another tool for inclusion of Wy in the loop and loss calcu-
lation is the dynamic Preisach model (DPM) [13] of hysteresis
which can be used instead of SHM in two ways. The first is
the application of the DPM to a specimen as a whole, and the
second is its incorporation into a 1-D Maxwell solver where it
is applied independently to every finite element in the sheet.

An attempt to apply a generalized DPM to bulk GO steel has
been reported in [14] where its suitability at low sinusoidal in-
ductions was shown up to 100 Hz. At levels higher than 1.3 T
the model [14] overestimates the excess loss in a way revealed
in [15].

The latter (magnetodynamic) utilization of the DPM is widely
implemented in modeling nonoriented (NO) steels [16]. How-
ever, we are not aware of any reports on such application of the
DPM to GO steels, although it is likely that attempts have been
made in this direction. This points at substantial difference be-
tween these materials and serious difficulties arising in the mod-
eling of GO steels.

In this paper, an attempt is made to answer the question
whether it is possible to develop a phenomenological model,
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TABLE 1
MEASURED PARAMETERS OF THE STEELS EMPLOYED
Steels P, d, H,, B, Measurement
pQ'm mm A/m T fixture
Steel 1 0.480 | 0.255 7.9 1.58 Epstein
Steel2 | 0.500 | 0.300 9.0 1.55 SST

which would be capable of satisfactorily predicting the shape of
the dynamic hysteresis loop of a sheet of typical GO steel when
the frequency of a sinusoidal (or the fundamental frequency
of nonsinusoidal) excitation voltage lies within a limited fre-
quency range, say within 0-200 Hz. It is assumed that several
dynamic loops used for the model fitting are measured at
sinusoidal induction within this range. It is also assumed that
the frequency content of the nonsinusoidal voltage can be
substantially wider than that used for sinusoidal measurements,
so one cannot use “black-box’’ methods, such as artificial neural
networks, which are essentially interpolative and do not possess
extrapolating ability [17].

The shortcomings of the DPM revealed in [15] have led us
to the idea of using the viscous-type dynamic hysteresis model
(DHM) [18], which maintains a fixed dependence of the excess
loss over an unlimited frequency range and provides the possi-
bility of changing the shape of the dynamic hysteresis loop. The
DHM has been incorporated in 1-D magnetodynamic model
[19] and also used for the “bulk calculation” [20]. Both these ap-
plications of the DHM concerned NO steel sheets whose prop-
erties can be experimentally studied quite accurately using the
Epstein frame [21]. In the present case of GO steel, the dynamic
loops calculated with single sheet models can be somewhat dif-
ferent from those measured with Epstein frame, which should be
considered in this case as 3-D fixture characterized by the flux
deviation from the rolling direction in the corners and therefore
a variation of the magnetic path length with the induction level
[22]. For this reason, we have also used the data [23] taken from
a single sheet tester (SST) whose advantage is a constant mag-
netic path. Although the data obtained with the Epstein frame
and SST have been taken from different sample geometries and
at different laboratories, the electromagnetic parameters of the
GO steels investigated with these standardized fixtures are close
(see Table I), thus giving an indirect comparison of the setups
employed.

II. EXPERIMENTATION

Two GO steels, which are referred to as Steels 1 and 2, have
been employed in the study. Their resistivity p, lamination
thickness d, coercive force H., and remanence induction B,
are given in Table I. Steel 1 was investigated experimentally
using a computerized measurement system [21] employing
Epstein frames. A low-frequency frame (700 turns) was used
at magnetizing frequencies lower than 200 Hz, and a high-fre-
quency frame (100 turns) was used at higher frequencies, both
conforming with the IEC standard [24].

The static major loop and symmetrical minor loops of Steel
1, shown in Fig. 2(b), were measured using the low-frequency
frame connected to a permeameter with the period of controlled
sinusoidal induction of the order of 300 seconds. Each static
curve was measured after an individual demagnetization carried

Authorized licensed use limited to: Kyoto University. Downloaded on June 29, 2009 at 01:17 from IEEE Xplore. Restrictions apply.



ZIRKA et al.: CALCULATING DYNAMIC HYSTERESIS LOOPS IN GRAIN-ORIENTED ELECTRICAL STEELS

B (T)
15 Steel 1 (Epstein frame)
’ Steel 2 (SST)
! B (T)
1.0 I
b) Steel 1

0.5 1 149
0.0 —

40 0 40

H (A/m)
0 T T T
-20 0 20 40 60

Fig. 2. Static hysteresis curves of Steels 1 and 2.

out with a decreasing alternating voltage. Then the induction
was increased to a value + By, (the movement along the normal
magnetization curve was supposed) followed by the induction
cycle + By, —Bum, +Bu.

The preliminary stage in the measurement of each dynamic
magnetization curve was a careful demagnetization at a fre-
quency of 50 Hz by applying an alternating voltage with its am-
plitude slowly decreasing from an initial value that was suffi-
cient to cause the sample to approach saturation to zero.

Sheets, 100 mm by 400 mm, of Steel 2 (30P105 Japanese
Industrial Standard) was provided by JFE Steel (Japan) and
studied experimentally by means of a double-yoke SST incor-
porated in a computerized system with controlled sinusoidal
induction [25]. The quasi-static centrosymmetric loops were
measured at 1 Hz without waveform control. During the
measurement, the fast Fourier transform was used to remove
any drift and very high harmonics from dB/d¢ waveforms.
Even harmonics were also removed to symmetrize the wave-
forms. The inverse Fourier transform was used to reconstruct
their time-domain data after time-integration in the frequency
domain.

It can be seen from Fig. 2(a) that static major loops of Steels
1 and 2 are almost coincident up to 1.5 T. This allows us to
make an indirect comparison between the SST and Epstein
frame measurements.

III. MODELING TECHNIQUES

Both techniques used for the loop calculations by taking into
account the effects of eddy currents, are solvers of the equation

OB 9°H

ot T 0a2 @

This links the magnetic field strength H (x,t) and the magnetic
induction B(z,t) in a thin ferromagnetic sheet with conduc-
tivity 0 = 1/p, where the z-axis is normal to the plane of the
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sheet. A particular solution of (1) for any periodic excitation
can be characterized by the steady-state dynamic loop B,—H,
(the average magnetic induction versus the surface field) whose
area is the total energy Wyo¢ (J/m®) dissipated in unit volume
per cycle. If (1) is solved using a static (rate-independent) hys-
teretic relationship By, (H ), then Wi, contains only hysteretic
and eddy-current components easily extracted from W.

In order to increase the calculated loop area and thus take into
account the excess loss, the hysteresis dependence By (H) is
represented in the inverse form H},(B) and supplemented with
an external rate-dependent component [18]

dB 1/«
Hexc(t) =6 ‘Q(B)% (2)

which represents the instantaneous excess field. The exponent
a in (2) determines temporal properties of the model (the fre-
quency law of the excess loss simulated by (2) under sinusoidal
induction, Wexe ~ £/ [26]). The function g(B) controls the
shape of the dynamic loop. To cover both ascending (6 = +1,
dB/dt > 0) and descending (6 = —1, dB/dt < 0) trajectories,
the induction B in g(B) is always understood as § B. A common
feature of this function for all materials and models studied in
the paper is its minimum, G, at small |B| and its increasing
value when approaching positive and negative saturation (this
broadens the upper and lower parts of the dynamic loop).

By summing Hy,(B) and Hey.(t), we arrive at the DHM [18]
which can also be written as

aB(t) '
75] . (3)

H(t) = Hy(B) + 5 [g<B>

To rewrite (3) in a form suitable for a finite-difference (FD)
solver, one should take into account that H(t) > Hy(B) at
6 = +1, and H(t) < Hy(B) at 6 = —1. Therefore, [H(t) —
Hy(B))6 = |H(t) — Hu(B)|. This equality and the fact that
1/6 = 6, lead to the expression

dB ¢

priesn

g(B) H(t) _Hh(B)|a (4)

A. Magnetodynamic Models (SHM-S and DHM-S)

The first numerical technique used in the study is a FD solver
of (1) [19] based on the following equation for the internal node
i

dB;  H;_1 —2H; + H;

dt oh? '
Here H;(t) = H(z;,t) and B;(t) = B(z;,t) are the grid func-
tions, h is the grid spacing.

The code where H;(t) and B;(t) are linked by the SHM will
be referred to as the SHM-solver (SHM-S). With the purpose
of taking into account excess loss, (4) is rewritten for the nodal
field, H;, and nodal induction, B;, and the result can be equated
with (5), so that

Hi_y—2H; + Hip1 b
oh? ~ 9(Bi)

where Hy, ;(B;) is the nodal trajectory, constructed by the SHM.

(&)

|H;(t) — Hyni(B)|"  (6)
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TABLE II
MODEL VERSIONS EMPLOYED
Model Edd}égﬁiﬂem Excess field Equation
DHM-S FD Eqgs. (2), (4) (5), (6)
SHM-S FD None (5)
TSM Heas Eq. (2) ®
NV-TSM Helas None [C)]

In this DHM-solver (DHM-S), system (6) is first solved for
H;(t) and then system (5) is integrated in time (both these op-
erations are carried out at every time step).

B. Thin Sheet Model (TSM)

Under the conditions when the loss separation principle can
be applied to the specimen as a whole (this supposes a low
enough frequency f, or equivalently a thin lamination and uni-
form flux across its thickness), the 1oss components can be trans-
formed mathematically into separate field components, so the
instantaneous value of the applied field, H (¢), is subdivided into
hysteresis field, Hy,(¢), classical eddy-current field, Hjas(t),
and excess field, Hex.(%):

H(t) = Hh(t) + Hclas(t) + Hexc(t). 7

Indeed, by multiplying (7) by dB and integrating the product
over a cycle, one obtains the energy loss in terms of its com-
ponents W = W, + Wijas + Wexc. Of course it is understood
that the components in (7) do not have any independent physical
identity beyond the convenience afforded by the mathematical
separation.

Using in (7) the well-known formula for Hp,s(t) [12] and

expression (2), we arrive at the TSM [20]
d® dB e
2pdt T

H(1) = Hi(B) + o @

Onmitting the last term in (8), a “nonviscous” part of the TSM
remains

d*> dB

H(t)=Hy,(B)+ ——. 9

()= Hu(B)+ 13 ©
This is referred to as NV-TSM.

For clarity, the models used in the paper are gathered in

Table II.

C. Static Hysteresis Model (SHM)

As can be seen from (3), SHM of any type can be used in the
composite DHM employed. As in the modeling of NO steels
[19], [20], we use the SHM [27] where any reversal curve is
constructed by copying and combining some fragments of ex-
isting experimental curves used as patterns. Whereas first-order
reversal curves were employed as the patterns earlier, in the
present study we use, with the same objective, the branches of
centrosymmetrical minor loops extended to the major loop tip
by means of the normal magnetization curve [28, Fig. 4]. This
is, perhaps, the only possible way of reproducing exactly the ex-
perimental symmetrical loops (static minor loops) and interpo-
lating between them. This is especially important in modeling
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Fig. 3. Static (solid line) and dynamic (dashed line) curves calculated at the
surface of Steel 2 (200 Hz).

materials such as Steel 2 whose minor loops at low and mod-
erate flux densities tend to be “wasp-waisted” (see loop 1-2-3-1
in Fig. 3).

In the case of oscillating excitation voltage, when dB/dt
changes its sign more than twice during the period and asym-
metric minor loops appear in the resulting dynamic curve or
in the nodal trajectories (for example in the case of pulsewidth
modulation (PWM) excitation), the history-dependent version
of the SHM (the model with nonlocal memory) should be used.
However for “smooth” excitations (sinusoidal, triangle, etc.)
a simple history-independent SHM gives the same accurate
results if the extended branches of symmetrical minor loops
are used for constructing reversal curves (any reversal curve
is built by interpolation between them, independent of the
magnetization history).

Another advantage of the SHM used in the present work is the
simplicity of its inversion [20]. When a reversal curve is con-
structed at a turning point (for example at point 1 in Fig. 3) then
the whole static curve 1-2-3 ending at point 3 of the previous
reversal is built immediately at the starting point 1. This curve
always lies inside the static major loop (SML) and is kept in the
model memory even if the next reversal occurs at some interme-
diate point 2. Although the curve (1-2-3) is built as B(H )-de-
pendence, it is also stored in the inverse form H},(B) needed
for the DHM (4). The independent building of static hysteresis
curve (1-2-3) and then dynamic hysteresis curve (1-4-3) enables
the excess field Hex(t) and thus the excess loss to be calcu-
lated. At the turning point 3, where d B /dt = 0, dynamic curve
1-4-3 concurs with static curve 1-2-3 and new static curve 3-1
is generated.

IV. MODEL RESULTS

As the models under study are intended for incorporation into
circuit simulators, the main criterion for choosing the model pa-
rameters is the best fit to the experimental dynamic loops. It
should be noted, however, that the formalization of this crite-
rion is difficult, because the best parameters vary with induc-
tion level. Therefore, the model parameters and corresponding
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dynamic loops given in the following two subsections repre-
sent a compromise found individually for each material. The
reasoning for choosing the model parameters and the discus-
sion of the results obtained are given in corresponding subsec-
tions as well as in Section V. To facilitate the comparison of the
loops calculated with DHM-S and TSM, they are shown in the
left-side and right-side graphs on all the figures below together
with corresponding experimental curves in the background. Be-
cause of the loop symmetry and to conserve space, all the curves
are plotted for positive fields only and the shown ascending loop
branches are always implied.

A. Modeling of Steel 1

In the case of sinusoidally varying magnetic induction, the
total loss is often written in the form [12]
212 B2

Wiot = Wh(Bm) + Tmf + CBéf’fS

(10)
where S = 0.5, Wy, (By,) is determined at f = 0, and C' is a
fitting parameter.

It is considered that (10) can be used in the frequency range
where the skin effect is negligible. However, there are usually
no attempts made to check this condition and evaluate the accu-
racy of the second term, W},5, in (10). It has been shown in [29]
that the values of W, for Steel 1 can be considerably different
from the eddy-current loss, W, found by solving (1) numeri-
cally. Thus, already at f = 100 Hz and for B,, increasing from
0.8 to 1.7 T, the ratio Wo./Weas found through the SHM-S in-
creases from 0.85 to 1.26. Such inaccuracy of Wj,s makes it
inexpedient to use more complex expression [4] for the excess
loss term in (10). Instead, we can consider that any inaccuracy
in W5 is compensated by proper choice of C', which should
be fitted individually for each B, [30].

Our attempts to apply (10) to Steel 1 have immediately shown
that the exponent S in this equation is also dependent on By,.
Therefore, we have first applied (10) individually to each exper-
imental loss curve (B, = const) shown in Fig. 4 in order to
observe the change of S with B,,. To do so, (10) was consid-
ered as a function of two variables (C' and S) and fitted in turn
to each loss curve in Fig. 4 over the frequency ranges [0, 100]
Hz and [0, 200] Hz. The dependences S(B,,) obtained by such
least-squares fits are shown in Fig. 5 by dashed and dash-dotted
lines, respectively.

Fig. 5 shows that the exponent S in (10) depends on the fre-
quency domain over which the curve fitting is carried out. How-
ever, irrespective of the range of fitting, S > 0.5 at moderate
By, and rapidly decreases at By, > 1.5 T.

Although (10) is only an approximate formula, dependencies
S(B,) in Fig. 5 are useful in evaluating the model parameter
« (it was shown in [26] that « = 1/5). In order to identify the
DHM used in the DHM-S, these dependencies have been rebuilt
into relationships 1/S (Fig. 6) and used as initial values when
choosing a (By,). Due to the complex interrelation between
eddy current and excess loss components calculated through the
DHM-S, the adjustment of « requires numerical experiments.

1) DHM-S (When Applied to Steel 1): Calculations carried
out through the DHM-S show that at moderate B,, the values of
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Fig.4. Lossesin Steel 1 measured at sinusoidal magnetic induction (solid lines)

and the losses predicted by the DHM-S (dashed lines).
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Fig.5. Variation of S with B,,, found by least-squares fit of the measured losses
in Fig. 4 by means of (10).
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Fig. 6. Dependencies o (B,,) and G, (B, ) used in modeling Steel 1.

a are closer to the lower curve 1/S in Fig. 6. As B,, increases,
the fitted dependence « (By,) approaches the upper curve 1/
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Fig. 7. Dynamic loops of Steel 1 measured using Epstein frame under controlled sinusoidal induction (solid lines). The loops calculated by means of DHM-S and
TSM are shown by dashed lines in the left-side and right-side figures, respectively.

and then exceeds it. Dependence « (B, ) in Fig. 6 was built si-
multaneously with the relationship G, (B, ) whose values were
chosen so as to equalize the calculated and measured losses at
100 Hz.

The following sequences for calculating parameters of the
DHMS-S have been found acceptable for Steel 1:

G if0.3< B <05,
g=1{ Gm+04G,(03—B) ifB<0.3, (11)
Gm + 0.8G(B —0.5)2 if B> 0.5.

The relationships « (B,,) and G,,,(B,,) in Fig. 6 have been de-
scribed by linear splines and used in the calculations under ar-
bitrary voltage excitation. Since the DHM-S is a time-stepping
solver which does not “know” in advance the induction wave-
forms in different sheet layers (FD nodes), we cannot use the
relationships shown in Fig. 6 directly. However, at any reversal
static and dynamic nodal trajectories coincide (this behavior was
shown in Fig. 3) and the distance A B between current and pre-
vious turning points is determined. The value of By, can then
be set equal to AB/2 which allows one to calculate o (By)
and G, (By,) (these values are kept fixed until the next nodal
reversal).

Dynamic loops predicted by this version of the DHM-S under
sinusoidal flux densities are shown in Fig. 7 (left-side graphs).
Corresponding loss curves are represented in Fig. 4 by dashed
lines. They show that at higher B,,, the values of a could be even
greater than those used in the model (this would entail a greater
curvature of the loss dependencies). However, this can result in
poorer loop shapes.

A more demanding test of the model is the verification of its
predictive ability under nonsinusoidal voltage waveforms. The
measured and calculated loops are shown in Figs. 8-10.

2) TSM (When Applied to Steel 1): The similar technique
of varying GG, and « has been employed when choosing pa-
rameters of the TSM. In an attempt to reproduce the total loss
behavior over the frequency range 0-200 Hz values o« = 2.0
and G, = 0.152 at B,, < 1.6 T have been chosen. As ex-
pected from the previous results, at higher By, both « and G,
should increase. In particular, at B, = 1.8 T the best value of
a which is 2.5, corresponds to Wy ~ f9#. The following for-
mulas were found acceptable to calculate model parameters at
B, > 16T:

a =2+ 4.197(By, — 1.6)"32

Gm =0.152 4+ 73.23( By, — 1.6)%92, (12)
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Fig. 8. Measured and calculated loops under the voltage which contains fun-
damental (50 Hz), 3rd, 7th, and 11th harmonics.

B === == ===
1.5 - —
1.0 '/ ]
7/ Epstein meas.
0.5 259.9 J/m3
0.0 4

j DHM-S TSM
-0.5 - _3 _____

] 278.7 JIm 264.3 J/m3
104! (+7.2%) (+1.7%)
87 H (A/m) H (A/m)

T T
0 50 0 50 100

Fig. 9. Measured and calculated loops under the voltage which contains fun-
damental (50 Hz) and 5th harmonic (50%).

To reproduce the shape of the dynamic loops, the following
computational chain was used in the TSM regardless of the
value of G, chosen:

(8= Gu/ [L - (B/19)],
g2 = g1+ 0.2Gn, B if B> 0,
93 =g1— 01Gn,B if B<0,
9=\ 94 :g3+0.8Gm(—l—B) ifB< -1, (13)
95 = ga+2Gm(~12—B)  ifB< -12,
g6 = g5 +8Gm(—14—B)  ifB< 14,
g7 = g6 + 320G (—1.5— B)? if B < —1.5.

In this way, it is possible to vary « and G, depending on the
loop height and vary g with B(t).

Dynamic loops predicted by the TSM under sinusoidal flux
densities are shown in Fig. 7 (right-side graphs). Corresponding
total losses are represented in Fig. 11 (dashed lines). As can be
seen in Fig. 11, the value @« = 2.0 gives a somewhat overesti-
mated total loss at f < 50 Hz and B, = 1.5 T.
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At higher f and By, the TSM prediction is accurate. The
same remarkable agreement between the TSM predictions and
experiment is observed in the case of nonsinusoidal induction
(right-side graphs in Figs. 8-10).

It is interesting to compare the losses calculated by the TSM
described by (12) and (13) with the losses obtained by the same
model but using fixed values of « and g. In order to reproduce
the “typical” excess loss dependence Wy, ~ f95, we again
put @« = 2 and choose g = G, = const so as to obtain equal
calculated and measured total loss at By, = 1.5 T, f = 100 Hz
(point C in Fig. 12). As shown by dashed curves in Fig. 12,
such a simplified model gives the same inadequate loss figures
as those obtained by the statistical loss theory [4, Fig. 12]. In
particular, the losses calculated at By, < 1.5 T are slightly
higher than those measured, whereas the losses calculated at
By > 1.5 T are markedly underestimated.

B. Modeling of Steel 2

1) DHM-S (When Applied to Steel 2): As with Steel 1, Steel 2
demonstrates different frequency dependence of the excess loss
at low and high inductions. It was found acceptable to keep o =
1.5 and ¢ = G, = 0.08 if the distance AB between turning
points is less than 2.8 T and if these points have opposite signs
of B. Otherwise, parameters of the DHM-S were described by
the following routine:

a=18 Gn=015 g1 =Gn/ [1 — (3/2)2] ,
g2 = g1 +5Gn(B —1)? if B> 1,
g3 = g1 — 0.3G B if B <0,
_ ) ga=93+Gn(-1-DB) if B< —1, (14)
97 g5 =ga +6Gn(—-1.3—B) ifB < —1.3,
g6 =95 +8Gnm(—14—-B) ifB< —-14,
g7 = g6 + 26Gn(—1.5— B) if B < —1.5.

As AB, and therefore o and G, are calculated individually
for each FD node, and since the resulting dynamic induction
is the average of the nodal inductions B;, no smooth transition
between « and G, calculated for small and large A B was used
in the code.

Dynamic loops predicted by the DHM-S under sinusoidal
flux densities are shown in Fig. 13 (left-side graphs). Frequency
variation of corresponding total losses is represented in Fig. 14
in comparison with the measured losses. The loss curves shown
in Fig. 14 pass through the measured points with somewhat dif-
ferent peak inductions. For instance, the curve By, = 1.7 T
connects the points with B,, = 1.705,1.708,1.689, and 1.682
T. These values as well as the peak inductions for other loss
curves are given in Fig. 13 (left-side graphs).

The loop and total loss calculated through the DHM under a
nonsinusoidal induction [23] (Fig. 15, left-side) coincides well
with the measured loop and loss.

2) TSM (When Applied to Steel 2): When applying the TSM
to Steel 2 magnetized under sinusoidal induction, it was nec-
essary to implement a smooth transition from o = 1.5, which
characterizes the steel at B,,.x = 1.02 T, to « = 1.8 corre-
sponding to By, = 1.7 T. Then, using one experimental loop
as a pattern, for example loop P in Fig. 16(a) (f = 50 Hz,
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Fig. 10. Measured and calculated loops under (a) 2-level and (b) 3-level PWM voltage which contains 9 pulses per cycle (f = 50 Hz, Bm = 1.7 T').
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Fig. 11. Loss characteristics of Steel 1 calculated by the TSM (12), (13)
(dashed lines) compared to the measured losses (solid lines).
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Fig. 12. Loss characteristics calculated by the TSM with a = 2 and fixed
g = G = 0.214 (dashed lines) compared to the measured losses (solid lines).

B, = 1.705 T), function g(B) can be found by taking the an-
alytical form of the TSM (8). For this purpose, it is sufficient

to build the loop NV by means of the NV-TSM, and calcu-
late the excess field H.x. as the difference in H between the
curves P and NV. In accordance with (2), the calculated field
Hx. is a function of B(t) and d B/d¢ which were also used in
the NV-TSM. Using these values in (2) and solving it for g(B),
we can represent g(B) by a pointwise approximated function
E(B). An idea of the graph of E(B) can be obtained by plot-
ting the difference between the curves NV and P in Fig. 16(a)
as a function of B. The smooth increase of « and g with AB is
written as the following sequence:

B, = AB/2; a=1.5;
if By, > 1.021 then
a = 1.5+ 0.4931(B,, — 1.021)1-2643 . (15)
g = E(B) [0.5+ 0.9606(B,, — 1.021)!:5612]
The loops calculated by the TSM under sinusoidal and non-
sinusoidal flux densities are shown in the right-side plots of
Figs. 13 and 15, respectively.

V. DISCUSSION OF RESULTS

A general characteristic of all the loops calculated at sinu-
soidal flux densities by the DHM-S and TSM is a very good
agreement between theory and experiment at peak induction
levels lower than 1.0-1.3 T, and somewhat poorer accuracy of
both the models at higher levels. In particular, marked convex
segments appear in the upper parts of the ascending branches
calculated by the DHM-S as the peak induction increases above
1.3 T. This feature is especially pronounced in Steel 1 studied
using Epstein frame. On the contrary, the TSM-calculated as-
cending branches are flatter which makes the TSM inadequate
at higher frequencies.

Since both models are developed within the framework of the
classical approach, it is expedient to search first for explanations
of these features through the analysis of the conventional solu-
tions of (1), i.e., solutions obtained by the SHM-S (they can
also be obtained by the DHM-S with a negligibly small vis-
cosity factor G,). Examples are represented in Fig. 17, where
classically calculated loops of Steel 1 (B,, = 1.0 and 1.7 T)
are compared with corresponding loops measured at sinusoidal
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Fig. 13. Dynamic loops of Steel 2 measured with the SST under controlled sinusoidal induction (solid lines). The loops calculated by means of DHM-S and TSM

are shown by dashed lines in the left-side and right-side figures, respectively.

flux densities. As can be seen in Fig. 17, there is a substantial
difference between the shape and position of the calculated and
experimental loops. Thus, the loops calculated at B,, = 1.0 T
lie completely inside the measured loops, and there is enough
empty space in H between them to fill it with the excess field
component. On the contrary, the loops calculated at B, = 1.7T
almost touch the measured loops at point C. This means that
the introduction of any dynamic component in the hysteresis
model will result in the loops exceeding the bounds of exper-
imental loops. At the same time, the large distance between
the lower parts of calculated and measured ascending branches
(the distance A-B) explicitly requires the introduction of the dy-
namic term in (3) and causes its dependence on B implemented
in the DHM (3) by means of the function g(B). As a general
rule, g(B) should increase when approaching positive and, es-
pecially, negative saturation and can be nearly constant at lower
| B| (the latter is desirable to reproduce the loops at small and
moderate peak induction).

Unfortunately it is impossible to obtain a fully controlled ex-
cess field Hqy. through the DHM-S. In particular, we cannot
nullify the excess field at point C (Fig. 17). Because of the phase

shift between flux densities in different sheet layers, there is
no direct analogy between the shape of g(B) and the change
of the resulting excess field with B. The convex segments ap-
pearing in the loops calculated through the SHM-S are kept in
the loops obtained through the DHM-S that causes the differ-
ence between calculations and measurements in both the loop
shapes and losses. In principle, the latter difference can be re-
duced by decreasing g(B) at large negative B, but this leads to
poorer modeling of the “heel” at the bottom of the measured
ascending branches (i.e. the loop segments about points B in
Fig. 17).

It is rather unexpected that over the frequency range 0-200
Hz better modeled loops can be obtained for both the steels by
means of the TSM (8). It is interesting that the higher accu-
racy of the TSM is reached due to the error of its component
H),5(t). The change of this error with frequency and peak in-
duction can be seen in Fig. 16, where the loops calculated by
the NV-TSM (9) are compared to the loops calculated by the
SHM-S (the latter can be described as a nonviscous version of
the DHM-S). Fig. 16(a) shows that the difference between the
loops calculated by the NV-TSM and SHM-S appears already
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Fig. 14. Losses calculated by the DHM-S (a) and TSM (b) (solid lines) in comparison to the losses measured by the SST (dotted lines).
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Fig. 15. Measured and calculated loops of Steel 2 under nonsinusoidal voltage
[23].

at 50 Hz for the loops at B,, = 1.7 T. At 100 Hz the distortions
of the NV-TSM-loops become more pronounced, and at higher
frequencies these loops lose any similarity with the loops found
by the SHM-S. However, an advantage of the NV-TSM-loops
is the absence of the convex segments in the upper parts of their
ascending branches and the presence of such segments in the
lower parts. The former reserves a space for the excess field and
avoids undesirable convexity in the loops calculated by the TSM
and thus stops them crossing measured loops when introducing
viscosity term in the model. The latter facilitates modeling the
“heels” of the measured ascending branches for those with B,
of 1.7 T.

Using Figs. 16(c), (d) and 17(a), (b) the subject of the com-
parison of the loops taken from Epstein frame and SST can be
touched upon. Attention is mainly focused on the loops mea-
sured at maximum peak induction, 1.7 T in this particular case,
where according to [22] the difference between Epstein- and
SST-measured losses is maximum.

The remarkable feature of the loops taken from the SST
(Fig. 16) are the convex segments, which reproduce the seg-

B(T) — —
1 a) 50 Hz // / b) 100 Hz \K’/
0541 7 NS

LN
00+ 1/ f /

i ,/4/' J
05 [ £
1.0 L /

/d)400 Hz | \

SHM-S

H (A/m)
T T
-50 0 50 100 0 80 160

Fig. 16. Dynamic loops calculated for Steel 2 (B,, = 0.5, 1.0, and 1.7 T)
through the NV-TSM (dotted lines) and through the SHM-S (dashed lines).
Solid lines are the loops taken from the SST (B,, = 1.7 T).

ments predicted by the SHM-S. These convexities are then
reproduced by the DHM-S that corroborates the applicability
of the generalized classical method to sheets of GO steel. At
the same time, the absence of the convex segments in the loops
taken from the Epstein frame and the difficulties in modeling
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Fig. 17. Comparison of dynamic loops of Steel 1 calculated by the SHM-S at
B, = 1.0 and 1.7 T (dashed lines) with experimental loops (solid lines).
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Fig. 18. Comparison of dynamic loops of Steel 1 (B,, = 1 T) calculated by
the DHM-S (dashed lines) and measured at f = 50, 100, 200, 400, and 600 Hz
(solid lines).

these loops at higher induction can be a result of inconsistency
of the thin single sheet modeled and the measuring fixture,
which should be considered, in the case of anisotropic steel, as
a 3-D construction.

VI. MAGNETIC DOMAIN INTERPRETATION

A general observation made above is that the DHM-S is able
to predict dynamic loops very accurately in the induction region
lower than 1.0-1.3 T, and that it works well enough at higher in-
duction levels. This accuracy is somewhat unexpected because
it has been obtained by means of a 1-D model applied to the ma-
terial, which is usually described by 2-D calculation schemes.
To explain the model’s ability, it should be first noted that its
accuracy decreases with increasing induction and frequency. It
is instructive, in this respect, to observe the frequency evolu-
tion of the loops whose peak inductions are far from saturation
and which were modeled very accurately up to 400 Hz. The
loops of Steel 1 calculated and measured at B,, = 1 T and
f = 50,100, 200, 400, and 600 Hz are shown in Fig. 18.

A visible difference between the model and experiment ap-
pears only at 400 Hz when the calculated loop has 3.7% greater
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Fig. 19. Nodal (solid lines) and resulting (dashed lines) loops calculated for
Steel 1 at B, = 1 T and f = 200 Hz (a) and f = 600 Hz (b).

area than the measured loop. At 600 Hz, this difference reaches
9.5%. It is noticeable that at lower frequencies (see Fig. 7) sim-
ilar discrepancies are observed only at higher inductions (B, =
1.5-1.7 T). This leads to the suggestion that the errors in the
model calculation appear as the flux density in some sheet layers
exceeds an induction level B,.; above which domain rotation
becomes the dominant magnetization mechanism. By conven-
tion it is considered [31] that this level is at about the “knee”
of static major loop (for Steel 1 B,ot ~ 1.5 T). This assump-
tion can be verified by comparing Fig. 19(a) and (b), where
dynamic loops calculated at B,;, = 1 T (200 and 600 Hz, re-
spectively) are shown together with nodal B;—H; trajectories
for the odd nodes of the FD grid employed. It should be re-
membered that the induction B of the resulting dynamic B—H
loop is calculated by averaging the inductions B;(t) of these
trajectories. The incidental detail in Fig. 19 is that the nodal tra-
jectories lie outside the static major loop showing that calcula-
tions were made by means of the DHM. As seen in Fig. 19(b)
(f = 600 Hz), some nodal trajectories exceed the level Byos,
whereas in Fig. 19(a) (f = 200 Hz) all these trajectories lie
within this level (|B;| < Biot).

Returning to the major theme of 2-D medium—1-D model,
the contradictions between the classical and domain schemes in
Fig. 1 should be recalled. Characteristic features of the 1-D clas-
sical solution are the same nodal induction B;(t) = B(x;,t)
for the whole sheet layer at the depth x; (it is shown conven-
tionally in Fig. 1(a)), and the change of the local induction with
depth. On the contrary, the local induction in the domain struc-
ture shown in Fig. 1(b) changes from domain to domain, but is
the same at any depth. These contradictions are eliminated if the
well-known idea about the DW bowing during the course of the
magnetization is used.

In this case, any B;(t) calculated with 1-D classical model
can be regarded as a value obtained by averaging B-values over
all “positive” and “negative” domains at the depth of the sth grid
node (i.e., within a conventionally narrow sheet layer shown in
Fig. 20 by horizontal dashed lines).

Taking into account the above assumption that magnetization
by the DW displacement is mainly completed at |B| = Byot,
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Fig. 20. A segment of a sheet cross section (the vertical frame lines are lines
of mirror symmetry in a cross section of infinite width).

we should consider for the purposes of this model calculation
that the induction within individual domains is £ B;;. This al-
lows us to restore the DW shape and observe its evolution in
time. Assuming an infinite regular domain structure with DW
spacing 2L at equilibrium, it is sufficient to analyze any sheet
segment of width 2L (or 4L as in Fig. 20). Since the calcula-
tion begins after a quasi-static demagnetization and the initial
induction at all the nodes is the same (B; = 0), such a segment
is characterized by vertical domain walls labeled as ¢ = 0. The
different B;(¢) during the course of magnetization determine a
curved DW profile at a given instant of time. (The point of the
wall situated at the level of the «th node is determined by the
coordinate y;(t) = LB;(t)/Byot)-

If the material is excited by a cosinusoidal voltage, then the
flux density averaged over the whole sheet cross section varies
sinusoidally and the mean wall position with respect to equilib-
rium (vertical dashed line in Fig. 20) is determined as

Ya(t) = (LB /Biot) sin(27 ft) (16)

(this formula is given in [2], where saturation induction By is
used instead of B,qt).

The evolution of the DW during three stages of the magnetiza-
tion process is shown in Fig. 21 as a sequence of DW profiles at
instants separated by equal time intervals (At = 7'/20). During
the initial stage, Fig. 21(a), the average induction, B(t), in-
creases from 0 to + By,. The arrows show that magnetization oc-
curs due to the widening of the positive domains at the expense
of negative ones. During the second stage, Fig. 21(b), B(t) de-
creases from + By, to —By,, and Fig. 21(c) corresponds to the
third stage when B(t) increases from — By, to 4+ By,. At the end
of this stage, at t = 1.25 T, a steady-state regime is established
and DW profiles change in accordance with Fig. 21(b) and (c)
by turns.

Ilustrative DW profiles in Fig. 21 were constructed for By, =
1T, f =200 Hz, and 2L/d = 3. Based on the same solution,
similar plots can also be constructed for any other 2L /d, in-
cluding the average wall spacing of a given material. In this case,
they should be similar to the bowing DW profiles obtained by
Bishop [32] for the magnetization model based on the DW dis-
placement but without domain rotation. It should be noted, how-
ever, that unlike Bishop’s approach, the wall bowing diagrams
above are simply a way of plotting the B, (z) predicted by 1-D
model. The 2-D domain structures depicted play no active role
in the calculations. Nevertheless, they reproduce qualitatively
all characteristic features of DW behavior including the rise of
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Fig. 21. Evolution of domain walls starting from the demagnetized state. DW
profiles calculated with the DHM-S and SHM-S are shown by solid and dashed
curves, respectively.

wall bowing with frequency and the inverse proportionality be-
tween the DW bowing and total loss [12, p. 419], [32]. The latter
phenomenon is illustrated by dotted DW profiles in Fig. 21 cal-
culated with zero viscosity function g( B). These walls are much
more bowed and may be regarded as being completely flexible.
This means that increasing g(B) leads to the widening of the
dynamic loop and to the flattening of the bowed DWs.

The DW representation above can be useful in explanation
of the limitation of the 1-D model employed. As was shown
above, the model works very accurately as long as | B;| < Byot.
At higher nodal flux densities (due to the skin effect they can
be reached even at moderate average induction) wall bowing
becomes so severe that walls meet at the sheet surface forming
a surface domain. Beginning from this moment and ending at
the time when the surface domain disappears during the subse-
quent stage of the magnetizing process, (16) can no longer be
used since domain rotation becomes dominant at surface layers
of the sheet. It is natural to expect that different model param-
eters or even different models should be used in modeling the
loops formed when either wall displacement or domain rota-
tion are predominant. This means that if the model is adjusted
accurately to experimental loops of low and moderate peak in-
ductions B,,, then its ability can be somewhat poorer in pre-
dicting the loops (and losses) at high By, and/or high magneti-
zation frequency when the assumption about DWs as well-de-
fined geometrical surfaces becomes questionable [12, p. 420].
As shown in Section IV this is typical for the two steels, which
exhibit quite different frequency behavior at low and high in-
duction levels.

Differences between predicted and measured loss can be due
to the erroneous, universally applied assumption that the mag-
netic path length is fixed at 0.92 m as specified in [24]. In prac-
tice the magnetic path length varies with several factors. For ex-
ample, it drops by 4%—5% in GO steel when By, > 1.7 T and
increases by around 3% when f is increased from 50 to 400
Hz [33]. This should be taken into account to make the differ-
ence between the true (absolute) loss and the measured loss in-
dependent of B,, and f but, since this is not done in practice
for Epstein or SST measurements, care must be applied when
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assessing the accuracy of predicted losses at different flux den-
sities or magnetizing frequencies.

VII. CONCLUSION

The possibilities of a modified classical approach in modeling
dynamic hysteresis loops and the prediction of the energy loss
in GO electrical steels has been presented. The essence of the
modification is the introduction of a time delay of the magnetic
induction behind the magnetic field implemented in the solver
of the penetration equation (DHM-S) and in the simplified
model (TSM) applied to a bulk material. Particular attention
has been devoted to the frequency dependence of the excess
loss component which is usually written as a term Cf° with
S = 0.5. By combining accurate measurements and numerical
experiments, we have found that the exponent S decreases
from about 0.6 to 0.7 at low to moderate inductions to about
0.3 to 0.4 at high flux densities. This shows that probably
different mechanisms determine excess losses at different peak
inductions. The good performance of the TSM up to 200 Hz is
explained by the error in the simplified (low frequency) formula
for the classical field. To explain the predictive ability of the
DHM-solver, the results obtained through this model have been
interpreted in terms of domain walls with bowing profiles. This
interpretation does not involve any specific mechanisms in
calculation so it should be viewed only as a possible explanation
of the applicability of 1-D solver to 2-D calculation scheme
of the modeled medium. Both the interpretation and the loss
separation are somewhat artificial in the case of GO materials.
Even if the statistical explanation [12] of the loss separation
is accepted, it is difficult to agree with the evaluation of the
classical loss by the formula corresponding to a nondomain
medium (the second term in (10)). Of particular interest in
this respect is that the accuracy of the model is highest in the
prediction of small symmetrical loops, when domain walls
make small excursions from equilibrium, and some aspects of
the statistical theory are not applicable [12]. Although both
models employed are, strictly speaking, phenomenological,
their usage is justifiable in the absence of a rigorous physical
theory and comparatively accurate prediction of hysteresis loops
and losses under sinusoidal and nonsinusoidal conditions. At
the same time, this approach might not be as accurate as in
the case of NO steel [19], [20]. This is due to the different
domain structures in GO and NO materials. Before attempting
to improve the models, it is desirable to gain a better insight
into experimental results and differentiate between the errors of
the model itself and the influence of 3-D experimental fixture.
An important topic to back up future work in this direction is
clarification of the effect of measuring system geometry on
loss values by a systematic comparison of different Epstein
frames [33] and parallel experiments on Epstein frame and
SST.
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