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This paper proposes an implicit error correction method that corresponds to the explicit error correction methods, such as Hiptmair’s
hybrid smoother and the conventional multigrid method. The A-phi method can be seen as the implicit error correction method cor-
responding to the hybrid smoother. Numerical tests confirm that the A-phi method produces a similar correction effect on the error
belonging to the kernel of the discrete curl operator as that of the hybrid smoother. Furthermore, this paper introduces an implicit
correction multigrid method, which is the implicit error correction version of the conventional multigrid method. In this method, linear
systems on all levels in a multigrid method are combined into a large linear system. This linear system is solved by an iterative solver,
and any preconditioning techniques can be used. Numerical tests show that the proposed method involves coarse grid correction effects
and achieves a convergence rate independent of the grid-size, thus confirming the effectiveness of the implicit error correction method.

Index Terms—A-phi method, hybrid smoother, implicit error correction, iterative method, multigrid method.

1. INTRODUCTION

N a finite element electromagnetic field analysis, the most
I time-consuming part is the solution of the linear system of
equations. Generally, a linear iterative solver such as the Incom-
plete Cholesky Conjugate Gradient (ICCG) method is used for
this purpose [1]. It is well-known that the A-phi formulation
gives a superior convergence rate to the A-formulation in the it-
erative solver [2], [3]. While several research papers have inves-
tigated the advantage of the A-phi method [4], [5], we provide
another interpretation of its effectiveness in this paper.

First, we pay special attention to a similarity between
Hiptmair’s hybrid smoother [6] and a (two-level) multigrid
method [7]. Both methods can be characterized by explicit
error correction using a coefficient matrix that is different to
the original one. Whereas the hybrid smoother uses the discrete
gradient operator matrix, the multigrid method introduces co-
efficient matrices constructed on the coarse grids. Accordingly,
we define a new class of such error correction techniques in
iterative solvers, which we call the Explicit error correction
method. Furthermore, corresponding to this explicit error cor-
rection method, we have proposed the Implicit error correction
method. In Section II, we introduce the details of both these
methods.

Next, it is shown that the A-phi method (formulation) can
be seen as an implicit error correction method corresponding to
Hiptmair’s hybrid smoother. The authors have, therefore, sug-
gested that the A-phi method has a similar effect to that of the
hybrid smoother for the error that corresponds to the kernel of
the discrete curl operator Ker(curl) [8]. Whereas the hybrid
smoother corrects these errors explicitly, the A-phi method in-
troduces unknown variables for the electric scalar potential. Nu-
merical results show that the A-phi method reduces the error be-
longing to Ker(curl) in the conductive region more efficiently
than the A-method.
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Next, we introduce our new multigrid type iterative method,
namely the Implicit correction multigrid method [8], which is
an implicit error correction method corresponding to a conven-
tional multigrid method. Numerical results of a 2-D finite differ-
ence analysis show that the implicit correction multigrid method
achieves a convergence rate independent of the grid-size, which
is the most important function of the multigrid method. Thus,
the implicit error correction method can improve the condition
of a coefficient matrix and can also be viewed as one of the pre-
conditioning techniques.

II. EXPLICIT ERROR CORRECTION METHOD AND IMPLICIT
ERROR CORRECTION METHOD

Let the linear system of equations to be solved be
Az =10 (1)

where A is an n X n matrix, and x and b are n-dimensional
vectors. When a linear system (1) is solved by an iterative solver,
the explicit error correction method is often used. Let the current
approximation for z be . The procedure used by the explicit
error correction method is given by the following two steps. The
first step is to determine error quantity y using the following
linear system:

Cy = d(z). 2)

When the dimension of y is denoted by m, the coefficient matrix
C is an m X m matrix. The m-dimensional vector d is given
by a function of the current approximation z. In general, the
dimension m is sufficiently smaller than n. Applying an iterative
method such as a relaxation method or a direct solver to (2), we
get an m-dimensional vector y, which is an approximation of
y or exactly y. The second step is given by the update of the
approximation &

i § o+ Bj A3)

where matrix B is an n X m matrix.
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In this paper, we propose the implicit error correction method,
in which the original linear system (1) and the (reduced dimen-
sional) linear system for error correction (2) are combined. The
implicit error correction method is derived as follows. First,
while we pay attention to (3), the solution vector x in (1) is re-
placed by & + By, where = and ¢ are n-dimensional and m-di-
mensional vectors, respectively. This means that the solution
vector is described by z + By. Consequently, we obtain

Az + ABy =10 “)

instead of (1). Next, we consider the linear system for deter-
mining the error correction quantity (2). In most explicit error
correction type methods, the linear system (2) is given by the
restricted residual equation of (1). In this case, d is written as
a matrix-vector product Dr, where D is an m X n matrix and
r = b — AZ is the residual vector. Then, in the implicit error
correction method, we replace d(z) in (2) by D(b — AZ). Ac-
cordingly, we get

DA% + Cy = Db. )

By rewriting vectors = and y by Z and ¢, respectively, we finally
obtain the matrix form of the implicit error correction method

as follows:
A AB T b
(o @)G)-(m) @

In the proposed method, the linear system of (6) instead of (1) is
solved by a (preconditioned) iterative method. The solution of
the original linear system (1) is given by Z + By. It is expected
that the iterative solution process produces the effect of the error
correction implicitly. In other words, the linear system derived
from the implicit error correction method (6) is expected to have
an improved condition of the coefficient matrix over that of the
original linear system (1).

III. RELATIONSHIP BETWEEN A-PHI METHOD
AND HYBRID SMOOTHER

In this paper, we deal with a quasi-static electromagnetic field
problem. It is assumed that the analyzed domain {2 is a simply
connected domain. For simplicity, we do not describe the effect
of the boundary in the following. The basic equation based on
the A-formulation is given by

oA,
ot

Vx (wV xAy,)+o =Jo @)

where /Tm, v, o, t, and jf) are the magnetic vector potential,
the magnetic reluctivity, the electrical conductivity, time, and
the exciting current, respectively. It is noted that V - Jy = 0 is
satisfied. The basic equation based on the A-phi formulation is
given by

V x (VV X AZW) + Ua (Aznaj Vd)) =Jo (8)
\Y 00 (A:na:_ V¢) =0 )]

where /T;n is also the magnetic vector potential and ¢ is the
electric scalar potential.

When a finite element discretization with edge elements and
a backward time difference method are applied to (7), the re-
sulting linear system of equations is given by

M,
Kaza = <05M,,Cu + —> Ta=0by

At (10)

where At is the length of the time step, 4 is the unknown
vector that represents the magnetic vector potential to be calcu-
lated, and the right-hand side b4 is determined by the previous
value of the magnetic vector potential and the exciting current.
When the number of edges and faces are denoted by e and f,
respectively, the matrix C, is an f x e matrix, which is given by
the discrete curl operator. The f x f matrix M, and the e X e
matrix M, are given by

[My]ij:/yw{-wjfdu [Mg]ij:/mﬁf-vﬂjdV (11)
Q Q

where 177/ and ¢ are a face-element basis function and an edge-
element basis function, respectively.

In this paper, we consider the use of Hiptmair’s hybrid
smoother [6] in the A-method. Although the hybrid smoother
consists of a normal Gauss-Seidel sweep and a special error
correction process, the latter correction process is key to the
method. Thus, we discuss only the error correction process in
the following. When Hiptmair’s hybrid smoother is applied to
(10), the error correction procedure can be written in the form
of an explicit error correction method as follows:

— 1 T
C_AtG M,d, (12)
d(Z4) ZGT(bA—KA.fZA) (13)
in (2), and
B=G (14)

where 7 4 is the current approximation for z 4 and G is a discrete
gradient operator that satisfies C,,G = 0. The matrix C' is also
written as GT K 4G. From (6), (10), (12), (13), and (14) and the
relationship between C, and G, we obtain the linear system of
the implicit error correction method corresponding to the hybrid
smoother as follows:

Ku KaG Ta
GTKA GTKAG flle
o KA éMaG .fZA _ bA (15)
+~G'M, LGTM,G YA GThy )~

The coefficient matrix in (15) is identical to the coefficient ma-
trix arising from the finite element discretization of (8) and (9).
Moreover, since the initial condition that 4 = z 4 and g4 = 0
is normally setatt = 0, x4 = 4 + G4 is satisfied in each
time step. Consequently, the right-hand side of (15) is the same
as the right-hand side derived from (8) and (9). Therefore, the
linear system of the implicit error correction method that cor-
responds to the hybrid smoother (15) coincides with the linear
system of equations derived from the A-phi method. Thus, the
A-phi method can be regarded as the implicit version of the error
correction of Hiptmair’s hybrid smoother.
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IV. IMPLICIT CORRECTION MULTIGRID METHOD

In this section, we introduce the implicit correction multigrid
method, in which the linear systems of equations on all levels in
a conventional multigrid method are combined and are solved
simultaneously using a (preconditioned) iterative method.
We first introduce the two-level implicit correction multigrid
method. In a conventional two-level multigrid method, the
coarse grid correction for (1) is given in the form of the explicit
error correction method as follows:

Cc=A"H (16)
d(z) =IF (b — A%) (17)

and
B=1I} (18)

where A is the coefficient matrix constructed on the coarse
grid, and I} and I " are the restriction and prolongation op-
erators, respectively. From (6), (16), (17), and (18), the linear
system of the implicit correction multigrid method that corre-
sponds to the coarse grid correction is given by

A ALY z\ (b
IEA A" )\t ) = \ I

is an unknown vector with the dimension of the coarse

19)

where zH

grid.

The linear system for the multilevel implicit correction multi-
grid method is derived from the recursive application of the
two-level implicit correction multigrid method to the original
linear system (1). Here, we denote the linear system arising from
the proposed method, for O to k levels, by

TFzh = bk (20)
When we solve (20) by means of the two-level implicit correc-
tion multigrid method, the resulting linear system is given by

T TR, ok bk an
I]’:’+1Tk Ak+1 ghtl | — l,’:*lbf

where A**! and z**1 are the coefficient matrix and the un-
known vector on the k + 1 level, respectively, and [ ,’:H and
I ,’f ; are the restriction and prolongation operators between the
kth and (k+1)th levels, respectively. Applying (21) to (1) recur-
sively, we finally obtain the linear system for the [-level implicit

correction multigrid method as follows:

§0,0 0.1 20 o
: : N (22)

Sl’o Sl,l .Tl fl

where

goa — go (23)
G — g 3_1_1[24_14_-21 . --Ig_l(a < f) (24)
S0 =18 I8y - I;H AP (a0 > B) (25)
Fo = I I e

IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 6, JUNE 2008

0 —
A-method ——
~ -1 A-phi method ------- 7
= 2F N\ 1
=}
< 3} _
o
=2 4t 4
2 s} .
6| 4
7k \ 4
1 1 1 1 1 1 1 1
0 30 60 90 120 150 180 210 240 270
Number of iterations
Fig. 1. Comparison of convergence between A-method and A-phi method.
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Fig. 2. Convergence behavior of the error of the kernel of the discrete curl
operator in the conductive region.

AY = A, and f° = b. In the proposed method, the linear
system (22) is solved using a preconditioned iterative method.
The solution vector of the original linear system (1) is given by

l k _
="+ Zk:l{(Hp:l If; l)xk}
V. NUMERICAL RESULTS AND DISCUSSION

A. Effect of the A-phi Method

In this subsection, we examine the effect of the error cor-
rection in the A-phi method. The test problem is the Testing
Electromagnetic Analysis Method (TEAM) workshop problem
10 [9]. The test model is discretized by using tetrahedra fi-
nite elements (Whitney elements), with the number of elements
equal to 5968, and At set to 1072 (s). The linear system in the
first time step is solved using the ICCG method. Fig. 1 plots
the comparison of convergence between the A-method and the
A-phi method where r. is the residual of each linear system.
This residual in the A-phi method is, however, given by by —
K4(Za + Gya) where T4 and 4 are the current approxima-
tions of Z 4 and ¢ 4, respectively. Fig. 1 shows the well-known
advantage in convergence of the A-phi method, which has been
explained by the superior condition number of the coefficient
matrix [4]. Next, Fig. 2 shows the convergence behavior of the
error e, of the kernel of the discrete curl operator K er(curl) in
the conductive region of the model. Whereas Hiptmair’s hybrid
smoother corrects this error explicitly, Fig. 2 indicates that the
error ey can be efficiently removed in the A-phi method. More-
over, while we calculate the 2-norm ratio of e, with respect to
the total error in the conductive region for the A-method, the
ratio is higher than 0.9 in most of iterations. Thus, the K er(curl)
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Fig. 3. Comparison of convergence behaviors (15 x 15 grid).
100 T T T T T
1Lg_ﬂ* SIS ey s ]
£ \:i Pag TR ks
5 001} ¥®™ Bg CG ——
© \)K l\ B i - * -
3 00001 gxm - iMG-CG &~
2 % ’K\} o, iMG-ICCG --m--
= 1e-006 |- N ) B, IMG-SGSCG ---o--
2 SO | By,
© 1e-008 - o W o s
&) \b ", S'El ]
1e-010 |- izﬁ By -
®
1e-012 L L L L L
0 5 10 15 20 25 30

Number of iterations

Fig. 4. Comparison of convergence behaviors (127 x 127 grid).

error causes the slow convergence rate in the A-method. Accord-
ingly, the A-phi method has the effect of (implicit) error correc-
tion of e, as in the hybrid smoother, and therefore achieves the
advantage in convergence.

B. Effect of the Implicit Correction Multigrid Method

In this subsection, we examine the effect of the implicit cor-
rection multigrid method. The test problem is given as a linear
system of equations derived from a 2-D Poisson equation dis-
cretized by a five point difference method. Figs. 3 and 4 show
a comparison of convergence behaviors, where “iMG” implies
the implicit correction multigrid method. When the conjugate
gradient (CG) or ICCG method is applied to the original linear
system, the convergence rate declines rapidly as the problem
size increases. On the other hand, when the linear system based
on the implicit correction multigrid method is solved using the
CG method, the number of iterations necessary for convergence
does not really depend on the problem size. Since the procedure
does not include any conventional multigrid process, this result
indicates that the implicit correction multigrid method includes
the coarse grid correction effect. Moreover, it is shown that the
condition number of the coefficient matrix of the implicit multi-
grid method is improved from that of the original matrix 103 to
3.89 in the case of a 15 x 15 grid. Since the proposed method
can be used together with various preconditioning techniques, it
can potentially enlarge the areas of application of the multigrid
method.

C. Effectiveness of Implicit Error Correction Method

Numerical results indicate that the implicit error correction
method improves a condition of the coefficient matrix and at-

tains a similar effect as the corresponding explicit error correc-
tion method. We now consider the condition under which the
implicit error correction method works well. In general, an ex-
plicit error correction type method is introduced for correction
of the error e that satisfies Ae; ~ 0. When A is positive or
semi-positive definite, these errors belong to a space spanned
by the eigenvectors having small eigenvalues, which we denote
by Vs. Accordingly, it is expected that the implicit error correc-
tion method can work well when the range of B gives a good
approximation of V. In this case, D and C' can simply be set as
D = BT and C = BT AB (Galerkin approximation), respec-
tively, and then the coefficient matrix becomes singular. In our
numerical tests, the implicit correction multigrid method shows
good convergence performance under the above condition, even
though the coefficient matrix on coarse levels can be constructed
using other strategies.

VI. CONCLUSION

This paper proposes an implicit error correction method that
corresponds to the explicit error correction methods, such as
Hiptmair’s hybrid smoother and the coarse grid correction in
a multigrid method. It is shown that the A-phi method can be
regarded as an implicit error correction version of the hybrid
smoother. Furthermore, numerical tests show that the A-phi
method has a similar effect on the correction of the error of
the kernel of the discrete curl operator as that of the hybrid
smoother, which results in an advantage in convergence. Next,
we introduce the implicit correction multigrid method by
applying the implicit error correction concept to the multigrid
method. It is shown that the proposed method achieves the
convergence rate independent of the problem size. This result
confirms the strong relationship between the explicit error
correction method and the implicit error correction method and
shows the effectiveness of the proposed method.
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