Light Emission From Silicon in Photonic Crystal Nanocavity
Masayuki Fujita, Member, IEEE, Yoshinori Tanaka, and Susumu Noda, Fellow, IEEE

Abstract—We have introduced a photonic crystal into a single-crystal silicon slab in order to manipulate the light emission. When the lattice constant of a defect-free photonic crystal matches the wavelength of light in the medium, the light emitted from the silicon is resonantly extracted at the photonic band edge within the escape light cone. When the lattice constant is larger than the wavelength, Brillouin zone folding of the photonic band also allows the light to be extracted; we achieved an intensity that was enhanced by a factor of ~ 20 due to the diffraction of internal light into the light cone. We have also created a point defect in photonic crystals with smaller lattice constants that functions as a nanocavity and strongly interacts with the silicon emitter. Four cavity modes were observed, with different Q-factors and emission patterns. The mode orders were assigned using the resonant wavelengths and polarizations. The observed emission at room temperature was enhanced by a factor of ~ 30 in comparison to that of an unprocessed area of silicon-on-insulator. Our study demonstrates that employing a photonic crystal nanocavity in silicon can greatly improve the light extraction efficiency, the characteristics of the radiation pattern, and the internal quantum efficiency.

Index Terms—Light emission, light extraction, photonic crystal, photonic nanocavity, silicon.

I. INTRODUCTION

SILICON (Si) is the most pervasive semiconductor material currently used in electronics. Recent progress in the field of Si photonics, which has the potential to overcome many of the limitations of electronics, including the speed of signal processing, has been remarkable [1]–[7]. However, due to the indirect optical transition in Si, efficient Si-based light emitters have not yet been developed. Photonic crystals (PCs), in which the refractive index varies periodically on a length scale comparable to the optical wavelength of interest, have recently attracted much attention as fundamental components of next-generation photonic devices [8], [9]. PCs allow light to be manipulated by controlling the optical modes, which can be achieved by careful design of both the dispersion curves and photon density of states. For example, the light emitted from a PC can be extracted using the Brillouin zone folding of the photonic band [10]–[12]. Light emission can be inhibited by the photonic bandgap (PBG) [9], [13], [14], which forbids the existence of photonic modes for certain directions of propagation, and enhanced by modifying the spontaneous emission [9], [15]–[19] via the Purcell effect [20]. Exploiting these effects has the potential to improve the efficiency of light emitters. The development of Si-based PC devices is progressing rapidly [21]–[26]. The advantages of using Si include its high refractive index, the existence of well-developed microfabrication techniques used in electronics, and the availability of high-quality crystals with low parasitic loss and silicon-on-insulator (SOI) substrates. However, most of the devices reported thus far have been either passive [21], [22], [25] or refractive index—absorption modulation systems [23], [24], [26]. There are very few reports of PC light emitters fabricated from crystalline Si itself [27], despite the publication of studies of light emission in PCs based on Si, including erbium-doped Si [28], [29], germanium-Si quantum dots [30], [31], and nanocrystalline Si [32]–[34]. In this paper, we systematically investigate the effect of PC structures on the light emission properties of single-crystal Si, which thus far has remained unclear. In Section II, we study the emission of light from an Si PC with no designed defects. We then describe in Section III the emission characteristics of Si photonic nanocavities [9], [21], formed by the introduction of an artificial point defect that disturbs the structural periodicity of the PC. Finally, the conclusion is provided in Section IV.

II. DEFECT-FREE PHOTONIC CRYSTAL SLABS

We investigate the optical emission properties of one of the most popular PC structures, the 2-D PC slab consisting of a triangular lattice of air holes shown in Fig. 1. Strong optical confinement in the vertical direction can be achieved, despite the absence of PC periodicity, by using a freestanding Si slab with low-refractive-index air cladding. This results in total internal reflection (TIR) at the slab–air boundaries, where there is a large contrast in refractive indices. As a result, the light inside the slab should be strongly affected by the periodic structure. For example, when the wavelength of light in the medium (\(\lambda_m\)) matches the lattice constant of the PC (\(a\)), the light can be diffracted in the vertical direction [35], [36]. When \(a\) is much larger than \(\lambda_m\), light can still be extracted from the slab by higher-order diffraction via the Brillouin zone folding of the photonic band [10]–[12]. These PC characteristics are scaled by the normalized frequency \(a/\lambda\), where \(\lambda\) is the wavelength in vacuum. Thus, the PC effect can be systematically studied using PCs with a range of lattice constants.

The experimental samples were fabricated from an SOI substrate, which was made using the SmartCut method [37]. The thickness and resistivity of the p-type Si slab (SOI layer) situated
above the SiO$_2$ were 200 nm and 10 $\Omega \cdot$cm, respectively. The PC patterns were drawn by electron beam lithography using a positive-type resist, ZEON ZEP-520A, and transferred to the Si slab by SF$_6$-based inductively coupled plasma etching. Finally, the freestanding slab was formed by selective chemical etching of the SiO$_2$ layer on the Si substrate using an HF solution. Fig. 2 shows a scanning electron micrograph (SEM) view of the fabricated sample, in which the triangular lattice of air holes is evenly formed. We used 30 PC periods in this study, a number that electromagnetic-field simulations using 3-D finite-difference time-domain (FDTD) method have shown to be sufficient in order to observe the PC effect [38]. The emission properties of the samples were measured using a microphotoluminescence (micro-PL) system at room temperature. Pump light from a continuous-wave (CW) 406 nm laser was focused on the sample through a numerical aperture (NA) 0.4 objective lens. The emitted light was collected by the same objective lens and measured using a multichannel GaInAs detector system equipped with a monochromator and infrared camera. The irradiated power and spot diameter of the pump light were 10 mW and \sim4 μm, respectively.

Fig. 3 shows the emission spectra of samples with PC lattice constants ranging in 10 nm intervals from $a = 450$ to 500 nm, in addition to the spectrum of a non-PC sample (an unprocessed SOI area). Well-defined emission peaks are observed close to 1.1 μm for the PC samples, corresponding to the electron band edge of Si. The positions of the peak maxima are almost directly proportional to the lattice constant. This implies that the emission peaks originate from in-plane resonance and that light is extracted at the photonic band edge [35]. In order to investigate the origin of the peaks in more detail, we compare the experimental spectra with the photonic band diagram calculated using the 3-D plane wave expansion method [39]. According to the photonic band structure in Fig. 4(a), the first Γ-point of the photonic band edge for transverse-electric (TE) polarization (when the electric field is orientated parallel to the slab plane) has a normalized frequency of 0.43. The spectra shown in Fig. 4(b) for samples with lattice constants between 450 and 500 nm contain well-defined peaks at this frequency. At this point, the waveguiding modes propagating along the six characteristic in-plane directions inside the slab are coupled to leaky modes in the direction normal to the slab plane at the photonic band edge [35]. The spectra from samples with lattice constants ranging from 600 nm to 900 nm at intervals of 100 nm are also displayed in Fig. 4(b). Emission peaks corresponding to the band edges are again observed for each sample. An increase in the emission intensity across the entire spectrum is found for the PC samples compared to the non-PC sample. This is due to the extraction of light by Brillouin zone folding of the photonic band, which
diffracts internal light into the escape light cone [12]. The emission intensity is enhanced as the normalized frequency (lattice constant) is increased. This can be explained by the increase of wavenumber components above the light line in Fig. 4(a), where the light is diffracted into the air. For the PC sample with \(a = 900 \text{ nm} \), the peak emission intensity is 17 times greater than that of the non-PC sample. The enhancement factor is 25 when the reduced emission area due to the air holes is taken into account. This approaches the maximum possible enhancement factor of 40 predicted by FDTD simulation [10]. If nonradiative carrier recombination induced by the PC fabrication process was significant compared to the intrinsic nonradiative processes of the SOI layer, including Auger recombination [40] and recombination at the SOI surface, no increase of the emission intensity would be observed, due to degradation of the internal quantum efficiency. However, we have observed the PC effect even at room temperature. This indicates that the fabrication of the PC structure has little effect on the internal quantum efficiency of the Si.

III. PHOTONIC NANOCAVITIES

One may expect that the introduction of a photonic nanocavity into the PC would lead to even more effective control of the emitted light. Photonic nanocavities allow photons to strongly interact with the PC medium within a tiny space. This would result in an enhancement of the spontaneous emission rate due to the Purcell effect [9], [20]. Nanocavities can also produce distinct radiation patterns for each resonant wavelength. In addition, light at the resonant wavelength of a photonic nanocavity inside a 2-D PC slab can be extracted if there are no additional losses in the cavity, because in-plane emission is inhibited by the PBG effect [9], [41]. We have investigated the properties of the tuned L3 cavity [21], one of the most popular nanocavity structures. This has been used in various applications including add-drop filters [21], [42], nanolasers [43], [44], single-photon sources [18], and the generation of strongly coupled states between a photon and a quantum dot [45], [46]. This type of cavity consists of a 2-D PC slab with a triangular lattice of air holes in which a line of three holes is missing, as shown in Fig. 5. In this study, the holes at each edge of the cavity were shifted outward by 0.1\(a \) in order to improve the cavity quality factor, \(Q \) [21]. The results presented in Section II, which demonstrate the enhanced emission of light from a 2-D PC Si slab, support our reasoning that a nanocavity might improve the emission characteristics further. It is essential in this system to investigate carefully whether any observed emission peak is due to the cavity mode, because spectral peaks can arise even in the absence of a point defect, as demonstrated in Section II.

We have analyzed the cavity modes for the tuned L3 nanocavity using 3-D FDTD simulations [47], [48]. Fig. 6(a) shows the calculated photonic band diagram and the cavity-mode frequencies for TE polarized light in the slab. Six cavity modes are found in the PBG, for which the localized mode-field intensity distributions are shown in Fig. 6(b). The calculated mode volumes \(V_m \) [49] for all six modes are smaller than one cubic wavelength, \((\lambda/n)^3 \), where \(n \) is the refractive index of Si. This indicates the presence of a strong interaction between the cavity mode and Si. For conventional applications, only the fundamental (0th) cavity mode with the lowest frequency has attracted much attention [21] because it has the highest \(Q \)-factor. However, we have studied the properties of various cavity modes in order to investigate how the cavity parameters affect the emission of light from Si.

Samples containing nanocavities with smaller lattice constants than those of the PCs in Section II, ranging from \(a = 250 \) to 380 nm at 10 nm intervals, were fabricated using the same method. The fabricated samples, an example of which is shown in Fig. 7(a), were investigated at room temperature using the same micro-PL setup, as described in Section II. The wavelength of the CW pump laser was 532 nm, and the irradiated
power and spot diameter were 6 mW and ~3 µm, respectively. Fig. 7(b) shows the PL spectra measured at positions A–C for a sample with \(a = 290 \) nm. Well-defined peaks in the band-edge emission of Si close to 1.1 µm are absent in the spectrum taken from an unprocessed SOI area (C). Similarly, no well-defined peaks are observed for position B, an area of the PC outside the cavity, despite the similarity of this area to the defect-free PCs investigated in Section II. This is because there are no photonic band edges within the escape light cone that satisfy \(\alpha \). The experimental parameters in Table I indicate that the escape light cone from the cavity is smaller than those for the other modes. As a result, the 1st and 4th modes were not visible in the spectra of Fig. 7(b), and only the 0th, 2nd, 3rd, and 5th modes were observed.

In order to validate the origin of each mode in more detail, their individual polarizations were evaluated by measuring spectra with a polarizer placed in front of the detector. The FDTD simulations in Fig. 9(a) show the electric field distributions of each of the four visible modes for both \(x \)- and \(y \)-polarizations. For each mode, one polarization has a symmetric electric field distribution while that of the other polarization is antisymmetric. The polarization originates from the symmetry of the electric field distribution at the slab surface. The total antisymmetric field component becomes zero, but the symmetric component remains. For example, the 0th mode has \(y \)-polarization because \(E_y \) for the 0th mode is symmetric. Fig. 9(b) and (c) shows the polarization-resolved micro-PL spectra from the cavity of the sample measured in Fig. 7(b). The observed polarization directions for each mode are in good agreement with those calculated from the FDTD simulations in Fig. 9(a). These results confirm the validity of the mode assignment in Fig. 7(b).

An important parameter associated with each cavity mode is the \(Q \)-factor, which is inversely proportional to the rate of loss from the cavity. The experimental \(Q \)-factors can be estimated using the spectral linewidths and wavelengths of the cavity modes in Fig. 7(b), and are summarized in Fig. 10 for the visible-mode orders. The experimental results are in qualitative agreement with the expectation that the \(Q \)-factor of the 0th mode is the highest. The theoretical \(Q \)-factor \((Q_T)\), which represents optical confinement in the vertical direction, was calculated by the 3-D FDTD method to be 14700 for the 0th mode and 1050 or less for the other modes. The experimental \(Q \)-factors \((Q_i)\), which represent the total \(Q \)-factors, are 1400, 280, 220, and 240 for the 0th, 2nd, 3rd, and 5th modes, respectively. The values of \(Q_T \) are smaller than theoretically predicted, most likely due to the parasitic optical absorption loss [50], [51] by strong pumping condition with heating [52], [53].

The observed emission intensity \((L)\) for pumping at CW can be expressed as

\[
L = \eta_{ext} \times \eta_e \times \eta_h \times V \times J
\]

(1)
where η_{ext} is the light extraction efficiency, η_c is the efficiency of coupling to the objective lens (shown in Fig. 8), η_i is the internal quantum efficiency, V is the emission volume, and J is the pump density. The value of η_{ext} can be calculated from the ratio of the vertical photon leakage to the total optical loss, expressed as $\eta_{\text{ext}} = Q_T/(2Q_v)$, where only upward vertical emission is taken into account. Table I shows the estimated light extraction efficiencies for the four-visible mode orders. The extraction efficiency for the 0th mode is only 4.8% due to a high degree of a parasitic loss and a high value of Q_v. The effective emission from the cavity can be estimated by subtracting the spectrum of the region of the PC outside the cavity [position B in Fig. 7(a)] from that at the cavity [position A in Fig. 7]. Fig. 11(a) shows the spectral enhancement due to the cavity, normalized by the spectrum measured from the unprocessed SOI area [position C in Fig. 7(a)]. The relative spectral enhancement for each mode matches well with the product $\eta_{\text{ext}} \times \eta_c$ of the respective light extraction efficiency and efficiency of coupling to the objective lens, shown in Fig. 11(b). The internal quantum efficiency (η_i) for the cavity can be expressed as

$$\eta_i = \frac{R_{\text{cav}}}{(R_{\text{cav}} + R_{\text{pc}} + R_{\text{nr}})} \quad (2)$$

where R_{cav} is the cavity-mode emission rate, R_{pc} is the emission rate for a defect-free PC, and R_{nr} is the nonradiative carrier recombination rate. In a nanocavity, the maximum enhancement of R_{cav} in the ideal case, where the polarization and position of the cavity and emitter are exactly matched, is expected to be a factor of

$$F_p = \frac{3\lambda^3Q_T}{4\pi^2n^3V_m}$$

according to the Purcell effect [20]. When comparing the emission efficiencies of the cavity and the original SOI, the difference in emission volumes V...
TABLE I
SUMMARY OF ESTIMATED EFFICIENCIES FOR EACH CAVITY-MODE ORDER

<table>
<thead>
<tr>
<th>Mode</th>
<th>0th</th>
<th>2nd</th>
<th>3rd</th>
<th>5th</th>
<th>SOI Wafer</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{est}</td>
<td>0.047</td>
<td>0.38</td>
<td>0.32</td>
<td>0.14</td>
<td>0.018</td>
</tr>
<tr>
<td>η_c</td>
<td>0.17</td>
<td>0.33</td>
<td>0.15</td>
<td>0.27</td>
<td>0.15</td>
</tr>
<tr>
<td>L/L_0</td>
<td>1.8</td>
<td>29</td>
<td>13</td>
<td>12</td>
<td>1 (= l_0)</td>
</tr>
<tr>
<td>η/η_0</td>
<td>6.3</td>
<td>6.6</td>
<td>7.2</td>
<td>9.3</td>
<td>1 (= η_0)</td>
</tr>
<tr>
<td>F_p</td>
<td>160</td>
<td>28</td>
<td>49</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

\(\eta_{est}\) and \(\eta_c\) denote the efficiencies of light extraction and coupling to the objective lens, respectively. The \(\eta_{est}\) of the unprocessed SOI wafer was calculated using the 3-D FDTD method. The refractive index of SiO_2 is assumed to be 1.5. \(L/L_0\) is the observed enhancement in emission intensity for each cavity mode. \(\eta/\eta_0\) is the estimated increase in the internal quantum efficiency, taking into account the enhancement of the emission intensity and the reduction of the emission volume. \(F_p\) is the calculated Purcell factor, using the experimental Q-factor \(Q_p\).

should also be taken into account. For the SOI wafer without a PC structure, \(V\) can be given as the volume outlined by the pump spot \((\pi \times (1.5 \mu m)^2 \times h = 1.4 \mu m^3)\). For cavities, \(V\) can be approximated as the size of the defect, \(4a \times \sqrt{3}a \times h = 0.12 \mu m^3\). Assuming uniform pump density, the increase in the internal quantum efficiency, according to (1), ranges from a factor of 6.3 to 9.3 depending on the mode, as shown in Table I. When \(R_{int}\) is much larger than the emission rate corresponding to Si, the internal quantum efficiency should be almost proportional to \(R_{cav}\), that is, \(F_p\). The fact that these values (\(\eta/\eta_0\)) are smaller than \(F_p\) may be due to the averaged dipole, but they are similar to the spontaneous emission rate enhancements of between 3 and 19 reported for compound semiconductors [15]–[19]. This result strongly suggests that the increase of internal efficiency can occur through the Purcell effect even though the further detailed analysis will be required for the clarification of the carrier distribution.

Finally, we address the effect of varying the lattice constant of PCs containing nanocavities. As shown in Fig. 12, the cavity mode wavelengths become longer as the lattice constant increases. Using the same considerations as for the \(a = 290\) nm sample in Fig. 11, Fig. 12(a) shows that the enhancement of intensity for the higher order modes is greater than that of the 0th mode for all lattice constants in the measured range. Fig. 12(b) summarizes the observed emission wavelengths as a function of lattice constant. The corresponding values calculated using the FDTD method (solid lines) agree well with the experimental values. This provides additional evidence that the observed spectral peaks indeed correspond to cavity-mode emission from Si photonic nanocavities.

IV. CONCLUSION

We have successfully demonstrated that PCs and photonic nanocavities can enhance the emission of light from Si, even at room temperature. The extraction of light from Si PCs has been achieved using the photonic band edge, the Brillouin zone folding of the photonic band, or the nanocavity-mode. We have classified the cavity-mode orders of resonance peaks according to their wavelengths and in-plane polarizations. The observed enhancement of emission intensity for each mode can be associated with the light extraction efficiency, which is determined by the cavity Q-factor, and the efficiency of coupling to the objective lens. Our experiments suggest that it is possible to improve the internal efficiency in Si even further by controlling spontaneous emission in the nanocavity. To this end, an estimation of the carrier lifetime, a clarification of the nonradiative processes, and the introduction of quantum structures [54] form the next steps toward the further evolution of Si photonics and semiconductor photonic materials, with the eventual goal of realizing Si lasers.

REFERENCES

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics...”

H. Ichikawa and T. Baba, “Efficiency enhancement in surface grating type...”

Masayuki Fujita (S’00–M’02) received the B.E., M.E. and Ph.D. degrees in electrical and computer engineering from Yokohama National University, Yokohama, Japan, in 1997, 1999, and 2002, respectively.

During his Ph.D. work, he achieved the first room-temperature continuous-wave operation of microdisk lasers and the lowest threshold current of 40 μA in GaInAsP lasers. He also proposed and demonstrated a microgear laser. In 2002, he joined Quantum Optoelectronics Laboratory at Kyoto University as a Post-Doctoral Fellow and started research on photonic crystals, including the spontaneous emission control in a photonic crystal and the light extraction in organic light-emitting diodes. He is currently an Assistant Professor with the Department of Electronic Science and Engineering at Kyoto University. His research interests include the light emission phenomena in photonic nanostructures and nano-fabrication processing.

Dr. Fujita is a member of the Japan Society of Applied Physics (JSAP) and the Laser Society of Japan. From 1999 to 2002 and from 2003 to 2006, he was a Research Fellow of the Japan Society for the Promotion of Science. He is the recipient of various awards, including the IBM Science Award (2000), the JSAP Achievement Award on Quantum Electronics (2005), and the Optical Society of America Joseph Fraunhofer Award/Robert M. Burley Prize. From 2003 to 2005, he served as an IEEE Lasers and Electro-Optics Society (LEOS) Distinguished Lecturer. Since 2007, he has been the IEEE/LEOS Kansai Chapter Chairman.

Yoshinori Tanaka received the B.S., M.S., and Ph.D. degrees from Kyoto University, Kyoto, Japan, in 1982, 1984, and 1991, respectively, all in electronics, and an honorary degree from Gent University, Gent, Belgium, in 2006.

From 1984 to 1988, he was with the Mitsubishi Electric Corporation, where he was engaged in research on optoelectronic devices including AlGaAs/GaAs distributed-feedback (DFB) lasers and multiple-quantum-well DFB lasers. In 1988, he joined Kyoto University. He is currently a Professor with the Department of Electronic Science and Engineering and the Director of the Center of Excellence for Education and Research on Photonics and Electronics Science and Engineering. His research interest covers physics and applications of photonic and quantum nanostructures.

Prof. Noda is a member of the Japan Society of Applied Physics (JSAP), and a member of the Institute of Electronics, Information, Communication Engineers (IEICE) and the Laser Society of Japan. He was the recipient of various awards, including the IBM Science Award (2000), the JSAP Achievement Award on Quantum Electronics (2005), and the Optical Society of America Joseph Fraunhofer Award/Robert M. Burley Prize. From 2003 to 2005, he served as an IEEE Lasers and Electro-Optics Society (LEOS) Distinguished Lecturer. Since 2007, he has been the IEEE/LEOS Kansai Chapter Chairman.