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Zeros and Poles of Linear Continuous-Time Periodic
Systems: Definitions and Properties

Jun Zhou

Abstract—The paper deals with definitions of zeros and poles and
their features in finite-dimensional linear continuous-time periodic
(FDLCP) systems under a harmonic framework. More precisely,
system and transfer zeros and poles in the harmonic wave-to-wave
sense are defined on what we call the regularized harmonic system
operators and the harmonic transfer operators of FDLCP systems
by means of regularized determinants; then their composition
and properties related to system structures are examined via the
Floquet theory and controllability/observability decompositions of
FDLCP systems. The study shows that under mild assumptions,
the harmonic transfer operators of FDLCP systems are analytic
and meromorphic, on which zeros and poles are well-defined. Basic
zero/pole relationships are established, which are similar to their
linear time-invariant counterparts and in particular explicate some
interesting harmonic wave-to-wave behaviors of FDLCP systems.
The results are significant in analysis and synthesis of FDLCP
systems when the harmonic approach is adopted.

Index Terms—Continuous-time periodic system, Floquet factor-
ization, harmonic transfer operator, zero and pole.

I. INTRODUCTION

T HE paper is devoted to studying definitions of zeros and
poles and their composition properties in finite-dimen-

sional linear continuous-time periodic (FDLCP) systems under
a harmonic framework that admit state-space differential equa-
tion descriptions given by

(1)

where and are, respectively,
, and -periodically time-varying. The dimension

subscripts will be suppressed whenever no confusion is caused.
FDLCP systems constitute a big class of practical control sys-
tems, among which stabilization of helicopter rotors and rolling
ships, and reduction of electro-mechanical oscillations in syn-
chronous generators [1], [8], [9], [15], [28] are representatives,
among many others.

The Floquet theorem [9], [22], [24] says in the FDLCP
system (1) that if is piecewise continuous, its transi-
tion matrix always possesses a Floquet factorization

, where is absolutely continuous,
nonsingular, and -periodic with respect to time , and is
constant but probably complex. Floquet factorizations will be
frequently used in the discussion.
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A. Retrospect to Previous Work

Zeros and poles are essential in the control theory and play
an important role in describing structures of dynamic systems
and connecting frequency-domain features of system mod-
elings with their time-domain behaviours. This is especially
true in analysis and synthesis for linear time-invariant (LTI)
systems [23], [30], [31]; for example, controllability/observ-
ability decomposition, robust stablization (pole assignment),
LQR problem [19], performance [14], [45] and linear
matrix inequalities. More than a dozen of zeros and poles def-
initions in LTI systems can be found [10], [31], among which
transmission zeros and poles of transfer functions, invariant
zeros, input (respectively, output and input/output) decoupling
zeros, blocking zeros are most frequently mentioned. One can
get a general picture from the survey papers of [23] and [31].

Significance of zeros and poles in periodically time-varying
systems is almost the same as that in LTI systems [18], [20].
In the latest two decades, numerous efforts have been made
in defining zeros and poles and determining their features in
linear/nonlinear time-varying systems. As a matter of fact, most
of the efforts are devoted systematically to linear periodic time-
varying systems such as sampled-data and discrete-time peri-
odic [3], [13], [16], [26], [36]. In comparison, zeros and poles
and their characteristics in FDLCP systems are attacked only in
scattering reports [6], [21], [27], [35], [38], [42].

B. Harmonic Framework and Motivation

Recently, a harmonic framework is adopted to establish
the so-called harmonic transfer operators in FDLCP systems
[37], [38]. Relevant results are reported in [33], [34] for gen-
eral linear time-periodic systems. Existence conditions and
important properties of the harmonic transfer operators are
thoroughly explicated in [39], which have brought in fruitful
results [40], [41], [43]. Basic spectral characteristics of the
so-called harmonic state operator, or implicitly aspects of the
system poles in FDLCP systems, are considered in [42]. All
these results allude to possibility and necessity of zeros and
poles under the harmonic framework.

It is well known in multivariable systems [23], [31], [44] that
subsystem zeros and poles form a group of hierarchical relation-
ships; namely, common zeros among all subsystems are zeros of
the system as a whole, while a pole of the system must be a pole
in some subsystems. In the FDLCP setting, one faces a similar
situation when FDLCP systems are approximated by truncating
harmonics as one can see from stabilization of an FDLCP ex-
ample system through pole assignment in Section V, which re-
sults in subsystems in infinite-dimensional spaces. From these

0018-9286/$25.00 © 2008 IEEE

Authorized licensed use limited to: Kyoto University. Downloaded on June 29, 2009 at 01:25 from IEEE Xplore.  Restrictions apply.



ZHOU: ZEROS AND POLES OF LINEAR CONTINUOUS-TIME PERIODIC SYSTEMS: DEFINITIONS AND PROPERTIES 1999

observations, it is imperative for us to define zeros and poles in
between harmonics of FDLCP systems.

C. Contributions and Organization

This paper examines definitions and characteristics related to
zeros and poles in FDLCP systems under a harmonic framework
by means of the regularized determinant technique. More pre-
cisely, zeros and poles in the harmonic wave-to-wave sense are
defined in FDLCP systems, and basic properties are examined
carefully. In the light of zeros and poles of LTI continuous-time
systems, the study deepens our perception about the harmonic
modelings of FDLCP systems and it is a harmonic and struc-
tural explanation for dynamics of FDLCP systems. The results
could be helpful in exploiting the LTI analysis and synthesis
techniques in the FDLCP field.

Now we outline the paper. Section II lists preliminaries for
our discussions. Sections III and IV are the main context. In
particular, Section III introduces zeros and poles in FDLCP sys-
tems and examines their existence, while their compositions and
basic properties are attacked in Section IV. Examples are given
in Section V to illustrate the main results. Notes and remarks
are included in Section VI. To keep the arguments concise, all
the proofs are given as Appendices.

II. PRELIMINARIES

In this section, we first list notations, and basic points on the
Hilbert-Schmidt operators and the regularized determinants for
our later arguments. Next we review facts for controllability/ob-
servability decompositions in FDLCP systems. Then we de-
scribe what we call the harmonic state, system and transfer oper-
ators associated with an FDLCP system and their Floquet coun-
terpart expressions.

A. Notations, Terminologies and Regularized Determinants

represents the field of complex numbers and is the ring
of integers. The Euclidean norm of a vector and the norm of a
matrix induced by this norm are denoted by . is the set
of infinite-dimensional vectors such that ,
where denotes the complex conjugate transpose. is
the linear space of vector measurable functions defined on

such that . Also,
is the induced norm from a linear space to another

linear space . denotes the direct sum of and .
and denote the sets of all singular points and all zeros

of a complex function , respectively.
We introduce set operations: and

and a set relationship: . consists of
all elments in and ; is a subset of , whose ele-
ments appearing also in are removed by multiplicities in ;

is a collection of elements both in and by lower
multiplicities; denotes a set of elements in and/or

by higher multiplicities. means all elements of
are in by their multiplicities in . For instance, if

and ,
then

,
and .

Now we collect facts about the 2-regularized determinant of
Hilbert-Schmidt operators. Let be the -th eigenvalue of
a compact linear operator ( is a separable infi-
nite-dimensional Hilbert space) and be
its -th singular value. For and 2, the set of all compact
operators satisfying

is denoted by and , respectively. In partic-
ular, the operators in are called trace class operators
while those in are called Hilbert-Schmidt operators [4].
Clearly, . For , the operator trace
and determinant are well-defined in the sense that the following
infinite series and product converge; that is, we have

(2)

Note that for
. The determinant of in the sense of

(2), denoted by , is called the
2-regularized determinant of . For our aim, assume also
that . Then

(3)

means that is a matrix function, whose
element are -periodic and belong to when restricted
to . Similarly for subsets of . To validate the
Toeplitz transformation on periodic functions (see Appendix A
and [39]), subsets of such as
and are used. is the set of all piecewise
continuous functions that are differentiable almost everywhere
in ; is the set of all continuous functions
whose first-order derivatives are piecewise continuous in ,
while is that of all continuous functions whose
Fourier series are absolutely convergent. Namely, PCD stands
for piecewise continuous and differentiable; CPCD stands for
continuous and piecewise continuously differentiable, while
CAC stands for continuous and absolute convergent.

B. Toeplitz Expressions of FDLCP Systems

To understand what we call the harmonic state, system and
transfer operators of the FDLCP system (1), let us denote
the Toeplitz transformation of and
by , and

, respectively. Toeplitz transformation is de-
scribed in Appendix A. And also, we write

(4)

where and
. The linear space is a proper

subset of and dense in [39]. Clearly, is unbounded
on and thus it must be restricted to . This is also the case
for the harmonic state operator and the
harmonic system operator given by

(5)
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In other words, and are merely densely defined
on the Hilbert spaces and for each specific .
Furthermore, we define

(6)

which is called the harmonic transfer operator [37], [39] of the
FDLCP system (1). To guarantee that is well-defined on ,
the inverse of must exist. This will soon be answered
by Proposition 1.

Now we state the Floquet similarity formula and other eigen-
values properties of FDLCP systems [39], based on which
can be validated in the sense that exists almost ev-
erywhere on the complex plane except for countably infinite
number of points (which are actually eigenvalues of ).
The results in Proposition 1 lend themselves to mathematical
convenience in our arguments.

Proposition 1: In the FDLCP system (1), let
and be a Floquet factor-

ization. Then, and belong to .
is invertible on and . Also, the unbounded operator

and are densely defined on
(or more precisely, well-defined on the subset ) and
coincide with each other

which is called the Floquet similarity formula. Moreover, the
harmonic state operator and the Floquet state operator

are invertible for each . Here

(7)

with being the set of all eigenvalues of .
Furthermore, assume that .

Let us choose a number such that
. Then, for each

and belong to ,
and it holds that

where . More precisely,
is analytic on

and possesses a zero at each point with
and ; is a -multiple removeable

singular points; i.e.,

(8)

In the above, is analytic and vanishes nowhere on the
whole complex plane .

Proposition 1 follows readily by slightly modifying the argu-
ments of [29], [39] and [40]. To aviod repetition, the details are
omitted. The number is introduced to guarantee that the
regularization operator is well-defined at
each point of . Such a regularization
approach in dealing with unbounded harmonic operators was
first suggested in [42], based on some regularization theorems
in [4] and [7].

C. Controllability/Observability Canonical Forms of FDLCP
Systems

Now we state a controllability/observability decomposition
theorem in the FDLCP setting. An algorithm to construct such
a canonical form can be found in [43]. The decomposition the-
orem plays a role in clarifying structural relationships of input-
and/or output-decoupling zeros in FDLCP systems with non-
controllability/nonobservability modes.

Proposition 2: In the FDLCP system (1), suppose that
and . Then

there exists , which is invertible uniformly
over and , such that the state
transformation transforms the FDLCP system (1)
into the canonical form

(9)

where and etc., are constant matrices of compat-
ible dimensions; and belong to

, and the pairs

and

are completely controllable and observable, respectively.
Actually, one can also find other ways of controllability/ob-

servability decomposition for FDLCP systems; for example, the
algorithms suggested in [2] and [17] are typical. However, since
the algorithm of [17] is constructed in a pointwise fashion, the
resulted decomposition canonical form lacks analytical proper-
ties needed in the harmonic analysis; the decomposition canon-
ical form of [2] usually has a periodically time-varying state ma-
trix that does not fit our purposes. This is the reason why Propo-
sition 2 is introduced.

III. ZEROS/POLES DEFINITIONS IN FDLCP SYSTEMS

Comparing the harmonic system operator and the har-
monic transfer operator in (5) and (6), respectively, to the
so-called system matrix and the transfer function of an LTI con-
tinuous-time system [30], [31], one would come to some simi-
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larities between them. These similarities might invite someone
to draw a conclusion that it is trivial to extend zeros and poles
definitions of LTI systems to FDLCP systems via and

. However, careful observations about and soon
reveal that this is not the case.

In fact, there are at least two pending difficulties in any di-
rect extension of zeros and poles definitions. One stems from
the fact that and are infinite-dimensional. Therefore,
the conventional unimodular transformation theory and matrix
determinants do not work. Another difficulty is that is un-
bounded. It means that if we compulsively extended LTI zeros
and poles definitions to FDLCP cases via certain truncations,
we would inevitably encounter some convergence issues that are
hard to verify.

In this section, we first introduce what we call the regular-
ized harmonic system operator via the regularization technique
of [4], [7], [42]. This will equip us with important results, that
is, Propositions 3 and 4 in Sections III-A and III-B, which will
eventually surmount the difficulties mentioned in the above.
This, together with the 2-regularized determinant theory, helps
us in defining zeros and poles in a big class of FDLCP systems
in Section III-C. Compositions and properties related to zeros
and poles will be examined in the next section.

A. Regularized Harmonic System Operators

Let and define the regularized
harmonic system operator by

(10)

where the regularization operator is well-de-
fined. Clearly, is bounded on for each

.
In the sequel, and denote the

-th blockwise column, the -th blockwise row and the -th
block in an (infinite-dimensional) blockwise matrix , where

. Furthermore, is a submatrix of column
vectors in , say its -th, -th column vectors;

is a submatrix of row vectors in ,
say its -th, -th row vectors; and
denotes a submatrix in , say the submatrix

. Here, and
.

Based on these notations, we define

(11)

It is obvious that with being the
Fourier coefficients of . It is straightforward to see by
Proposition 1 that is well-defined on over .
This in turn means that and are
well-defined over .

For , we further define

(12)

Since we will define zeros and poles in FDLCP systems
through the 2-regularized determinants of submatrices of

and , we show in Proposition 3 that such
2-regularized determinants make sense and are analytic and
meromorphic functions. This is nontrivial since
is also infinite-dimensional and entries in contains
infinite summations.

Proposition 3: In the FDLCP system (1), assume that
and and belong to

. Then for each pair with ,
i) For any fixed

is a Hilbert-Schmidt operator from
to , while

is a Hilbert-Schmidt operator on ;
ii) Each (scalar) entry of is analytic on and

meromorphic.
Here and denote and zero matrices,
respectively, while .

B. Properties Related to and

Note from the assertion i) of Proposition 3
that

. Hence, it makes sense to talk about the 2-regular-
ized determinant on for
each . Now we see how to compute
such 2-regularized determinants and what features they have.

After algebras described in Appendix B, we can show that

(13)

where

Evidently, in
is the kernel part

since the last term of (13) is independent of and nonzero no
matter which rows and columns are taken in .

Proposition 4 claims properties on the operators
and that guarantee existence of zeros
and poles we will introduce for the FDLCP system (1).
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Proposition 4: In the FDLCP system (1), assume that
and and belong to

. Then for each pair with , we have the
following.

i). For any submatrix
in with
and , namely

is analytic on , meromorphic, and satisfies

(14)

ii). Equation (13) holds for each
with being analytic on

,meromorphic,andsatisfying

(15)

In the above, the set is given in Proposition 1.

C. Zeros/Poles Definitions and Remarks

With the above preparations, we further define

(16)

(17)

where and are defined over
and .

Definition 1: The elements in and are
called the -th class system zeros and poles, respectively,
of the regularized harmonic system operator of the
FDCLP system (1). The elements in and
are termed the -th class transfer zeros and poles, respec-
tively, of the harmonic transfer operator of the FDCLP
system (1).

In the above, and are
defined in (16) and (17), and the subscripts and mean
“system” and “transfer”, respectively.

Remark 1: In
collects zeros

of that are situating in
but cancelled by singular points

of situating at the same points. Such
cancellations may occur due to the fact that

(18)

Such a modification is needed because the singular points of
in are in-

troduced when regularizes to . These

singular points associated with the regularization must be re-
moved from zero and pole definitions.

Remark 2: By (16) and Proposition 1, is indepen-
dent of . It should be stressed that has nothing to
do with , either, which follows from (16) and (18). In other
words, and will not be affected by the regu-
larization operator as long as is chosen such
that the eigenvaules, i.e., the elements in , of the harmonic
state operator concide with none of the elements
in .

Remark 3: Under the assumptions of Proposition 4,
and are

analytic and meromorphic. Therefore, they possess only iso-
lated zeros and removable singular points by complex theory.
Namely, and are sets of
isolated numbers that are at most countably infinite. In other
words, these sets have algebraic characteristics similar to the
zeros and poles sets in LTI systems.

By the matrix expressions, and
seemingly can be viewed as relationships from the -th input
to the -th output if and as we do in mul-
tivariable systems. We point out that and are
defined by lifting the harmonics in the Hilbert space . Hence,

and reflects the relationship between
the -th harmonic wave of the input and the -th harmonic wave
of the output. In this sense, the elements in possess
a harmonic wave-to-wave meaning. This is why we term an
element of an -th “class” system zero instead of
a “subsystem” system zero. Similar words can be said for other
zeros and poles.

Remark 4: In [38], poles and transmission zeros are defined
through integral operators of FDLCP systems, which are for-
mally frequency/time-domain mixed. Based on the definitions
[38] the so-called eigenstructures and associated directions of
FDLCP systems are studied. It is shown that the poles are the
characteristic multipliers (see [22] for definition) of the mon-
odromy . Such zeros [38] can be connected with identi-
cally zero outputs under geometrical periodic signals.

In [6] and [27], a derivative operator framework (thus time-
domain essentially) is suggested to deal with zeros and blocking
properties in square FDLCP systems. The definitions there are
stated under strong conditions on and , and a uniform
relative degree assumption of the system concerned is required.
It is shown that zeros are unobservable exponents of some as-
sociated periodic pair and can be connected to zero outputs, to-
gether with appropriate initial states.

The zeros and poles of Definition 1 are given under a har-
monic framework, which is frequency-domain essentially. In
particular, the definitions here can be viewed as direct exten-
sions of those in LTI systems with help of the regularization
technique. It is expected that relationships between dynamic be-
haviors and zeros/poles can also be established under the har-
monic framework in FDLCP systems, as we have seen in [27]
and [38]. To clarify such relationships in the harmonic frame-
work needs many more notations and further preparations, and
thus is left for another paper.

Remark 5: Also in connection with Remark 3, we must say
that it is a nontrivial task to extend Definition 1 in order to in-
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clude other zero facets in the FDLCP setting, say blocking zeros,
transmission zeros and invariant zeros, as we do in multivariable
systems [23], [31]. There are big mathematical gaps in such ex-
tensions, although these extensions are natural and intuitive in
form.

An essential difficulty in such definition extensions is that
is not a Hilbert-Schmidt operator, and thus it would be

meaningless to even talk about any regularized determinants on
. Actually, we know at most that is bounded

and Fredholm [7]. To make things worse, compactness of all
the submatrices does not lead compactness of

due to convergence caused by (see a possible ex-
planation by [25, Theor. 5.24.8 ]).

IV. PROPERTIES OF ZEROS/POLES IN FDLCP SYSTEMS

In this section, properties related to zeros and poles in FDLCP
systems are examined rigorously, which clarify some structural
features about FDLCP systems. In particular, zeros/poles re-
lationships similar to those in LTI systems are derived, which
greatly enrich our understanding to analysis and synthesis prob-
lems in FDLCP systems where zeros and poles are involved.
Based on the preparations in the previous subsection, we first
examine composition and distribution features of the zeros and
poles introduced in Definition 1.

Theorem 1: In the FDCLP system (1), assume that
and that and belong to . As-

sume also that . Then for each pair with
, it holds:

i)
;

ii)
where

The set denotes all the system poles which disappear
from but do not belong to the set .
Here, and so on are defined in Proposition 2.

Remark 6: Theorem 1 shows that zeros and poles of FDLCP
systems has set relationships similar to those of LTI systems.
For example, the harmonic transfer operator only repre-
sents the controllable and observable structures of an FDLCP
system. That is, uncontrollable and/or unobservable modes of
the FDLCP system can only be treated in the regularized har-
monic system operator. Following suit to some terminologies
in LTI systems, the elements belonging to and
are termed, respectively, the input-, output- and input/output-de-
coupling zeros. The meaning of the elements in will be ex-
plained in Remark 7.

Theorem 1 also says that the system poles (including de-
coupling zeros) and the transfer poles distribute themselves in
a strip region parallel to the imaginary axis of the complex
plane. However, as we have explained in Remark 3, the zeros
and poles of FDLCP systems must be interpreted as set rela-
tionships in between the harmonic waves of input and output.
This is substantially different from the well-known results in
LTI systems.

In the following, we do some deeper observations about prop-
erties of the zeros and poles in the FDLCP setting. The obser-
vations are summarized in Theorem 2

Theorem 2: In the FDLCP system (1), assume that
. Assume also that and be-

long to , and . Then it holds
i)

;
ii) for any , it holds that

and ;
iii) for any ; for any

, and ; thus it holds that
;

iv) if there exists at least one point
and

is nonempty, then contains no limit points; i.e.,
a nonempty transfer zeros set does not contain
any convergent transfer zeros sequences.

Remark 7: The first three assertions of Theorem 2 tell that the
elements in represent transfer poles that are cancelled
by harmonic waves cross combinations in
and . Here, the phrase “cross combination” should be
understood as mutual position correspondence of the Fourier
coefficient sequences ,
and in . Hence, we call the elements
in the harmonic combination decoupling zeros. In
other words, if is not empty, its elements reflect
noncontrollable/nonobservable characteristics cancellations of
a concerned FDLCP system that are caused by cross combina-
tions of the harmonic waves in and . This
cross wave noncontrollability/nonobservability phenomenon
may also be observed in LTI continuous-time systems but in a
subsystem sense [32], [44].

The assertion ii) of Theorem 2 implies that the system and
transfer zeros of and that are situating
along a same skew line in and distribute them-
selves in a same vertical strip region parallel to the imaginary
axis.

As for the assertion iv) of Theorem 2, it is usually true that
for some . With less rigorous

words, it means that the transfer zeros of general FDLCP sys-
tems do not aggregate locally on the complex plane. This, to-
gether with the distribution patterns of the poles, implies in fig-
urative words that FDLCP systems are not “compact.”

Now we claim a corollary of Theorem 2, which states some
interesting observations about “blocking zeros” in FDLCP
systems. Here we use “blocking zeros” simply for lack of better
words. Blocking zeros in LTI multivariable systems can be
found in [10], [44].

Authorized licensed use limited to: Kyoto University. Downloaded on June 29, 2009 at 01:25 from IEEE Xplore.  Restrictions apply.



2004 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 9, OCTOBER 2008

Corollary 1: In the FDLCP system (1), suppose that all the
assumptions of Theorem 1 are satisfied. If it holds for a pair

that (respectively, ) contains at most
finitely many elements, then (respectively,

). Here, is over and/or over .
Proof: Since there exists a pair at which

contains at most finitely many elements, it follows from the as-
sertion ii) of Theorem 2 that with

. Examining all over , the assertion
follows. Similarly, we can show the assertion about .

Remark 8: The results of Corollary 1 have a harmonic in-
terpretation. If , then for any nonzero harmonic
waves in the input to the FDLCP system (1), their effects cannot
be blocked out completely from all the harmonic waves in the
output. This coincides with what we have known in LTI sys-
tems, which are FDLCP systems with arbitrary periods. Indeed,
the harmonic transfer operator for an LTI system is block-
wise diagonal and can be seen as a group of transfer functions
defined from the same LTI system but restricted to dif-
ferent frequency bands. If one imposes a same sinsuidal signal to
each of these transfer functions, at least one response is nonzero;
otherwise, we can assert from the complex analysis theory that

.

V. ILLUSTRATIVE EXAMPLES

The first example indicates that the zero/pole concepts de-
fined in the paper are closely related to contorl problems. More
precisely, we show that FDLCP control systems can be stabi-
lized through pole assignment as we have seen in the LTI con-
trol theory. We consider stabilization of the periodic differen-
tial equation , where is a
damping factor and is an input. Simple algebras produce us
the state-space differential equation

(19)

which is FDLCP with period and

The system is not asymptotically stable. Let us stabilize it via
a feedback , where and

are constants. Implementing in (19) gives a
closed-loop FDLCP system with

. We will fix such that is stable. This is
nontrivial since is periodically time-varying.

As a solution, we implement in an approxi-
mate system , where . This yields an
LTI closed-loop system with .
Clearly, is obtained by dropping all high-order harmonics in

. Hence, the poles of the approximate LTI system are ones
defined on the 0-th harmonic structure of the FDLCP system.
Since the pair is controllable, there are ’s such that
the LTI closed-loop system can be stabilized via

; for example, when and we take specif-
ically , then the egienvalues of are
and .

Now our question is: does stability of the approximate LTI
system guarantee that of the closed-loop

FDLCP system under the same state feed-
back gain ? There are two ways to answer this question.

Firstly, we note that stability of the closed-loop FDLCP system
is reflected by tbe eigenvalues of the so-called monodromy ma-
trix by the Floquet theory. In other words, we compute the
monodromy matrix of and examine its eigenvalues
distribution. Stability of the closed-loop FDLCP system follows
if all eigenvalues of fall inside the open unit disc. For
the specific case, the monodromy matrix possesses two
eigenvalues: 0.2079 and 0.5335, where is calculated by
piecewise constant approximation on as in [9], [41].

Secondly, by means of the system poles in FDLCP systems
and observing their distribution. In other words, stability of the
closed-loop FDLCP system are revealed by the closed-loop
system poles, which can be obtained by truncating the har-
monic state operator (where )
and calculating its eigenvalues in the fundamental strip

, as explained
in [42]. For the aforementioned specific case, the system
poles of in are and

.
Also related to the second method, we note that

, which in form is the same as we see in LTI
cases. This means that the second method can be interpreted as
pole assignment in the harmonic sense (details are omitted for
brevity). In contrast, if stability is tested via the Floquet theory as
discussed in the first method, it is not a simple task to do any pole
assignment due to the involement of the monodromy matrix.

In the next example, we consider how to numerically treat
zeros and poles of the following -periodic FDLCP system.
Here, is an input weighting parameter

The transition matrix of the example system has a Floquet fac-
torization of the form

Since Floquet factors of the transition matrix are available, we
are able to compute each scalar entry in when-
ever and are specified. By trivial computations, we see that

and possess only
finitely many nonzero harmonic waves. Therefore, all nonzero
entries in can be deduced through the following
four formulas and arranged according to the pair index :
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where is used for expression brevity. More pre-
cisely, the harmonic transfer operator can be expressed by (20),
as shown at the bottom of the page, in which denotes the
center of , i.e., . By the definitions and
simple computations, we can claim that for each specific

The numerical results show that is empty.
This reflects the fact that the FDLCP example system is com-

pletely controllable and observable. For any pairs in
and over

, the system poles are the same and distribute themselves
equitably in a vertical strip parallel to the imaginary axis. The
transfer poles in each pair form just a fragment of the strip.

VI. CONCLUSION

Zeros and poles in the harmonic wave-to-wave sense are in-
troduced in Section III-A for FDLCP systems through the reg-
ularized harmonic system operators and the harmonic transfer
operators, which are well-defined in the sense of Propositions 3
and 4. Interesting zeros and poles relationships are established
in Theorems 1 and 2 and the relevant remarks, which in form
are similar to the counterparts in the LTI systems. We see that
harmonic characteristics of FDLCP systems are essentially LTI.
Hence, we can exploit analysis and synthesis techniques devel-
oped in the LTI setting for FDLCP systems whenever zeros and
poles are necessary.

As pointed out by [27], it is difficult to define zeros and poles
in simple and numerically tractable fashion on infinite-dimen-
sional operators. This is also the case under the harmonic frame-
work of FDLCP systems. This paper surmounts most difficul-
ties related to zeros and poles of FDLCP systems by working on
a harmonic wave-to-wave approach and exploiting the regular-
ization technique. To clarify relationships between dynamical
behaviours of FDLCP systems with zeros and poles defined in
the paper is left for our subsequent study.

APPENDIX A
TOEPLITZ TRANSFORMATION

Expand the -periodic function to its Fourier series
with . The Toeplitz transfor-

mation on , i.e., , maps into a Toeplitz op-
erator [38] given by

. . .
...

...
...

...
...

...
. . .

By the terminology of [11, p. 564], is also termed a block
Laurent operator and is called the defining function of the
block Laurent operator .

. . .
. . .

. . .
. . .

. . .
. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

(20)
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APPENDIX B
DERIVATION OF (13)

By the 2-regularized determinant definition, we have

(21)

where we note that is invertible at each
. This can be shown through the

Floquet similarity formula of Proposition 1. By some lengthy
but trivial arguments, one can say

and

are Hilbert-Schmidt operators on for each
. Therefore, we can expand the last

2-regularized determinant in (21) by means of (3). This gives

(22)

In the derivation of (22), we used the following facts:

and

which can be proved according to the basic points of
Section II-A about determinant and trace.

Carefully examining the last equation in (22), we can concen-
trate our attention only on the second 2-regularized determinant

since properties about the first 2-regularized determinant, i.e.,
, have been clarified in Proposition 1.

We have

(23)

In (23), the following result is used:

Besides, we assert that the operator matrix

is a Hilbert-Schmidt operator on , since
is finite-dimensional

and is a
Hilbert-Schmidt operator.

Again, note that is finite-
dimensional. Thus is also a trace class
operator. Then, Property 1.8(b) of [4, p. 17] yields that

(24)

Authorized licensed use limited to: Kyoto University. Downloaded on June 29, 2009 at 01:25 from IEEE Xplore.  Restrictions apply.



ZHOU: ZEROS AND POLES OF LINEAR CONTINUOUS-TIME PERIODIC SYSTEMS: DEFINITIONS AND PROPERTIES 2007

where denotes the standard determinant of a matrix
(see (2) for the details).

Now let us substitute (23) and (24) back into (22). Then
simple algebra brings us that

Finally, if we write
, then (13)

follows.

APPENDIX C
PROOFS FOR PROPOSITIONS AND THEOREMS

Proof of Proposition 3: Since the latter part of the assertion
i) is merely a special case of the former part of the assertion i),
it is sufficient only to show that
is a Hilbert-Schmidt operator from to . To see
this, we observe that

(25)

where denotes an identity matrix. We have

where fol-
lows from Corollary XXIII.2.2 of [12, p. 567] and

and are the Fourier
coefficients sequences of and . The last
inequality follows from the assumptions on
and . The above arguments say that the second operator
matrix in the right-hand side of (25) is bounded.

Note by Proposition 1 that . This, together
with the fact that has finite-dimensional range, tells us that the
first operator matrix in the right-hand side of (25) represents a
Hilbert-Schmidt operator on . Then, by Property 1.3(b) of

[4 p. 14], we have that is compact
and .

To show the assertion ii), let us notice by the Floquet simi-
larity formula of Proposition 1 that

(26)

where and . If we de-
note the defining functions of and by and , re-
spectively, from the assumptions on and Proposi-
tion 1, it follows that and also belong to .
Hence, it can be validated [39] that and

.
Now let us denote the Fourier coefficients sequences of

and by and . Then, (26) can be
equivalently re-written as follows:

(27)

whose partial summation is given by

By the definition of , it is straightforward to see that
for each specific is analytic over any bounded
domain . Now we observe that

In the derivation the Cauchy-Schwarz inequality is used. It is not
hard to see that there exists such that for any

. This, together with the
facts that and
as , implies that

as . This, in particular, means that con-
verges to uniformly on . Hence, one can
conclude by the complex analysis theory that is also
analytic on . Note that can be any bounded subset
of . Then analytic continuation arguments lead us imme-
diately that is analytic on .
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The uniform convergence argued in the above can validate the
order interchange between the limit and the infinite summation
in the following deductions:

Clearly, for any , one can take so that
. On the other hand, for

each one can always take an appropriate integer
such that . This im-

plies that possesses only removeable singular points
on ; or is meromorphic by definition.

Proof of Proposition 4: By definition,
is the summation of finitely

many muplications of scalar entries of .
Then from the assertion ii) of Proposition 3, analyticity and
meromorphism of follows.

To see (14), assume that is a singular point of multiplicity
in . Note that has

the expression of (27). By simple contradiction arguments, one
can conclude that must be a -multiple singular point of at
least one term in (27), say

To show (14), suppose that (14) is the contrary. That is, is
only a -multiple eigenvalue of with .
Then basic knowledge about poles of transfer functions of mul-
tivariable systems [30], [31] tells us that any singular point at ,
if any, in each scalar entry of is at most of multiplicity

. From this, it follows readily that

where is an nonnegative integer. Using this back to (27), it
follows after trivial arguments that is a singular point of

at most with multiplicity . This
is contradictory to the multiplicity assumption about . From
this contradiction, (14) follows.

Analyticity and meromorphism of
follows from those of and

, which have already been claimed
in Proposition 1 and the assertion i) of Proposition 4, respec-
tively.

To complete the proof of the assertion ii), it remains
only to show (15). By Proposition 1, we have

. Taking (14) into account, we can assert
that any elements in cannot
be in . Then (15) follows from
the definition of and (8) claimed in
Proposition 1.

Proof of Theorem 1: By the assumptions on
and , Propositions 1 and 2 say that we

can define the following regularized harmonic system operator

based on the controllability/observability canonical form of the
system (1)

(28)

where and

with and belonging to
. We also define

(29)

By (28) and (29) and Proposition 1, it follows that

(30)

where is an analytic function on the whole complex plane
and vanishes nowhere. These equations indicate that one can
complete the proof by working on and .

To see the assertion i), we first observe by Definition 1 and
Proposition 1 that

(31)

Next, by the specific expressions of , and , we have

(32)

where and denote the Fourier
coefficients sequences of and , respectively. Equa-
tion (32) clearly says that any eigenvalues of corre-
sponding to and
for each do not emerge in any scaler entries of .
Thus, these eigenvalues of cannot emerge in

as singular points. Bearing this in
mind, the definitions of and imply immediately
that

(33)

Further, by the assertion i) of Proposition 4. one can see

(34)

Note by (32) that the singular points in
reflects modes of the
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system (1) that are different from those in
in the sense of (28) and (32). This, together with (33) and (34),
implies that there exists a set
satisfying

(35)

where may be empty but satisfies

In the above, runs over all and
.

Now we examine the operation on (35) over all
and . By

(31), we obtain and thus

In the deduction, we used the fact that

is a fixed set that is actually independent of
and

. With this, the proof for
the assertion i) is accomplished.

To show the assertion ii), let us take into account pos-
sible zero/singular-points cancellations between

and and observe
that

(36)

In the above, some arguments in proving the assertion i) are
used. In addition, by the assertion ii) of Proposition 4, we have

Combining (36) with (16) and (30), it follows that
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In the above deduction, we used the following assertion:

To see this, we note that is obvious. It re-
mains to show . Assume that belongs to

but belongs to neither nor
. It is easy to see that such

must appear in whenever
is not in and vice versa. It is also

clear that must belong at least to the set of an-
other substructure in that is different from

. In other words, must belong to
since by definition. Recalling

that is not in , it follows that must
be in . However, this is impos-
sible since is already in . This
completes the proof for the assertion ii).

Proof of Theorem 2: The assertion i) is obvious. To see
the assertion ii), it is enough to notice that for any

and can be
expressed by and , re-
spectively, if in and is replaced by

.
To see the assertion iii), it suffices to show that for any

. To this end, let us suppose the con-
trary. That is, there exists but
for all . By the definition of is not a mode
belonging to . Interpreting this along terms
in (32), it follows that at least for one triple is a
singular point of

������ �� ������������� �����
��� ������ ���	� �� �� �
������

Then basic knowledge about zeros and poles in multivariable
systems [23], [30], [31] leads that must be a transfer func-
tion pole of ; or equivalently, there is at least one

submatrix in , say , such
that possesses a singular point
at .

On the other hand, (32) tells that it is always possible to
re-write with an appropriate
matrix . After trivial computations, we see that

where is a complex function whose exact expression has
no significance for our arguments. It follows that is a singular
point of and thus by
Definition 1. Thus, the assumption on cannot be true.

Finally, to show the assertion iv) let us suppose the contrary.
It follows that contains a convergent points sequence,
on each point of which for any

and .
Note that is analytical on

. This implies by the theorem of identity that
for all for any

and .
However, this is contradictory to
for some .

REFERENCES

[1] A. Allievi and A. Soudack, “Ship stability via the Mathieu equation,”
Int. J. Control, vol. 51, pp. 139–167, 1990.

[2] S. Bittanti and P. Bolzern, “Stabilizability and detectability in linear
periodic systems,” Syst. Control Lett., vol. 6, no. 1, pp. 141–145, 1985.

[3] P. P. Bolzern, P. Colaneri, and R. Scattolini, “Zeros of discrete-time
linear periodic systems,” IEEE Trans. Automat. Control, vol. 31, no.
11, pp. 1057–1058, 1986.

[4] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators.
Berlin/New York: Springer-Verlag, 1990.

[5] T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems
1995.

[6] P. Colaneri, “Theoretical aspects of continuous-time periodic systems,”
Annu. Rev. Control, vol. 29, pp. 205–215, 2005.

[7] C. Conway, A Course in Functional Analysis, 2nd ed. New York:
Springer-Verlag, 1990.

[8] J. Dugundji and J. H. Wendell, “Some analysis methods for rotating
systems with periodic coefficients,” AIAA J., vol. 21, pp. 890–897,
1983.

[9] M. Farkas, Periodic Motions. Berlin/New York: Springer-Verlag,
1994.

[10] P. G. Ferreira and S. P. Bhattacharyya, “On blocking zeros,” IEEE
Trans. Automat. Control, vol. AC-22, no. 2, pp. 258–259, 1977.

[11] I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Op-
erators. New York: Birkhäuser, 1990, vol. I.

[12] I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Op-
erators. New York: Birkhäuser, 1993, vol. II.

[13] O. M. Grasselli and S. Longhi, “Zeros and poles of linear periodic mul-
tivariable discrete-time systems,” Circuits, Syst., Signal Process., vol.
7, no. 3, pp. 361–380, 1988.

[14] M. Green and D. J. N. Limebeer, Linear Robust Control. Englewood
Cliffs, NJ: Prentice-Hall, 1995, pp. 93–96.

[15] M. Grimble, Industrial Control Systems Design. New York: Wiley,
2001.

[16] T. Hagiwara, “Analytic study on the intrinsic zeros of sampled-data
system,” IEEE Trans. Automat. Control, vol. 41, no. 2, pp. 261–263,
Feb. 1996.

[17] R. E. Kalman, “Mathematical description of linear dynamic systems,”
J. SIAM Control Ser. A, vol. 1, no. 2, pp. 152–192, 1963.

[18] P. P. Khargonekar, K. Poolla, and A. Tannenbaum, “Robust control of
linear time-invariant plants using periodic compensation,” IEEE Trans.
Automat. Control, vol. AC-30, no. 11, pp. 1088–1096, Nov. 1985.

[19] P. Lancaster and L. Rodman, Algebraic Riccati Equations. New
York: Clarendon Press, 1995.

[20] S. Lee, S. M. Meerkov, and T. Runolfsson, “Vibrational feedback con-
trol: Zero placement capability,” IEEE Trans. Automat. Control, vol.
AC-32, no. 7, pp. 604–611, 1987.

[21] M. Lovera, P. Colaneri, and R. Celi, “On the role of zeros in rotorcraft
aeromechanics,” J. Amer. Helicopter Soc., vol. 49, no. 3, pp. 318–327,
2004.

[22] D. L. Lukes, Differential Equations: Classical to Controlled. New
York: Academic, 1982.

[23] A. G. J. MacFarlane and N. Karcanias, “Poles and zeros in linear mul-
tivariable systems: A survey of the algebraic, geometric and complex-
variable theory,” Int. J. Control, vol. 22, pp. 33–74, 1976.

[24] P. Montagnier, C. C. Paige, and R. J. Spiteri, “Real floquet factors of
linear time-periodic systems,” Syst. Control Lett., vol. 50, pp. 251–262,
2003.

[25] A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering
and Science. New York: Springer-Verlag, 1982.

[26] G. D. Nicolao and G. Ferrari-Trecate, “On the zeros of discrete-time
linear periodic systems,” Circuits, Syst., Signal Process, vol. 16, pp.
703–718, 1997.

[27] G. D. Nicolao, G. Ferrari-Trecate, and S. Pinzoni, “Zeros of contin-
uous-time linear periodic systems,” Automatica, vol. 34, no. 12, pp.
1651–1655, 1998.

[28] M. Pavella and P. G. Murthy, Transient Stability of Power System—
Theory and Practice. New York: Wiley, 1994.

Authorized licensed use limited to: Kyoto University. Downloaded on June 29, 2009 at 01:25 from IEEE Xplore.  Restrictions apply.



ZHOU: ZEROS AND POLES OF LINEAR CONTINUOUS-TIME PERIODIC SYSTEMS: DEFINITIONS AND PROPERTIES 2011

[29] W. Rudin, Real and Complex Analysis. New York: McGraw-Hill,
1987.

[30] H. H. Rosenbrock, State-Space and Multivariable Theory. London,
U.K.: Nelson, 1970.

[31] C. B. Schrader and M. K. Sain, “Research on system zeros: A survey,”
Int. J. Control, vol. 50, pp. 1407–1433, 1989.

[32] C. B. Schrader and M. K. Sain, “Subzeros of linear multivariable
systems,” in Proc. 1989 American Control Conf., 1989, vol. 1, pp.
280–285.

[33] H. Sandberg, E. Möllerstedt, and B. Bernhardsson, “Frequency-domain
analysis of linear time-periodic systems,” IEEE Trans. Automat.Con-
trol, vol. 50, no. 12, pp. 1971–1983, Dec. 2005.

[34] H. Sandberg and B. Bernhardsson, “A bode sensitivity integral for
linear time-periodic systems,” IEEE Trans. Automat. Control, vol. 50,
no. 12, pp. 2034–2039, Dec. 2005.

[35] P. van der Kloet and F. L. Neerhoff, “On characteristic equations,
dynamic eigenvalues, Lyapunov exponents and Floquet numbers for
linear time-varying systems,” in Proc. MTN2004, Leuven, Belgium,
2004.

[36] A. Varga, “Robust and minimum norm pole assignment with periodic
state feecback,” IEEE Trans. Automat. Control, vol. 45, no. 5, pp.
1017–1022, May 2000.

[37] N. M. Wereley and S. R. Hall, “Frequency response of linear time pe-
riodic systems,” in Proc. CDC, 1990, pp. 3650–3655.

[38] N. M. Wereley, “Analysis and Control of Linear Periodically Time
Varying Systems,” Ph.D. dissertation, Dept. Aeronautics and Astronau-
tics, M.I.T., Cambridge, MA, 1990.

[39] J. Zhou and T. Hagiwara, “Existence conditions and properties of fre-
quency response operators of continuous-time periodic systems,” SIAM
J. Control and Optimiz., vol. 40, no. 6, pp. 1867–1887, 2002.

[40] J. Zhou and T. Hagiwara, “2-regularized nyquist stability criterion in
linear continuous-time periodic systems,” SIAM J. Control Optimiz.,
vol. 44, no. 2, pp. 618–645, 2005.

[41] J. Zhou, T. Hagiwara, and M. Araki, “Stability analysis of continuous-
time periodic systems via the harmonic analysis,” IEEE Trans. Au-
tomat. Control, vol. 47, no. 2, pp. 292–298, Feb. 2002.

[42] J. Zhou, T. Hagiwara, and M. Araki, “Spectral characteristics and
eigenvalues computation of the harmonic state operators in contin-
uous-time periodic systems,” Syst. Control Lett., vol. 53, no. 2, pp.
141–155, 2004.

[43] J. Zhou, “A harmonic framework for controllability in linear contin-
uous-time periodic system,” SIAM J. Control Optimiz., vol. 46, no. 2,
pp. 630–654, 2007.

[44] J. Zhou and Z. S. Lü, “Sub-system zeros and poles of transfer function
matrices in multivariable systems,” Control Theory and Applic., vol.
11, no. 4, pp. 489–495, 1996, in Chinese.

[45] K. Zhou, Essentials of Robust Control. Englewood Cliffs, NJ: Pren-
tice-Hall, 1998.

Jun Zhou received the B.S. degree in electronics
from Sichuan University, Chendu, China, in 1984,
the M.S. degree in electronics and informatics from
Lanzhou University, Lanzhou, China, in 1987, and
the Ph.D. degree in electrical engineering from
Kyoto University, Kyoto, Japan, in 2002.

He has been an Associate Professor in the Depart-
ment of Electronics and Informatics, Lanzhou Uni-
versity, since 1995. He is currently with Department
of Electrical Engineering, Kyoto University. His re-
search interests include multivariable system factor-

ization theory, periodic time-varying systems, nonlinear systems and control,
swing reduction and stabilization in synchronous generators, load-flow compu-
tation, and voltage stability in power systems.

Authorized licensed use limited to: Kyoto University. Downloaded on June 29, 2009 at 01:25 from IEEE Xplore.  Restrictions apply.


