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A rarefied gas in a long straight pipe with a periodic structure consisting of alternately arranged
narrow and wide pipes and with periodic temperature distribution, which is known as the Knudsen
compressor �or pump�, is considered. Under the assumption that the pipe is much thinner than the
period, a diffusion model that describes the pressure distribution and mass flux of the gas in each
pipe element is derived, together with the connection conditions at the junctions of the narrow and
wide pipes, from the kinetic system composed of the Boltzmann equation and its boundary
condition on the pipe wall. Then, on the basis of the diffusion model and the connection conditions,
a global diffusion model for the entire pipe is constructed by means of homogenization. The present
work is a formal extension to the case of the Boltzmann equation of the previous work �K. Aoki and
P. Degond, Multiscale Model. Simul. 1, 304 �2003��, where a simplified version of the Bhatnagar–
Gross–Krook �BGK� collision model is used. Some numerical results based on the original BGK
model are also presented both for the global diffusion model and for the local diffusion model with
the connection conditions at the junctions. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2798748�

I. INTRODUCTION

Kinetic theory of gases �or molecular gas dynamics�1–5

plays increasingly important roles in microfluidics.6–9 Ther-
mally driven flows, which are peculiar to rarefied gases �or
gases in the kinetic regime�, have potential applicability as
nonmechanical flow controllers. As the thermally driven
flows, mention should be made of the thermal creep flow
�thermal transpiration�,10–14 thermal stress slip flow,15,16 non-
linear thermal stress flow,16,17 and thermal edge flow.18,19 The
last flow, which is induced around a sharp edge when it is
heated �or cooled� compared with the circumstances, was
discovered rather recently by a numerical simulation18,19 and
was observed experimentally.19 A thermal pump using this
flow �thermal edge pump� was proposed and fabricated
recently.20 On the other hand, the thermal creep flow or ther-
mal transpiration, which is a flow along the nonuniformly
heated wall in the direction of the gradient of the tempera-
ture, is a classical phenomenon that has been investigated by
many scientists.10–14 A notable application of this flow is the
Knudsen pump �or compressor� and its variants.21–32

The typical Knudsen pump is a long pipe with a periodic
structure consisting of alternately arranged narrow and wide
pipes. The temperature of the pipe is also periodic with the
same period as the structure, such as a sawtooth distribution
increasing in the narrow segments and decreasing in the wide

segments. Such a pipe causes a unidirectional gas flow with
a pumping effect. The flow and its pumping effect have been
studied numerically24,28 by the direct simulation Monte Carlo
�DSMC� method33,34 as well as experimentally.27,29,30 In
practical applications, however, a large number of segments
should be used, so that the estimate of the properties and
performance of the pump in various steady and unsteady
situations by the DSMC computation or by experiment is not
an easy task. Therefore, if we have a simple macroscopic
model of the pump, it would be very useful.

For this reason, considering the case where the linear
dimension �e.g., the diameter� of the cross section of the pipe
is much smaller than the length of the segments, Aoki and
Degond35 derived a diffusion model for each segment with a
connection condition at the junctions of the segments with
different cross sections. Further, on the basis of this diffusion
model, they derived, by homogenization, a diffusion model
that describes the overall behavior of a gas in a long pipe
composed of a large number of the segments. As the basic
kinetic equation, a Bhatnagar–Gross–Krook �BGK� type
equation is employed for the purpose of obtaining the diffu-
sion coefficients in the model equation in an analytical form.
However, the BGK-type equation is not a standard one for
rarefied gas flows but a special one for gas flows through a
background with a given temperature distribution.
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Therefore, in the present study, we try to derive corre-
sponding diffusion models on the basis of the true BGK
model in the kinetic theory of gases.36,37 But, except for the
concrete numerical examples, the analysis is carried out for
the general Boltzmann equation. Because of this generaliza-
tion, we need to assume some properties that could be
proven in Ref. 35. In addition, the diffusion coefficients in
the diffusion model are not obtained analytically. These co-
efficients are essentially given by the mass-flow rate of the
Poiseuille flow and that of the thermal transpiration flow in
an infinitely long pipe for the whole range of the Knudsen
number. Fortunately, a database, based on the BGK model,
for these quantities constructed by Sone and Itakura38 is
available for a circular pipe and a channel between two infi-
nite plates, so that we can exploit it for the actual numerical
computations.

In Sec. II, we consider a rarefied gas in an infinitely long
straight pipe with constant cross section. The temperature of
the pipe, which is uniform in a cross section, is distributed
arbitrarily in the axial direction of the pipe. Assuming that
the dimension of the cross section is much smaller than the
length scale of variation of the axial distribution of the wall
temperature, we derive, from the Boltzmann equation, a
diffusion-type equation that describes the global mass flow
rate as well as the pressure and temperature �or density� dis-
tributions along the pipe. The result is an extension of that in
Ref. 35 to the Boltzmann equation. In Sec. III, we consider
the case where two semi-infinite straight pipes with different
uniform cross sections are connected. We derive the connec-
tion condition at the junction of the two pipes for the diffu-
sion model derived in Sec. II. Again, the procedure is essen-
tially the same as that of Ref. 35. In Sec. IV, we consider a
long pipe with periodic structure, repetition of a narrow and
a wide segment, with a periodic temperature distribution.
This is a basic structure of the Knudsen pump. As in Ref. 35,
we apply the diffusion model and the connection condition
derived in Secs. II and III to this Knudsen pump. Here, the
homogenization technique is employed to construct an over-
all diffusion model for the entire Knudsen pump. In Sec. V,
some numerical examples based on the diffusion model and
the connection condition derived in Secs. II and III are
shown. Numerical results based on the diffusion model de-
rived by homogenization in Sec. IV are also presented and
compared with the former results. The last Sec. VI is a short
concluding remark.

We remark here that diffusion models corresponding to
those in Secs. II and III, based on Ref. 35 and along the same
line as the present paper, have been derived for a gas mixture
�in the case of a two-dimensional channel� in the study of gas
separation by means of the Knudsen pump.39

II. FLOW INDUCED IN A LONG PIPE
WITH A CONSTANT CROSS SECTION

A. Problem and basic equation

Let us consider a rarefied gas in a long straight pipe with
a constant cross section. We take the X3 axis along the pipe
and let the cross section be denoted by the domain S in the
�X1 ,X2� plane with area S. The temperature of the pipe wall,

which is constant in time and uniform in the plane X3

=const, has a distribution described by Tw�X3�. The charac-
teristic length of the cross section S is denoted by D, and the
scale of variation of Tw�X3� by L. We investigate the flow of
the gas induced in the pipe under the following assumptions:

�i� The behavior of the gas is described by the Boltzmann
equation.

�ii� The characteristic length of the cross section is much
smaller than the scale of variation of the temperature of
the pipe wall, i.e., D�L.

The Boltzmann equation reads

�t f + � · �Xf = J�f , f� , �1�

where t is the time variable, X �or Xi� is the position vector in
the physical space, � �or �i� is the molecular velocity,
f�t ,X ,�� is the velocity distribution function of the gas mol-
ecules, �X is the gradient operator with respect to X, and
J�f , f� is the collision integral defined through the following
bilinear operator �see Refs. 2 and 4�:

J�g,h� =
1

2m
� �g��*��h���� + g����h��*�� − g��*�h���

− g���h��*��B��e · V�/V,V�d��e�d�*, �2a�

�� = � + �e · V�e, �*� = �* − �e · V�e , �2b�

V = �* − �, V = �V� , �2c�

where g and h are functions of the molecular velocity �, m is
the mass of a molecule, B is a nonnegative function whose
functional form depends on molecular models �e.g., for hard-
sphere molecules, B=dm

2 �e ·V � /2 with dm being the diameter
of a molecule�, e is a unit vector, �* is the integration vari-
able for �, d� is the solid-angle element around e, d�*

=d�*1d�*2d�*3, and the domain of integration is all the direc-
tions of e and the whole space of �*.

The boundary condition for the Boltzmann equation on
the pipe wall is written as

f�t,X,�� = �
�*·n�0

KB�t,X;�,�*�f�t,X,�*�d�*,

for � · n � 0, �3�

where n is the unit normal vector to the pipe wall, pointing to
the gas, and KB is a scattering kernel satisfying the following
conditions �see Refs. 2 and 4; the arguments t and X in KB

are omitted here�:

�a� Positivity,

KB��,�*� � 0, for � · n � 0 and �* · n � 0. �4�

�b� Normalization,

�
�·n�0

� · n

��* · n�
KB��,�*�d� = 1, for �* · n � 0. �5�
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�c� Reciprocity,

� · nKB��,�*�Mw��*� = ��* · n�KB�− �*,− ��Mw���,

for � · n � 0 and �* · n � 0.

�6�

Here, Mw��� is a Maxwellian distribution defined in
terms of the temperature Tw�X3� of the pipe wall as

Mw��� =
�

�2�RTw�3/2 exp�−
���2

2RTw
� , �7�

where � is arbitrary and R is the gas constant per unit
mass �R=k /m with k the Boltzmann constant�.

The condition �b� leads to the impermeability condition on
the boundary,

� � · nfd� = 0. �8�

Here and in what follows, the domain of integration with
respect to � is the whole space unless the contrary is stated.
From conditions �b� and �c�, it follows that Mw satisfies Eq.
�3�. We assume that other Maxwellians do not satisfy Eq. �3�.
This assumption excludes specular reflection. Hereafter, we
assume that KB is independent of t, X1, and X2 and depends
on X3 only through Tw, i.e., KB=KB�Tw�X3� ;� ,�*�. We also
assume that the kernel KB is locally isotropic,4 i.e., it is in-
variant for a rotation around n and for the reflection with
respect to a plane containing n. In the case of complete ac-
commodation �or diffuse reflection�, KB is given as

KB�Tw;�,�*� = −
1

2��RTw�2�* · n exp�−
���2

2RTw
� . �9�

In addition to the boundary condition, an initial condition
should be prescribed,

f�0,X,�� = f0�X,�� . �10�

The macroscopic quantities, such as the density �, flow
velocity v �or vi�, pressure p, and temperature T of the gas,
are given by the following moments of f:

� =� fd� , �11a�

v =
1

�
� �fd� , �11b�

p = R�T =
1

3
� �� − v�2fd� . �11c�

B. Scaling

Let us seek the solution whose length scale of variation
is L in the direction along the pipe �X3 direction� and D in
the cross section of the pipe. For this purpose, we introduce
the following dimensionless variables:

t̂ = t/t*, �x1,x2� = �X1,X2�/D, x3 = X3/L, � = �/�2RT*�1/2,

f̂ = f/��*�2RT*�−3/2�, �̂ = �/�*,

�12�
v̂ = v/�2RT*�1/2, T̂ = T/T*,

p̂ = p/p*, T̂w = Tw/T*,

with

p* = R�*T*. �13�

Here, t*, �*, T*, and p* are the reference time, the reference
density, the reference temperature, and the reference pres-
sure, respectively; �* and T* are arbitrary, whereas t* will be
specified below. In what follows, the position vector
�x1 ,x2 ,x3� is denoted by x, a two-dimensional vector is de-
noted by an underscore, i.e., x= �x1 ,x2� and �= �	1 ,	2�, and
�x indicates the gradient operator with respect to x.

Then, the Boltzmann equation is recast as

S*�t̂ f̂ + � · �x f̂ + 
	3�x3
f̂ =

2
	�

1

K*
Ĵ� f̂ , f̂� , �14�

where

Ĵ�g,h� =
1

2
� �g��*��h���� + g����h��*�� − g��*�h���

− g���h��*��B̂��e · V̂�/V̂,V̂�d��e�d�*, �15a�

�� = � + �e · V̂�e, �*� = �* − �e · V̂�e , �15b�

V̂ = �* − �, V̂ = �V̂� , �15c�

d�* = d	*1d	*2d	*3, �15d�

B̂ = B/B*, �15e�

B* =� M��*�M���B��e · V�/V,V�d��e�d�*d� , �15f�

M��� =
1

�2�RT*�3/2 exp�−
���2

2RT*
� . �15g�

The parameters S*, K*, and 
 in Eq. �14� are defined by

S* =
D

t*�2RT*�1/2 , K* =
l*

D
, 
 =

D

L
, �16�

where l* is the mean free path of the gas molecules in the
equilibrium state at rest with density �* and temperature T*,
i.e.,

l* =
2

	�

�2RT*�1/2

��*/m�B*
. �17�

It should be noted that B* diverges in general, unless an
appropriate cutoff, such as the angular cutoff, of the intermo-
lecular potential is introduced �see Ref. 39 for a modification
of B* in the noncutoff case�. For hard-sphere molecules, B* is
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given by B*=4	�dm
2 �RT*�1/2, so that B̂= �e · V̂ � /4	2� and

l*= �	2�dm
2 ��* /m��−1. The S* and K* are, respectively, the

Strouhal number and the Knudsen number for our reference

equilibrium state. It should be noted that B̂ in general de-
pends on the reference temperature T* �it is independent of
T* for hard-sphere molecules�.4

The dimensionless version of the boundary condition is
written as

f̂�t̂,x,�� = �
�*·n�0

K̂B�T̂w�x3�;�,�*� f̂�t̂,x,�*�d�*,

for � · n � 0, x � �S, �18�

where �S is the location of the pipe wall in the �x1 ,x2� plane
and

K̂B�T̂w�x3�;�,�*� = �2RT*�3/2KB�Tw�X3�;�,�*� , �19�

and that of the initial condition is

f̂�0,x,�� = f̂0�x,�� , �20�

where f̂0�x ,��= �2RT*�3/2�*
−1f0�X ,��.

In general, K̂B depends on the reference temperature T*.
In the case of the diffuse reflection, it is independent of T*

and is given as

K̂B = −
2

�

1

T̂w
2

�* · n exp�−
���2

T̂w
� . �21�

The definition of the macroscopic quantities �11� be-
comes

�̂ =� f̂d� , �22a�

v̂ =
1

�̂
� � f̂d� , �22b�

p̂ = �̂T̂ =
2

3
� �� − v̂�2 f̂d� . �22c�

Because of the assumption of a thin pipe �assumption �ii�
in Sec. II A�, 
 is a small parameter. In this situation, the
flow induced in the channel by the temperature field is ex-
pected to be small. If we assume that the flow speed is of the
order of �2RT*�1/2
 �this assumption is consistent with our
analysis below�, the appropriate reference time may be
L / �2RT*�1/2
, and thus the resulting Strouhal number is 
2,
i.e.,

t* =
L

�2RT*�1/2

=

L2

�2RT*�1/2D
, �23a�

S* = 
2. �23b�

On the other hand, we assume that K* is of the order of unity.
In summary, the equation to be solved is


2�t̂ f̂ + � · �x f̂ + 
	3�x3
f̂ =

2
	�

1

K*
Ĵ� f̂ , f̂� . �24�

It should be noted that, for a given shape of the cross
section of the pipe, the solution to Eqs. �24� and �18� gener-
ally depends on the reference temperature T* in addition to
the dimensionless parameters 
 and K*. It is independent of
T* if hard-sphere molecules �or the BGK model� are em-
ployed and the diffuse-reflection boundary condition is as-
sumed.

C. Asymptotic analysis and diffusion model

In this subsection, we try to obtain the solution to Eq.
�24� subject to the boundary condition �18� in the form of
expansion in the small parameter 
,

f̂ = f̂ �0� + f̂ �1�
 + f̂ �2�

2 + ¯ . �25�

Correspondingly, the macroscopic quantities are expanded as

ĥ = ĥ�0� + ĥ�1�
 + ĥ�2�

2 + ¯ , �26�

where ĥ represents �̂, v̂, p̂, and T̂. The relation between f̂ �m�

and ĥ�m� is obtained by inserting the expansions �25� and �26�
in Eq. �22� and equating the coefficients of the same power
of 
. Substitution of Eq. �25� into Eqs. �24� and �18� leads to
a sequence of boundary-value problems, which can be solved
successively from the lowest order.

1. Zeroth order in �

The equation and the boundary condition for the zeroth
order in 
 are as follows:

� · �x f̂ �0� =
2

	�

1

K*
Ĵ� f̂ �0�, f̂ �0�� , �27�

f̂ �0��t̂,x,�� = �
�*·n�0

K̂B�T̂w;�,�*� f̂ �0��t̂,x,�*�d�*,

for � · n � 0, x � �S. �28�

The variables t̂ and x3 enter the above system only as param-
eters. The corresponding macroscopic quantities �̂�0�, v̂�0�,

T̂�0�, and p̂�0� are expressed as

�̂�0� =� f̂ �0�d� , �29a�

v̂�0� =
1

�̂�0�
� � f̂ �0�d� , �29b�

p̂�0� = �̂�0�T̂�0� =
2

3
� �� − v̂�0��2 f̂ �0�d� . �29c�

It is easily seen that a solution to Eqs. �27� and �28� is
given by the following Maxwellian independent of x, which
is the dimensionless counterpart of Mw of Eq. �7�:

f̂ �0� =
��0��t̂,x3�

��T̂w�x3��3/2
exp�−

���2

T̂w�x3�
� , �30�

where ��0� is an arbitrary �dimensionless� function of t̂ and
x3. It can also be shown that this is the unique solution within
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the arbitrariness of ��0� �Appendix A�. Substitution of Eq.
�30� into Eqs. �29a�–�29c� yields

�̂�0� = ��0�, v̂�0� = 0, �31a�

T̂�0� = p̂�0�/�̂�0� = T̂w�x3� . �31b�

Thus, the zeroth-order solution is written as

f̂ �0� =
�̂�0��t̂,x3�

��T̂w�x3��3/2
exp�−

���2

T̂w�x3�
� , �32�

with an undetermined �̂�0�.

2. First order in �

The equation and boundary condition for the first order
in 
 are given as follows:

� · �x f̂ �1� =
4

	�

1

K*
Ĵ� f̂ �0�, f̂ �1�� − 	3�x3

f̂ �0�, �33�

f̂ �1��t̂,x,�� = �
�*·n�0

K̂B�T̂w;�,�*� f̂ �1��t̂,x,�*�d�*,

for � · n � 0, x � �S. �34�

Equation �33� is an inhomogeneous linear equation with the
inhomogeneous term

− 	3�x3
f̂ �0� = − 	3 f̂ �0�
 �x3

�̂�0�

�̂�0�
+

�x3
T̂w

T̂w
� ���2

T̂w

−
3

2��
= − 	3 f̂ �0�
 �x3

p̂�0�

p̂�0�
+

�x3
T̂w

T̂w
� ���2

T̂w

−
5

2�� , �35�

where p̂�0�= �̂�0�T̂w has been used. The corresponding macro-
scopic quantities are given as

�̂�1� =� f̂ �1�d� , �36a�

v̂�1� =
1

�̂�0�
� � f̂ �1�d� , �36b�

p̂�1� = �̂�0�T̂�1� + �̂�1�T̂w =
2

3
� ���2 f̂ �1�d� . �36c�

If we let

��t̂,x,c� = f̂ �1�/ f̂ �0�, �37a�

c = �/T̂w
1/2, c = �c1,c2� , �37b�

then the above problem is recast as

c · �x� =
2

	�

�̂�0�

K*
L̂T̂w

��� − c3
�x3
ln p̂�0�

+ ��c�2 −
5

2
��x3

ln T̂w� , �38�

��t̂,x,c� = �
c*·n�0

kT̂w
�c,c*���t̂,x,c*�E�c*�dc*,

for c · n � 0, x � �S, �39�

where

L̂s�g� =� �g�c*�� + g�c�� − g�c*� − g�c��E�c*�

�bs��e · C�/C,C�d��e�dc*, �40a�

c� = c + �e · C�e, c*� = c* − �e · C�e , �40b�

C = c* − c, C = �C� , �40c�

dc* = dc*1dc*2dc*3, �40d�

bs��e · C�/C,C�=B̂��e · C�/C,	sC�/	s , �40e�

ks�c,c*� = s3/2K̂B�s;	sc,	sc*�/E�c� , �40f�

E�c� = �−3/2 exp�− �c�2� . �40g�

For hard-sphere molecules, bs= �e ·C � /4	2�; in the case of
diffuse reflection, kT̂w

=−2	�c* ·n.
Because of the linearity of the problem and the form of

the inhomogeneous term, we can set

��t̂,x,c� = �P�x,c;T̂w�x3�,K�t̂,x3���x3
ln p̂�0�

+ �T�x,c;T̂w�x3�,K�t̂,x3���x3
ln T̂w, �41�

where K is a kind of local Knudsen number defined by

K =
K*

�̂�0��t̂,x3�
=

K*T̂w�x3�

p̂�0��t̂,x3�
. �42�

Then, �P and �T are governed by the following equation and
boundary condition:

c · �x�
 =
2

	�

1

K
L̂T̂w

��
� − I
, �43�

�
�x,c;T̂w,K� = �
c*·n�0

kT̂w
�c,c*��
�x,c*;T̂w,K�E�c*�dc*,

for c · n � 0, x � �S, �44�

where 
= P and T, and

IP = c3, IT = c3��c�2 − 5/2� . �45�

It is to be noted that �P and �T depend on t̂ and x3 only

through T̂w�x3� and K�t̂ ,x3�.

117103-5 Diffusion models for Knudsen compressors Phys. Fluids 19, 117103 �2007�

Downloaded 29 Jun 2009 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



By the use of the solutions of the above problems, the

first-order solution f̂ �1� can be expressed as

f̂ �1� = f̂ �0�
�P�x,
�

T̂w
1/2

;T̂w�x3�,K�t̂,x3���x3
ln p̂�0�

+ �T�x,
�

T̂w
1/2

;T̂w�x3�,K�t̂,x3���x3
ln T̂w� . �46�

Since the kernel in the boundary condition kT̂w
is locally

isotropic �see Sec. II A�, it can be shown that the solution of
the form

�
 = c3�
�x,c,c3
2;T̂w,K� , �47�

is compatible with Eq. �43�. Then, the macroscopic quanti-
ties of the first order given by Eqs. �36a�–�36c� take the
following form:

�̂�1� = T̂�1� = p̂�1� = 0, �48a�

v̂3�1� = T̂w
1/2�uP�x3

ln p̂�0� + uT�x3
ln T̂w� , �48b�

v̂1�1� = v̂2�1� = 0, �48c�

where

u
�x;T̂w,K� =� c3�
�x,c;T̂w,K�E�c�dc, �
 = P,T� .

�49�

Equations �43� and �44� correspond to the well-known
problems of Poiseuille flow �
= P� and thermal transpiration
�
=T�. The former is the flow through a long pipe driven by
a �small� uniform pressure gradient, and the latter is that
driven by a �small� uniform gradient of the temperature of
the pipe wall. Here, we should note that the linearized colli-

sion operator L̂T̂w
and the scattering kernel kT̂w

are param-

etrized by T̂w. If we investigate these two problems starting
from the original system �1� and �3�, then we are led to the

linearized system �43� and �44� with T̂w=1. In this sense,
Eqs. �43� and �44� are not exactly the same as the equation
and boundary condition for the Poiseuille flow and thermal
transpiration that have been studied in the literature. We may
call these problems the generalized Poiseuille flow and ther-
mal transpiration. However, in the case of hard-sphere mol-

ecules and diffuse reflection, since L̂T̂w
and kT̂w

do not con-

tain T̂w, Eqs. �43� and �44� are exactly the equation and
boundary condition for these problems.

The Poiseuille flow and thermal transpiration mentioned
above have extensively been studied in various situations in
the literature �e.g., Refs. 12, 14, and 40–43 for the Poiseuille
flow and Refs. 12, 14, and 42–45 for the thermal transpira-
tion�. The reader is referred to an exhaustive review by
Sharipov and Seleznev46 for the works earlier than this ar-
ticle. Concerning the new development, see, for example,
Refs. 47–49.

3. Second order in � and diffusion model

The equation and boundary condition for the second or-
der in 
 are as follows:

� · �x f̂ �2� =
2

	�

1

K*
�2Ĵ� f̂ �0�, f̂ �2�� + Ĵ� f̂ �1�, f̂ �1���

− 	3�x3
f̂ �1� − �t̂ f̂ �0�, �50�

f̂ �2��t̂,x,�� = �
�*·n�0

K̂B�T̂w;�,�*� f̂ �2��t̂,x,�*�d�*,

for � · n � 0, x � �S. �51�

Here, we derive the necessary condition for the above
boundary-value problem to be solved. We first integrate Eq.
�50� over the whole space of � to obtain

�x ·� � f̂ �2�d� + �t̂�̂�0� + �x3
��̂�0�v̂3�1�� = 0. �52�

Then further integration with respect to x over the cross sec-
tion S of the pipe gives

Ŝ�t̂�̂�0� + �x3
��̂�0��

S
v̂3�1�dx� = 0, �53�

where Ŝ=S /D2 is the area of the cross section S of the pipe
in the dimensionless �x1 ,x2� plane. In Eq. �53�, use has been
made of the property

� � · n f̂ �2�d� = 0, for x � �S, �54�

of the boundary condition �51� �cf. Eq. �8�� and the fact that
�̂�0� does not depend on x. With the help of Eq. �48b�, Eq.
�53� can be rewritten as

Ŝ�t̂�̂�0� + �x3
��̂�0�T̂w

1/2�MP�x3
ln p̂�0� + MT�x3

ln T̂w�� = 0,

�55�

where MP and MT are the dimensionless mass-flow rate of
the generalized Poiseuille flow and that of the generalized
thermal transpiration, respectively �see the paragraph follow-
ing Eq. �49��, and are defined by

M
�T̂w,K;S� = �
S

u
�x;T̂w,K�dx, �
 = P,T� . �56�

Since the mass-flow rates depend on the shape of the cross
section of the pipe, S is shown explicitly in M
. This is for
the convenience in Secs. III and IV. Multiplying Eq. �55� by

T̂w, which is independent of t̂, we obtain the corresponding
equation for p̂�0�. Since M
 depends on the local Knudsen
number K, and K depends on p̂�0� �Eq. �42��, the equation is
written in the following form:
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�t̂p̂�0� +
T̂w

Ŝ
�x3

M = 0, �57a�

M =
p̂�0�

T̂w
1/2

MP�T̂w,

T̂wK*

p̂�0�
;S��x3

ln p̂�0�

+ MT�T̂w,
T̂wK*

p̂�0�
;S��x3

ln T̂w� . �57b�

Here, it is noted that if M̃ denotes the dimensional mass-flow
rate �per unit time� in the X3 direction, then it is related to M
as

M̃/D2�*�2RT*�1/2 = M
 + O�
2� . �58�

Suppose that the mass-flow rates MP and MT are known.

Then, since T̂w is a known function of x3, Eq. �57a� with Eq.
�57b� is the equation for p̂�0� of the diffusion type. If we
specify the pressure at the initial time, Eqs. �57a� and �57b�
describe the transient pressure distribution and the mass-flow
rate along the pipe. However, this does not mean that we are
solving the original Boltzmann system, Eqs. �24�, �18�, and

�20�, for small 
 for an arbitrary initial distribution f̂0�x ,��.
Equation �57� corresponds to Eqs. �24�, �18�, and �20� for

small 
 only when the initial distribution f̂0 is a Maxwellian
of the form of Eq. �32�. Otherwise, the initial distribution is
quickly thermalized with the pipe wall in a much shorter
time scale and approaches a Maxwellian of the form of Eq.
�32�. Equation �57� describes the slow time evolution after
the thermalization, but not the fast thermalization process
itself �the so-called initial layer�. Even in this case, however,
Eq. �57� is expected to give sufficiently accurate long-time
behavior of the solution to the original Boltzmann system.
Equation �57� may be applied to a long but finite pipe by
specifying the pressures at both ends as the boundary condi-
tions. It is natural to expect that the solution of this problem
correctly describes the long-time behavior and the final
steady state of the solution to the Boltzmann system when
the pipe connects two reservoirs with prescribed pressures.
�See also Ref. 39 for the discussion about the initial condi-
tion.�

Equation �57� is similar to the generalized Reynolds
equation that was first derived for a thin-gap slider bearing50

and has been applied to microchannel flows.51–53 We should
stress, however, that Eq. �57� is applicable to any nonsmall
pressure difference and temperature variation. On the other
hand, rigorous mathematical derivation of the diffusion equa-
tion in the thin-tube limit or thin-gap limit �in the case of a
gas between two plates� has been made for a collisionless �or
free-molecular� gas.54–57 It should also be mentioned that
models in the same spirit have been derived and applied in
connection with stationary plasma thrusters58–60 and that
their rigorous mathematical derivation has been worked out
in the collisionless case61 as well as in the case with a colli-
sion term.62 Mention should also be made of the fact that an

extension of Eq. �57� for a binary gas mixture has been made
�in the case of a two-dimensional channel� in connection
with gas separation.39

III. CONNECTION OF PIPES WITH DIFFERENT
CROSS SECTIONS

In this section, we discuss, on the basis of the diffusion
model derived in Sec. II, the case where two long pipes with
different cross sections are connected.

A. Connection problem

Let two long pipes, pipe I �X3�0� and pipe II �0�X3�,
with different cross sections be connected at X3=0 �Fig. 1�.
The cross section SI �area SI� of pipe I is assumed to be
smaller than the cross section SII �area SII� of pipe II, so that
SI�SII, SI�SII. The temperature of the wall of the whole
pipe, denoted by Tw�X3� �−� �X3� � � and composed of Tw

I

�X3�0� and Tw
II �0�X3�, is continuous at the junction X3

=0, but the gradient may be discontinuous there.
Since the pipes are long, one may expect that the overall

behavior of the gas in the connected pipes is described by the
diffusion model derived in Sec. II, with a local correction
near the junction. We investigate this local correction and
derive the connection condition for the diffusion model at the
junction.

We nondimensionalize the present problem using the
same dimensionless variables as in Sec. II and denote its

solution by F instead of f̂ . We also denote the dimensionless

counterparts of Tw
I , Tw

II, SI, and SII by T̂w
I , T̂w

II, ŜI, and ŜII,
respectively. Then, the dimensionless forms of the equation
and boundary conditions for F become as follows. The equa-
tion is


2�t̂F + � · �xF + 
	3�x3
F =

2
	�

1

K*
Ĵ�F,F� . �59�

The boundary conditions on the walls of pipe I �x��SI, x3

�0� and pipe II �x��SII, x3�0�, as well as on the wall at
the junction �x�SII−SI, x3=0�, are

F�t̂,x,�� = �
�*·n�0

K̂B�T̂w;�,�*�F�t̂,x,�*�d�*,

for � · n � 0, �60�

where n is the unit normal vector of the pipe wall and that of
the wall at the junction, pointing into the gas �n= �0,0 ,1�
when x3=0 and x�SII−SI�.

FIG. 1. Connection of two pipes with different cross sections.
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Now let us denote by FI the restriction of F in pipe I
�FI=F for −� �x3�0� and by FII that in pipe II �FII=F for
0�x3���. Then, FI and FII satisfy Eq. �59�. Further, FI

satisfies the boundary condition �60� on the wall of pipe I,
whereas FII satisfies Eq. �60� on the wall of pipe II as well as
on the wall at the junction. In addition, FI and FII should be
continuous at the junction for the molecular velocity with
	3�0, i.e.,

FI�t̂,x,x3 = 0−,�� = FII�t̂,x,x3 = 0,��, for 	3 � 0 and x � SI.

�61�

It should be noted that, for the geometry considered here, the
velocity distribution function is, in general, discontinuous at
x3=0 for the molecular velocities with 	3=0. The perturba-
tion analysis of this problem will be carried out below.

B. Condition at junctions

Let us first assume that the restriction FJ �J=I, II� is

given by the corresponding restriction of the solution f̂ of
Eqs. �24� and �18� with Tw=Tw

J and S being SJ. If we denote
such FJ by Ff

J, then, it is expanded in 
 as

Ff
J = Ff�0�

J + Ff�1�
J 
 + Ff�2�

J 
2 + ¯ , �J = I,II� , �62�

and, for instance, Ff�0�
J is given by the following Maxwellians

�Eq. �32��:

Ff�0�
I =

�̂�0�
I �t̂,x3�

��T̂w
I �x3��3/2

exp�−
���2

T̂w
I �x3�

� , �63a�

Ff�0�
II =

�̂�0�
II �t̂,x3�

��T̂w
II�x3��3/2

exp�−
���2

T̂w
II�x3�

� , �63b�

where �̂�0�
I and �̂�0�

II are undetermined functions.
Concerning the zeroth order of 
, it is easily seen that

Ff�0�
I and Ff�0�

II of Eqs. �63a� and �63b� satisfy the equation
and boundary condition for FI and those for FII, respectively.
Therefore, to satisfy the continuity condition �61�, we need
to impose

�̂�0�
I �t̂,x3 = 0−� = �̂�0�

II �t̂,x3 = 0� , �64�

or equivalently,

p̂�0�
I �t̂,x3 = 0−� = p̂�0�

II �t̂,x3 = 0� , �65�

where p̂�0�
J = �̂�0�

J T̂w
J .

At the first order in 
, Ff�1�
I and Ff�1�

II are, respectively, the

corresponding restriction of f̂ �1� with T̂w= T̂w
I and S being SI

and that with T̂w= T̂w
II and S being SII. However, since f̂ �1� has

the flow velocity v̂3�1� �Eq. �48b�� in the x3 direction, it can-
not satisfy the impermeability condition �v̂3=0� imposed by
the boundary condition �60� on the wall at the junction �x3

=0, x�SII−SI�. Therefore, we seek the restrictions FJ of the
solution in the following form:

FJ = Ff
J�t̂,x,x3,�� + GJ�t̂,x,z,�� , �66�

with

z = x3/
 , �67�

where GJ is a correction term with a much shorter length
scale of variation D in the x3 direction. Note that GI is de-
fined for −� �z�0, and GII for 0�z��. Corresponding to
the form �62�, GJ is expanded as

GJ = G�1�
J 
 + G�2�

J 
2 + ¯ , �68�

where the expansion is started from the first order, since the
zeroth-order solution Ff�0�

J satisfies the boundary condition. If
we substitute Eq. �66� with Eqs. �62� and �68� into the equa-
tions and boundary conditions for the restrictions FJ and take
into account the properties of Ff

J as well as GJ, we obtain the
equation and boundary conditions for G�1�

J , G�2�
J , etc. The

equation for G�1�
J thus obtained is as follows:

� · �xG�1�
J + 	3�zG�1�

J =
4

	�

1

K*
Ĵ�Ff�0�

J �x3=0,G�1�
J �� , �69�

where Ff�0�
J �x3=0 indicates Ff�0�

I �x3=0−� or Ff�0�
II �x3=0� �see Eq.

�63��. The boundary condition for G�1�
I on the wall of pipe I

�z�0� is

G�1�
I �t̂,x,z,�� = �

�*·n�0
K̂B�T̂w

I ;�,�*�G�1�
I �t̂,x,z,�*�d�*,

for � · n � 0, x � �SI. �70�

The boundary condition for G�1�
II on the wall of channel II

�z�0� is

G�1�
II �t̂,x,z,�� = �

�*·n�0
K̂B�T̂w

II;�,�*�G�1�
II �t̂,x,z,�*�d�*,

for � · n � 0, x � �SII, �71�

and that on the wall at the junction �z=0, x�SII−SI� is

G�1�
II �t̂,x,0,�� = �

�*·n�0
K̂B�T̂w

II�0�;�,�*��G�1�
II �t̂,x,0,�*�

+ Ff�1�
II �t̂,x,x3 = 0,�*��d�* − Ff�1�

II �t̂,x,x3 = 0,��,

for � · n � 0, x � SII − SI. �72�

The continuity condition at the junction �z=0� is given as

G�1�
I �t̂,x,0−,�� + Ff�1�

I �t̂,x,x3 = 0−,�� = G�1�
II �t̂,x,0,��

+ Ff�1�
II �t̂,x,x3 = 0,��,

for 	3 � 0 and x � SI.

�73�

In addition, we need to impose the condition at z→ ±�, i.e.,

G�1�
I → 0 for z → − � , �74a�

G�1�
II → 0 for z → � . �74b�

Here, we assume that the solution of Eqs. �69�–�74� exists
and consider a condition satisfied by the solution, from
which we deduce the connection condition for Ff�1�

I and Ff�1�
II .
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The integration of Eq. �69� over the whole space of �
leads to

�x ·� �G�1�
J d� + �z� 	3G�1�

J d� = 0. �75�

If we integrate this equation over the cross section SJ with
respect to x and take into account the fact that the boundary
conditions �70� and �71� give �� ·nG�1�

J d�=0 �note that n3

=0� on the wall of pipe I and pipe II, we have

�z�
SJ
� 	3G�1�

J d�dx = 0. �76�

Further integration with respect to z from −� to 0 for J=I
and from 0 to � for J=II, with the help of the conditions at
infinity �74�, yields

�
SI
� 	3G�1�

I �t̂,x,0−,��d�dx = 0, �77a�

�
SII
� 	3G�1�

II �t̂,x,0,��d�dx = 0. �77b�

Since Eq. �72� gives

� 	3�G�1�
II �t̂,x,0,�� + Ff�1�

II �t̂,x,x3 = 0,���d� = 0,

for x � SII − SI, �78�

Eq. �77b� is transformed as

− �
SII−SI

� 	3Ff�1�
II �t̂,x,x3 = 0,��d�dx

+ �
SI
� 	3�G�1�

I �t̂,x,0−,�� + Ff�1�
I �t̂,x,x3 = 0−,���d�dx

− �
SI
� 	3Ff�1�

II �t̂,x,x3 = 0,��d�dx = 0, �79�

where use has been made of Eq. �73� for the integral over SI.
With the help of Eq. �77a�, we have

�
SI
� 	3Ff�1�

I �t̂,x,x3 = 0−,��d�dx

= �
SII
� 	3Ff�1�

II �t̂,x,x3 = 0,��d�dx . �80�

We recall that Ff�1�
I is the restriction for x3�0 of f̂ �1� with

T̂w= T̂w
I and S being SI, and Ff�1�

II that for x3�0 of f̂ �1� with

T̂w= T̂w
II and S being SII. Therefore, from Eqs. �36b�, �48b�,

and �56�, we have

�
SJ
� 	3Ff�1�

J d�dx = MJ, �81a�

MJ =
p̂�0�

J

�T̂w
J �1/2


MP�T̂w
J ,

T̂w
J K*

p̂�0�
J ;SJ��x3

ln p̂�0�
J

+ MT�T̂w
J ,

T̂w
J K*

p̂�0�
J ;SJ��x3

ln T̂w
J� �81b�

�see Eq. �57b��. With this MJ, Eq. �80� is written as

�MI�x3=0−
= �MII�x3=0. �82�

In summary, the zeroth-order pressures, p̂�0�
I �t̂ ,x3� in pipe

I and p̂�0�
II �t̂ ,x3� in pipe II, are governed by the following

equation and connection conditions:

�t̂p̂�0�
J +

T̂w
J

ŜJ
�x3

MJ = 0, �J = I,II� , �83�

�p̂�0�
I �x3=0−

= �p̂�0�
II �x3=0+

, �84�

�MI�x3=0−
= �MII�x3=0+

, �85�

where MJ is defined by Eq. �81b�, and x3=0 on the right-
hand sides of Eqs. �65� and �82� have been replaced by x3

=0+ for the later convenience.

C. Generalization

Now let us consider the case where pipe I is composed
of N straight pipes I1, I2 , . . . , IN with cross sections SI1,
SI2 , . . . ,SIN, whose area in the dimensionless �x1 ,x2� plane

are denoted by ŜI1, ŜI2 , . . . , ŜIN, respectively. The temperature

T̂w
Ij of pipe I j �j=1,2 , . . . ,N� may differ from each other but

should be functions of x3 only. Let p̂�0�
Ij be the leading-order

�dimensionless� pressures in pipe I j �j=1,2 , . . . ,N�. As is
obvious from the analysis in Sec. III B, these pressures are
governed by essentially the same equations and connection
conditions as in Sec. III B. That is,

�t̂p̂�0�
J +

T̂w
J

ŜJ
�x3

MJ = 0, �J = I1,I2, . . . ,IN, and II� , �86�

�p̂�0�
Ij �x3=0−

= �p̂�0�
II �x3=0+

, �j = 1,2, . . . ,N� , �87�



j=1

N

�MIj�x3=0−
= �MII�x3=0+

, �88�

where MIj are defined by

MIj =
p̂�0�

Ij

�T̂w
Ij�1/2
MP�T̂w

Ij,
T̂w

IjK*

p̂�0�
Ij

;SIj��x3
ln p̂�0�

Ij

+ MT�T̂w
Ij,

T̂w
IjK*

p̂�0�
Ij

;SIj��x3
ln T̂w

Ij� . �89�
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IV. HOMOGENIZATION: DIFFUSION MODEL
FOR THE KNUDSEN COMPRESSOR

A. Preliminaries

In this section �Sec. IV�, we consider a pipe of periodic
structure composed of many basic units of length L, as
shown in Fig. 2. To be more specific, the part −L /2�X3�
−aL /2 and aL /2�X3�L /2 is a pipe with a smaller cross
section SI �area SI�, and the part −aL /2�X3�aL /2 is a pipe
with a larger cross section SII �area SII��SI��. We denote by
S the cross section of the entire pipe and by S its area, so that
S indicates SI or SII, and S indicates SI or SII, depending on
the position X3. The temperature Tw�X3� of the pipe wall is a
continuous and periodic function of X3 with period L. Its
gradient may be discontinuous at the junctions X3

= �n±a /2�L �n=0, ±1, ±2, . . . � of the pipes with different
cross sections. We call the part of the pipe with cross section
SI segment I and that with the cross section SII segment II.
We assume that the characteristic length of the cross section
of each segment is much smaller than its length, so that Eq.
�83� and the connection conditions �84� and �85� �and the
corresponding result when SI is larger than SII� describe the
global behavior of the gas. That is,

�t̂p̂ +
T̂w

Ŝ
�x3

M = 0, �x3 � n ± a/2;n = 0, ± 1, ± 2, . . . � ,

�90�

M =
p̂

T̂w
1/2

MP�T̂w,

T̂wK*

p̂
;S��x3

ln p̂

+ MT�T̂w,
T̂wK*

p̂
;S��x3

ln T̂w� , �91�

p̂ and M: continuous, �x3 = n ± a/2� . �92�

Here, the dimensionless variables are the same as in Secs. II
and III, but subscript �0� of p̂, which indicates the zeroth
order in 
, is omitted.

Let us introduce the dimensionless linear density � by

��t̂,x3� = Ŝp̂�t̂,x3�/T̂w�x3� . �93�

Then, Eqs. �90�–�92� are recast as

�t̂� + �x3
M = 0, �x3 � n ± a/2,n = 0, ± 1, ± 2, . . . � , �94�

M = T̂w
1/2QP�T̂w,

Ŝ

�
K*;S��x3

� +
�

T̂w
1/2

QT�T̂w,
Ŝ

�
K*;S��x3

T̂w,

�95�

�/Ŝ and M: continuous, �x3 = n ± a/2� , �96�

where

QP�T̂w,
Ŝ

�
K*;S� =

1

Ŝ
MP�T̂w,

Ŝ

�
K*;S� , �97a�

QT�T̂w,
Ŝ

�
K*;S� =

1

Ŝ

MP�T̂w,

Ŝ

�
K*;S�

+ MT�T̂w,
Ŝ

�
K*;S�� . �97b�

Note that the linear density � itself is discontinuous at the
junctions.

It should be noted that the diffusion model for the Knud-
sen pump corresponding to Eqs. �94�–�96� has been con-
structed for a gas mixture in the case of a two-dimensional
channel in Ref. 39, where a new role of the Knudsen pump
as a gas separator is pointed out with convincing numerical
evidence.

B. Homogenization: Small temperature variation

Now we try to analyze the flow in the pipe of periodic
structure by homogenization. Let the length of the whole
pipe Lg be much longer than the length of a unit L and define
a small parameter � as �=L /Lg. We introduce a new time
variable s and a new space coordinate y by

s = �2t̂ = ��2RT*�1/2D/Lg
2�t , �98a�

y = �x3 = X3/Lg. �98b�

For the moment, let us assume that the entire pipe is located
in −Lg /2�X3�Lg /2. Then, the range of y is −1/2�y
�1/2. The x3 is a variable describing the change in the short
scale in each segment, whereas y is a variable corresponding
to the change in the long scale throughout the pipe. We as-
sume that � and M are a function of s, x3, and y, i.e., �
=���s ,x3 ,y� and M =M��s ,x3 ,y�, and that they are periodic
in x3 with period 1 �period L in X3�. Since the wall tempera-
ture Tw is periodic in X3 with period L, its dimensionless

counterpart T̂w is a function of x3 only and periodic with

period 1, T̂w= T̂w�x3�. With these new variables, Eqs.
�94�–�96� are recast as

�2�s�� + ��yM� + �x3
M� = 0, �s � 0,− 1/2 � y � 1/2,

− 1/2 � x3 � 1/2,x3 � ± a/2� ,

�99�

FIG. 2. Schematic figure of the Knudsen compressor.
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M� = T̂w
1/2QP�T̂w,

Ŝ

��

K*;S��x3
��

+
��

T̂w
1/2

QT�T̂w,
Ŝ

��

K*;S��x3
T̂w

+ �T̂w
1/2QP�T̂w,

Ŝ

��

K*;S��y��, �100�

��/Ŝ and M�: continuous, �x3 = ± a/2� , �101�

���x3 = − 1/2� = ���x3 = 1/2� ,

�102�
M��x3 = − 1/2� = M��x3 = 1/2� ,

where the range of x3 is restricted to �−1/2 ,1 /2� with the
periodic condition �102�.

In this subsection, we consider the case where the varia-
tion of the wall temperature is so small that it is expressed as

T̂w�x3� = T̂w0 + T̂w1�x3�� , �103�

where T̂w0 is a constant. We seek the solution in the form of
expansion in �, that is,

�� = ��0� + ��1�� + ¯ , �104a�

M� = M�0� + M�1�� + ¯ . �104b�

In what follows, we denote by the brackets � �, � �I, and
� �II the integrals over the basic segment, the basic segment I,
and the basic segment II, respectively, i.e.,

�F� = �F�I + �F�II, �105a�

�F�I = �
−1/2

−a/2

F�x3�dx3 + �
a/2

1/2

F�x3�dx3, �105b�

�F�II = �
−a/2

a/2

F�x3�dx3. �105c�

1. Zeroth order in �

Since the variation of T̂w is small, it is likely that the
mass flow M� is also small. Therefore, we assume that
M�0�=0, which means from Eq. �100� that

T̂w0
1/2QP�T̂w0,

Ŝ

��0�
K*;S��x3

��0� = 0. �106�

With this assumption, we can perform the analysis without
any inconsistency. Equation �106� is the equation for the ze-
roth order in �. The connection and periodic conditions for
��0� are

��0�/Ŝ: continuous, �x3 = ± a/2� , �107�

��0��x3 = − 1/2� = ��0�, �x3 = 1/2� . �108�

Therefore, the solution ��0� is obtained as

��0� = N�s,y��ŜI + �ŜII − ŜI��II�x3�� , �109�

where N�s ,y� is an unknown �smooth� function of s and y,
and �II is the characteristic function of the segment II, i.e.,

�II�x3� = �1, �−
a

2
� x3 �

a

2
� ,

0, �otherwise� .
� �110�

2. First order in �

The equations and associated conditions for the first or-
der in � become

�x3
M�1� = 0, �x3 � ± a/2� , �111�

M�1� = T̂w0
1/2QP�T̂w0,

Ŝ

��0�
K*;S��x3

��1�

+
��0�

T̂w0
1/2

QT�T̂w0,
Ŝ

��0�
K*;S��x3

T̂w1

+ T̂w0
1/2QP�T̂w0,

Ŝ

��0�
K*;S��y��0�, �112�

��1�/Ŝ and M�1�: continuous, �x3 = ± a/2� , �113�

��1��x3 = − 1/2� = ��1��x3 = 1/2� ,

M�1��x3 = − 1/2� = M�1��x3 = 1/2� .
�114�

From Eq. �111�, M�1� is independent of x3, i.e., M�1�
=M�1��s ,y�. Therefore, by integrating Eq. �112� with respect
to x3 over the basic segment I �i.e., from −1/2 to −a /2 and
from a /2 to 1/2�, we obtain

�1 − a�M�1� = T̂w0
1/2QP

I ���1�−
I − ��1�+

I �

+
ŜIN

T̂w0
1/2

QT
I 
T̂w1�−

a

2
� − T̂w1�a

2
��

+ ŜI�1 − a�T̂w0
1/2QP

I �yN , �115�
where

QP
I = QP�T̂w0,K*/N;SI� , �116a�

QT
I = QT�T̂w0,K*/N;SI� , �116b�

��1�−
I = ��1��s,�− a/2�−,y� , �116c�

��1�+
I = ��1��s,�a/2�+,y� . �116d�

Similarly, by integrating Eq. �112� with respect to x3 over the
basic segment II �i.e., from −a /2 to a /2�, we have
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aM�1� = T̂w0
1/2QP

II���1�+
II − ��1�−

II � +
ŜIIN

T̂w0
1/2

QT
II
T̂w1�a

2
�

− T̂w1�−
a

2
�� + ŜIIaT̂w0

1/2QP
II�yN , �117�

where

QP
II = QP�T̂w0,K*/N;SII� , �118a�

QT
II = QT�T̂w0,K*/N;SII� , �118b�

��1�−
II = ��1��s,�− a/2�+,y� , �118c�

��1�+
II = ��1��s,�a/2�−,y� . �118d�

Since ���1�+
I −��1�−

I � / ŜI= ���1�+
II −��1�−

II � / ŜII holds because of
Eq. �113�, we can eliminate ��1�+

I , ��1�−
I , ��1�+

II , and ��1�−
II

from Eqs. �115� and �117� to obtain the expression of
M�1��s ,y� in terms of N�s ,y�, i.e.,

M�1��s,y� = T̂w0
1/2� a

ŜIIQP
II

+
1 − a

ŜIQP
I �−1��yN +

N

T̂w0

��QT
II

QP
II −

QT
I

QP
I �
T̂w1�a

2
� − T̂w1�−

a

2
��� , �119�

or using the original MP and MT,

M�1��s,y� = T̂w0
1/2� a

MP
II +

1 − a

MP
I �−1��yN +

N

T̂w0

��MT
II

MP
II −

MT
I

MP
I �
T̂w1�a

2
� − T̂w1�−

a

2
��� , �120�

where

MP
I = MP�T̂w0,K*/N;SI� , �121a�

MT
I = MT�T̂w0,K*/N;SI� , �121b�

MP
II = MP�T̂w0,K*/N;SII� , �121c�

MT
II = MT�T̂w0,K*/N;SII� . �121d�

3. Second order in � and diffusion model

If we proceed to the second order in �, we have the
following equation and associated conditions:

�s��0� + �yM�1� + �x3
M�2� = 0,�x3 � ± a/2� , �122�

��2�/Ŝ and M�2�: continuous, �x3 = ± a/2� , �123�

��2��x3 = − 1/2� = ��2��x3 = 1/2� ,

�124�
M�2��x3 = − 1/2� = M�2��x3 = 1/2� ,

where we omit the explicit expression of M�2� for simplicity.

With the help of the periodicity and continuity of M�2�,
the integration of Eq. �122� with respect to x3 over the basic
unit �i.e., from −1/2 to 1/2� yields

�s���0�� + �y�M�1�� = 0. �125�

Since M�1� is constant in x3, we have �M�1��=M�1�. In addi-
tion, Eq. �109� gives

���0�� = �ŜI + �ŜII − ŜI��II�x3��N�s,y�

= �ŜI�1 − a� + ŜIIa�N�s,y� . �126�

Therefore, Eq. �125� is written as

�ŜI�1 − a� + ŜIIa��sN�s,y� + �yM�1� = 0. �127�

Equations �127� and �119� �or Eq. �120��, together with ap-
propriate initial and boundary conditions, form a system of
diffusion type that determines N�s ,y�. From Eq. �93�, the
pressure p̂� corresponding to �� is written as

p��s,x3,y� = ��T̂w/Ŝ = ��0�T̂w0/Ŝ + O��� . �128�

Therefore, the zeroth-order pressure p̂�0��s ,x3 ,y�, averaged
over one period, is given by

�p̂�0���s,y� = ���0��IT̂w0/ŜI + ���0��IIT̂w0/ŜII = N�s,y�T̂w0.

�129�

C. Homogenization: Large temperature
variation

In this section, we investigate the case where the tem-
perature variation is large. For this purpose, we follow the
method used in Ref. 35. First, we introduce a new time vari-
able � that is different from s in Eq. �98a� as

� = �t̂ =
�2RT*�1/2D

LLg
t , �130�

and assume that � and M are the functions of �, x3, and y,
i.e., �=���� ,x3 ,y� and M =M��� ,x3 ,y�. Then, we have, in
place of Eq. �99�, the following equation:

����� + ��yM� + �x3
M� = 0, �� � 0,− 1/2 � y � 1/2,

− 1/2 � x3 � 1/2,x3 � ± a/2� .

�131�

The other equations, Eqs. �100� and �101�, are unchanged
�except that s is replaced by ��. As before, the functions ��

and M� are assumed to be periodic with period 1 in x3 and
expanded as Eq. �104�.

1. Zeroth order in �

If we pick up the zeroth-order terms, we have the fol-
lowing equations and conditions:

�x3
M�0� = 0, �x3 � ± a/2� , �132�

M�0� = T̂w
1/2QP�0��x3

��0� + ��0�T̂w
−1/2QT�0��x3

T̂w, �133�
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��0�/Ŝ and M�0�: continuous, �x3 = ± a/2� , �134�

��0��x3 = − 1/2� = ��0��x3 = 1/2� ,

�135�
M�0��x3 = − 1/2� = M�0��x3 = 1/2� ,

where

QP�0� = QP�T̂w,
Ŝ

��0�
K*;S� , �136a�

QT�0� = QT�T̂w,
Ŝ

��0�
K*;S� . �136b�

From Eq. �132�, M�0� does not depend on x3, i.e., M�0�
=M�0��� ,y�. Let us put

��0���,x3,y� = N��,y��#��,x3,y� , �137a�

M�0���,y� = N��,y�M#��,y� , �137b�

with

N��,y� = ���0��, ��#� = 1. �138�

Then, Eqs. �133�–�135� are recast as

M# = T̂w
1/2QP#�x3

�# +
�#

T̂w
1/2

QT#�x3
T̂w, �139�

�#/Ŝ: continuous, �x3 = ± a/2� , �140�

�#�x3 = − 1/2� = �#�x3 = 1/2� , �141�

where

QP# = QP�T̂w,
Ŝ

�#

K*

N
;S� , �142a�

QT# = QT�T̂w,
Ŝ

�#

K*

N
;S� . �142b�

Equation �139� shows that the dependence of M# and of �#

on � and y is through N. Therefore, the solution ��#, M#� of
Eqs. �139�–�141� is obtained in the following form:

�# = �#�x3,K*/N�, M# = M#�K*/N� . �143�

In Ref. 35, the equation corresponding to Eq. �131� is
linearized under the assumption that �� in QP and QT in Eq.
�100� are replaced by a reference linear density. In addition,
the functions corresponding to QP and QT are explicit be-
cause of the simplified collision model. Thus, the existence
of the solution corresponding to �# and M# can be estab-
lished. In contrast, in the present case, we assume that the
solution ��# ,M#� exists. It is verified by the numerical
analysis.

2. Higher order in � and the diffusion model

Following Ref. 35, instead of carrying out a straightfor-
ward expansion, we interpret the expansions �104a� and
�104b� in a different way. That is, we assume that the coef-
ficients ��0�, ��1� , . . . and M�0�, M�1� , . . ., which are of the
quantities of O�1�, also depend on �, and we impose the
normalization condition

���1�� = ���2�� = ¯ = 0. �144�

A remark about this will be given in Sec. IV C 3.
Now we can write Eq. �131� with Eq. �132� in the fol-

lowing form:

����0� + �yM�0� + �x3
M�1� + ������1� + �yM�1� + �x3

M�2��

= O��2�, �x3 � ± a/2� , �145�

M�1� = T̂w
1/2QP�0��x3

��1� +
��1�

T̂w
1/2�
QT�0� −

ŜK*

��0�
�2QT�0��

��x3
T̂w − T̂w

ŜK*

��0�
2 �2QP�0��x3

��0�� + T̂w
1/2QP�0��y��0�,

�146�

M�2� = ¯ , �147�

���1� + ��2�� + O��2��/Ŝ ,

M�1� + M�2�� + O��2� ,
: continuous, �x3 = ± a/2� ,

�148�

���1� + ��2�� + O��2��x3=−1/2 = ���1� + ��2�� + O��2��x3=1/2,

�149�
�M�1� + M�2�� + O��2��x3=−1/2=�M�1� + M�2�� + O��2��x3=1/2,

where �2QP,T�0�=�z2
QP,T�z1 ,z2 ;S� at z1= T̂w and z2= ŜK*

/��0�. Integration of Eq. �145� with respect to x3 over the
basic segment �−1/2�x3�1/2� leads to

�����0�� + �yM�0� + ��y�M�1�� = O��2� . �150�

Subtracting �����0�� and �yM�0�, which are of the order of
unity individually, from the �0-order part of Eq. �145� and
add the sum, which is of the order of � and is equal to
−��y�M�1��+O��2� �see Eq. �150��, to the �-order part of the
same equation, we obtain the following equation:

�����0� − ���0��� + �x3
M�1� + ��− �y�M�1�� + ����1� + �yM�1�

+ �x3
M�2�� = O��2�, �x3 � ± a/2� . �151�

If we consider the leading-order terms, Eq. �151� and the
conditions �148� and �149� are reduced to

�x3
M�1� = − �����0� − ���0���, �x3 � ± a/2� , �152�

��1�/Ŝ and M�1�: continuous, �x3 = ± a/2� , �153�
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��1��x3 = − 1/2� = ��1��x3 = 1/2� ,

�154�
M�1��x3 = − 1/2� = M�1��x3 = 1/2� .

Let us consider the system composed of Eqs. �152�,
�146�, �153�, and �154�. Equations �152� and �146� are recast
in the following form by the use of Eqs. �137�, �138�, and
�143�,

�x3
M�1� = − ��# − 1 −

K*

N
�2�#���N, �x3 � ± a/2� , �155�

M�1� − T̂w
1/2QP#�x3

��1� −
��1�

T̂w
1/2
�
QT# −

Ŝ

�#

K*

N
�2QT#�

��x3
T̂w − T̂w

Ŝ

�#
2

K*

N
�2QP#�x3

�#�
= T̂w

1/2QP#��# −
K*

N
�2�#��yN , �156�

where �2�#=�z�#�x3 ,z� at z=K* /N, and �2QP,T#

=�z2
QP,T�z1 ,z2 ;S� at z1= T̂w and z2= ŜK* / ��#N�. Equations

�155� and �156� form the inhomogeneous linear system for
��1� and M�1�, where the right-hand sides are the inhomoge-
neous terms. As is easily seen from Eq. �152�, the right-hand
side of Eq. �155� satisfies the compatibility condition �·�=0.
Therefore, this system is solvable. We try to obtain an ap-
proximate solution allowing the error of the order of �. With
the help of Eqs. �137�, �138�, �143�, and �150�, we can re-
write Eq. �155� in the following form:

�x3
M�1� = ��# − 1 −

K*

N
�2�#��M# −

K*

N
M#���yN

+ O���, �x3 � ± a/2� . �157�

Let us denote by ���1�
a , M�1�

a � the approximate solution,
i.e., the solution of Eq. �157� with the O��� term neglected
and Eqs. �156�, �153�, and �154�. Then, ���1�

a , M�1�
a � is ex-

pressed in the following form:

��1�
a ��,x3,y� = �†�x3,

K*

N
��yN , �158a�

M�1�
a ��,x3,y� = M†�x3,

K*

N
��yN , �158b�

with

�†�x3,
K*

N
� = �S�1��x3,

K*

N
� − �H�1��x3,

K*

N
� ��S�1��

��H�1��
, �159a�

M†�x3,
K*

N
� = MS�1��x3,

K*

N
� − MH�1��x3,

K*

N
� ��S�1��

��H�1��
.

�159b�

Here, ��H�1� ,MH�1�� and ��S�1� ,MS�1�� are the general solu-
tion of the homogeneous system and a particular solution of
the inhomogeneous system �with �yN=1�, respectively, and

��H�1���0 is assumed. The �† satisfies the normalization
condition ��†�=0. As a consequence, the solution ���1� ,
M�1�� is given as

��1���,x3,y� = �†�x3,
K*

N
��yN + O��� , �160a�

M�1���,x3,y� = M†�x3,
K*

N
��yN + O��� . �160b�

If we use Eqs. �137�, �138�, �143�, and �160b� in Eq.
�150� and neglect the terms of O��2�, we have

��N + �yM = 0, �161a�

M = NM#�K*

N
� + ��M†�x3,

K*

N
���yN , �161b�

where M=M�0�+��M�1��+O��2�. This is the equation for
N�� ,y�, which corresponds to the result of Ref. 35.

If we write the pressure p̂� corresponding to �� in the
form of expansion

p̂� = p̂�0� + p̂�1�� + ¯ , �162�

then, from Eqs. �93�, �137�, and �143�, the zeroth-order pres-
sure p̂�0� is given as

p̂�0���,x3,y� = ��0�T̂w/Ŝ = N��,y�P#�x3,K*/N� , �163�

where

P#�x3,K*/N� = �#�x3,K*/N�T̂w/Ŝ . �164�

3. Solution procedure and remarks

To summarize, the numerical solution procedure is as
follows. For many specified values of K* /N, we solve the
nonlinear ordinary differential equation �139� with the con-
ditions �140� and �141� numerically to construct a database
for �#�x3 ,K* /N� and M#�K* /N�. Then, using this database,
we solve the system, Eqs. �157� �with �yN=1 and �-order
term neglected�, �156� �with �yN=1�, �153�, and �154�, nu-
merically to build a database of the normalized solution
��† ,M†�. Finally, with the help of the databases, we solve
Eq. �161�, supplemented with appropriate initial and bound-
ary conditions, to obtain N�� ,y�. This N, together with �#

and M#, gives the leading-order quantities ��0�, M�0�, and p̂�0�
in the form of Eqs. �137� and �163�.

Finally, we remark on the diffusion equation �161�. In
the case of small temperature variation in Sec. IV B, we were
able to derive a diffusion model �127� by a straightforward
expansion in � of the Hilbert-type.5,63,64 If we carry out the
corresponding expansion in the case of large temperature
variation in Sec. IV C, we cannot obtain a diffusion equation.
This is the reason why a different type of expansion, which is
of the Chapman–Enskog-type5,63,64 adopted in Ref. 35, is
used here. It therefore possesses the same difficulty as the
Chapman–Enskog expansion: If we proceed to a higher or-
der, the equation corresponding to Eq. �161� becomes a
higher-order differential equation for N. In contrast to Eq.
�127� for small temperature variation, Eq. �161� seemingly
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loses the nature of the diffusion equation in the limit �→0.
However, the numerical results in Sec. V B show that the
gradient �yN increases with the decrease of � �globally or
locally depending on the problem�, so that the second term of
Eq. �161b� remains finite. The comparison with the results
based on the nonhomogenized system in Sec. V B shows that
Eq. �161� gives excellent results.

V. NUMERICAL RESULT AND DISCUSSIONS

In this section, we show some numerical results in the
case where the pipe is a two-dimensional channel with an
infinite extent in the X2 direction, as shown in Fig. 3. To be
more specific, the narrow segment is a channel with width DI

and length �1−a�L, and the wide segment is a channel with
width DII and length aL. The temperature is common to both
walls and is a sawtooth distribution as shown in Fig. 3. More
precisely,

Tw = �T0, at X3 = �a/2 + n�L ,

T1, at X3 = �1 − a/2 + n�L ,
�n = 0, ± 1, ± 2, . . . � ,

�165�

and Tw�X3� is a piecewise linear function of X3 joining T0

and T1. We consider the part X3� �aL /2 , �a /2+m�L� �m
=1,2 , . . . � in the following two situations �Fig. 4�:

�A� The channel is closed at X3= �a /2+m�L, and the pres-
sure at the open end X3=aL /2 is kept at p0.

�B� Both ends are open, and the pressure at X3=aL /2 and
that at X3= �a /2+m�L are kept at p0 and p1,
respectively.

We take p0, T0, and DI as the reference pressure p*, the
reference temperature T*, and the reference length D, respec-
tively. Therefore, p̂=1 at x3=a /2, and p̂= p1 / p0 at x3=a /2

+m �case �B��; T̂w�x3�=1 at x3=a /2+n, and T̂w�x3�=T1 /T0 at
x3=1−a /2+n.

We employ the BGK model36,37 in place of the Boltz-
mann equation, Eq. �1� �or Eq. �14��, and assume the diffuse
reflection, Eq. �3� with Eq. �9� �or Eq. �18� with Eq. �21��. In
this case, the results in Secs. II–IV undergo slight and ines-
sential modifications, which are summarized in Appendix B.
It should be agreed that the equations of Sec. IV referred to
in this section have been modified in accordance with Ap-

pendix B. In addition, the �dimensionless� cross section Ŝ
should be interpreted as the cross section of the channel per

unit width in the X2 direction, so that ŜI=DI /D=1 and ŜII

=DII /D=DII /DI, respectively.

FIG. 3. An example of the Knudsen compressor.

FIG. 4. Knudsen compressor in two different situations: Case �A� and case
�B�.

FIG. 5. p / p0 vs ỹ in case �A� �m=1�. �a� DII /DI=2, a=0.5, T1 /T0=1.5, and
K*=0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, and 100. �b� a=0.5, T1 /T0=1.5, K*

=1, and DII /DI=1.5, 2, 3, 4, 5, 10, 20, and 30. �c� DII /DI=2, a=0.5, K*

=1, and T1 /T0=1.5, 2, 3, 4, and 5. �d� DII /DI=2, K*=1, T1 /T0=1.5, and
a=0.2, 0.4, 0.5, 0.6, and 0.8.

FIG. 6. p / p0 vs ỹ in case �A� �m=100�. �a� DII /DI=2, a=0.5, T1 /T0=1.5,
and K*=0.1, 0.5, 1, 5, and 10. �b� a=0.5, T1 /T0=1.5, K*=1, and DII /DI

=2, 5, 10, 20, and 30.
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A. Nonhomogenized system

Let us consider the flow between two infinite plates
whose distance is the reference length D=DI and located at
X1= ±D /2= ±DI /2 or at x1= ±1/2. We suppose that the so-

lution �

0�x1 ,c ; K̃� to Eqs. �B6� and �B7� is known. Then,

corresponding to Eqs. �49� and �56�, we have

u

0�x1;K̃� =� c3�


0�x1,c;K̃�dc , �166�

M

0�K̃� = �

−1/2

1/2

u

0�x1;K̃�dx1. �167�

The M

0 here and M
 appearing in Eq. �168� below are di-

mensionless mass-flow rate per unit width in the X2 direc-

tion. The database for M

0�K̃�, the original version of which

was built by Sone and Itakura,38 has been constructed by
Sone, Itakura, and Handa. From this, one can obtain an ac-
curate value of M


0 instantaneously for an arbitrary Knudsen

number K̃. The database is available from the present authors
�the software package can be downloaded from the web-

page http://www.users.kudpc.kyoto-u.ac.jp/̃ a51424/Sone

/database-e.html�. The M
�K̃� in the narrow and wide seg-
ments are expressed in terms of M


0 as follows:

M
�K̃� =�M

0�K̃�, �narrow segment� ,

�DII/DI�2M

0��DI/DII�K̃�, �wide segment� .

�168�

Then, Q
�K̃� is defined as in Eqs. �97a� and �97b�, that is,

QP�K̃� = �1/Ŝ�MP�K̃� , �169a�

QT�K̃� = �1/Ŝ��MP�K̃� + MT�K̃�� . �169b�

With this preparation, we first apply the nonhomog-
enized system, Eqs. �94�–�96� with the modification Q


→Q
�T̂w
1/2ŜK* /�� �
= P ,T� �see Appendix B�, to the present

problem. In the present paper, we restrict ourselves to the
steady state, so that the system with �t̂�=0 is solved numeri-
cally under the following boundary condition �see Fig. 4�:

��x3 = a/2� = 1, M�x3 = a/2 + m� = 0, in case �A� , �170a�

��x3 = a/2� = 1,

�170b�
��x3 = a/2 + m� = �DII/DI��p1/p0� , in case �B� .

The problem is then characterized by the following param-
eters: a, DII /DI, T1 /T0, p1 / p0 �case �B��, K*, and m. In the
following, we use the axial coordinate ỹ, normalized by the
length of the entire channel, i.e.,

ỹ = �x3 − a/2�/m , �171�

so that the left end of the channel is located at ỹ=0 and its
right end at ỹ=1.

Some numerical results for the steady pressure distribu-
tion p / p0�=p̂� along the channel in case �A� are shown in
Figs. 5–7. Figure 5 shows p / p0 versus ỹ when m=1: Fig.
5�a� shows the effect of K*, Fig. 5�b� that of DII /DI, Fig. 5�c�
that of T1 /T0, and Fig. 5�d� that of a. Although only the case
of m=1 is considered in Fig. 5, the basic features of the
effect of the parameters on the pressure rise at the closed end
can be observed. That is, the highest pressure rise is attained
around K*=1; the larger DII /DI �or T1 /T0� is, the higher the
pressure rise becomes; the pressure rise is almost indepen-
dent of a. Figure 6 contains further investigation of the effect

TABLE I. Dimensionless mass-flow rate M corresponding to Fig. 8.

M

m T1 /T0=1 T1 /T0=1.5 T1 /T0=2 T1 /T0=3

10 −1.2861�10−1 −7.1009�10−2 −3.7760�10−2 −1.2691�10−2

20 −6.4279�10−2 −1.4913�10−2 1.2897�10−2 4.2663�10−2

50 −2.5705�10−2 −1.7430�10−2 3.9885�10−2 6.2744�10−2

100 −1.2851�10−2 2.6280�10−2 4.5076�10−2 6.4907�10−2

200 −6.4254�10−3 2.8558�10−2 4.5632�10−2 6.4979�10−2

500 −2.5701�10−3 2.8725�10−2
¯ ¯

FIG. 7. p / p0 vs ỹ for large m in case �A� �DII /DI=2, a=0.5, and K*=1�. �a�
T1 /T0=1.5, �b� T1 /T0=2.

FIG. 8. p / p0 vs ỹ for large m in case �B� �DII /DI=2, a=0.5, p1 / p0=2, and
K*=1�. �a� T1 /T0=1, �b� T1 /T0=1.5, �c� T1 /T0=2, and �d� T1 /T0=3.
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of K* and DII /DI on the pressure distribution when 100 units
are used �m=100�. That is, p / p0 versus ỹ is shown for vari-
ous K* in the case of DII /DI=2, a=0.5, and T1 /T0=1.5 in
Fig. 6�a�, and for various DII /DI in the case of a=0.5,
T1 /T0=1.5, and K*=1 in Fig. 6�b�. Among the K* contained
in Fig. 6�a�, the highest pressure rise at the closed end �ỹ
=1� is attained when K*=1. On the other hand, Fig. 6�b�
shows that the pressure distribution tends to approach a lim-
iting distribution as DII /DI becomes large. The pressure dis-
tribution for large numbers of the unit �m=100, 200, 500,
and 1000� is shown in Fig. 7, where DII /DI=2, a=0.5, K*

=1, and T1 /T0=1.5 �Fig. 7�a�� and 2 �Fig. 7�b��. In the case
of m=1000, the pressure at the closed end becomes more
than 90 times the entrance pressure when T1 /T0=2.

Figure 8 shows the steady pressure distribution p / p0

�=p̂� along the channel in case �B� for various m and T1 /T0

in the case of a=0.5, DII /DI=2, p1 / p0=2, and K*=1: Fig.
8�a� for T1 /T0=1, Fig. 8�b� for T1 /T0=1.5, Fig. 8�c� for
T1 /T0=2, and Fig. 8�d� for T1 /T0=3. The corresponding di-
mensionless mass-flow rate M �cf. Eqs. �57� and �58��, which
is independent of x3 �or ỹ�, is shown in Table I. When the
temperature of the channel wall is uniform �Fig. 8�a��, a left-
ward flow is caused by the pressure difference. When the
temperature field, which has an effect to drive a rightward
flow, is imposed �Figs. 8�b�–8�d��, it reduces the pressure-
driven leftward flow, and as the number of the unit m in-
creases, it overcomes the leftward flow and gives rise to a
rightward flow. The resulting rightward flow rate is larger for
larger temperature ratio T1 /T0. As m→�, the mass flow rate
tends to approach a limiting value for each T1 /T0 �M→0 for
T1 /T0=1�. On the other hand, for large m, the global pres-
sure rise takes place only in a narrow layer �with respect to
ỹ� adjacent to the high-pressure end, and the layer becomes
thinner as m becomes large.

B. Homogenized system

Next, we try to apply the homogenized system devel-
oped in Sec. IV C to the present problem. The solution pro-
cedure is summarized in Sec. IV C 3. The M#�K* /N� and
�M†�, which are necessary for solving Eq. �161�, are shown
in Figs. 9 and 10, as the functions of K* /N, for DII /DI=2,
a=0.5, and K*=1; Fig. 9 is for T1 /T0=1.5, and Fig. 10 for
T1 /T0=2. In the figures, we also show �P#�, which is neces-
sary for computing the average pressure �p̂�0�� �cf. Eqs. �163�
and �164��.

As described below Eq. �165�, the left end of the channel
is located at X3=aL /2 �x3=a /2� and the right end at X3

= �a /2+m�L �x3=a /2+m�. Therefore, the total length Lg is
Lg=mL, the small parameter � is �=L /Lg=1/m, and the left
and right ends are located at y= �a /2�� and y= �a /2��+1,
respectively �i.e., the range of y is shifted from −1/2�y
�1/2 �Sec. IV� to �a /2���y� �a /2��+1�. If we use ỹ de-
fined by Eq. �171�, i.e., ỹ=y− �a /2��, then the left and right
ends are at ỹ=0 and ỹ=1. We solve Eq. �161� for steady
states ���N=0� under the following boundary condition:

N�ỹ = 0� = N0, M�ỹ = 1� = 0, in case �A� , �172a�

N�ỹ = 0� = N0, N�ỹ = 1� = N1, in case �B� , �172b�

where N0 and N1 are given constants. In our analysis, for
convenience in comparing the result with that for the nonho-
mogenized system, N0 and N1 are chosen in such a way that
the conditions at ỹ=0 and ỹ=1 �case �B�� are consistent with
the corresponding conditions, ��x3=a /2�=1 and ��x3

=a /2+m�= �DII /DI��p1 / p0�, in the nonhomogenized system.
For this purpose, we identify N�y�= ���0�� with the average
of � over a period �x3−1/2 ,x3+1/2� around x3=y /�, where
� is the corresponding solution of the nonhomogenized sys-

FIG. 9. M#, �M†�, and �P#� vs K* /N
for T1 /T0=1.5 �DII /DI=2, a=0.5, and
K*=1�. �a� M#, �b� �M†�, and �c� �P#�.

FIG. 10. M#, �M†�, and �P#� vs K* /N
for T1 /T0=2 �DII /DI=2, a=0.5, and
K*=1�. �a� M#, �b� �M†�, and �c� �P#�.
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tem. That is, if we regard N as a function of ỹ,

N�ỹ� = ���0�� � �
x3−1/2

x3+1/2

��x3��dx3� = �
ỹ/�+a/2−1/2

ỹ/�+a/2+1/2

��x3��dx3�.

�173�

Note that this N�ỹ� is defined only in the interval a /2+1/2
�x3�a /2+1/�−1/2, namely, �1/2��� ỹ�1− �1/2��.
Therefore, we obtain N�ỹ=0� and N�ỹ=1� by extrapolation
and use them as N0 and N1, respectively.

Some results based on the homogenized system are
shown in Figs. 11 and 12. Figure 11, which corresponds to
Fig. 7 for the nonhomogenized system, shows the distribu-
tion of the average pressure pav, defined by pav/ p0= �p̂�0��, for
case �A� for DII /DI=2, a=0.5, K*=1, and T1 /T0=1.5 �Fig.
11�a�� and 2 �Fig. 11�b��. The solid line indicates pav/ p0

obtained from the homogenized system, whereas the dot ���
is the corresponding average pressure obtained from the so-
lution of the nonhomogenized system. In both figures, the

agreement between the results based on the nonhomogenized
system and those based on the homogenized system is excel-
lent. Figure 12, which corresponds to Fig. 8 for the nonho-
mogenized system, shows the distribution of the average
pressure pav for case �B� for a=0.5, DII /DI=2,p1 / p0=2, K*

=1, and T1 /T0=1 �Fig. 12�a��, 1.5 �Fig. 12�b��, 2 �Fig.
12�c��, and 3 �Fig. 12�d��. Again, the solid line indicates the
results obtained from the homogenized system, and the dots
��� are those from the nonhomogenized system. Their agree-
ment is also very good in this figure. Note that pav/ p0 is
larger than 1 at the left end and larger than 2 at the right end
because the bottom value of the sawtooth distribution of
p / p0 �see Fig. 8� is chosen to be 1 at the left end and to be 2
at the right end. The dimensionless mass-flow rate M, which
corresponds to M in the nonhomogenized system �Eqs.
�94�–�97��, is shown in Table II for the cases contained in
Fig. 12. Thus, Table II corresponds to Table I, and their
agreement is excellent.

VI. CONCLUDING REMARKS

In the present study, we have derived a diffusion model
of the Knudsen compressor on the basis of kinetic theory of
gases, i.e., the Boltzmann equation and its kinetic boundary
condition. The analysis is a formal extension of the previous
work,35 where a special BGK-type collision model is em-
ployed for the purpose of deriving the model with an ana-
lytical expression.

As the first step, we investigated rarefied gas flows
through a long pipe with a temperature distribution varying
slowly in the axial direction and derived a diffusion model
that determines the pressure or density distribution along the
pipe as well as the mass-flow rate �Sec. II�. This model needs
information about the mass-flow rate for the �generalized�
Poiseuille flow and that for the �generalized� thermal transpi-
ration for the entire range of the Knudsen number, which are
available in the literature for some specific models for mo-
lecular collisions in the gas and for gas-surface interaction.
As the second step, we considered the case where two long
pipes with different cross sections are connected at a junction
�Sec. III�. We applied the diffusion model derived above to
each pipe and derived the connection condition at the junc-
tion, which consists essentially of the continuity of the pres-
sure and that of the mass flux there. The diffusion model
with the connection condition may have potential applicabil-
ity for gas flows in microchannels.

TABLE II. Dimensionless mass-flow rate M corresponding to Fig. 12.

M

� T1 /T0=1 T1 /T0=1.5 T1 /T0=2 T1 /T0=3

0.1 −1.2862�10−1 −7.1056�10−2 −3.7824�10−2 −1.3516�10−2

0.05 −6.4280�10−2 −1.4925�10−2 1.2880�10−2 4.2637�10−2

0.02 −2.5705�10−2 −1.7428�10−2 3.9881�10−2 6.2736�10−2

0.01 −1.2851�10−2 2.6279�10−2 4.5074�10−2 6.4900�10−2

0.005 −6.4254�10−3 2.8558�10−2 4.5630�10−2 6.4973�10−2

0.002 −2.5701�10−3 2.8725�10−2
¯ ¯

FIG. 11. pav/ p0 vs ỹ for the homogenized system in case �A� �DII /DI=2,
a=0.5, and K*=1�. �a� T1 /T0=1.5. �b� T1 /T0=2. Here, the solid line indi-
cates the result by the homogenized system, and the dots ��� indicate the
nonhomogenized system. Note that �=1/m.

FIG. 12. pav/ p0 vs ỹ for the homogenized system in case �B� �DII /DI=2,
a=0.5, p1 / p0=2, and K*=1�. �a� T1 /T0=1, �b� T1 /T0=1.5, �c� T1 /T0=2, �d�
T1 /T0=3. See the caption of Fig. 11.

117103-18 Aoki et al. Phys. Fluids 19, 117103 �2007�

Downloaded 29 Jun 2009 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Then, we applied the model to a typical configuration of
the Knudsen pump, i.e., a long pipe with periodic structure,
repetition of a narrow and a wide segment, with a periodic
temperature distribution �Sec. IV�. Under the assumption that
the diffusion model and the connection condition are appli-
cable to each segment, we have derived diffusion models for
the overall Knudsen pump with the help of the homogeniza-
tion technique. Finally, we have shown some numerical ex-
amples of the models, using the mass-flow rates of the Poi-
seuille flow and the thermal transpiration based on the BGK
model. The model provides a convenient tool for estimating
the performance of the Knudsen pump of various different
configurations.
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APPENDIX A: UNIQUENESS OF f̂
„0…

In this Appendix, we show that the Maxwellian �30� is
the unique solution to Eqs. �27� and �28� within the arbitrari-

ness of ��0�. If we multiply Eq. �27� by 1+ln f̂ �0� and inte-
grate over the whole space of �, we have

�x · H = G � 0, �A1�

where

H =� � f̂ �0� ln f̂ �0�d� , �A2a�

G =
2

	�

1

K*
� �ln f̂ �0��Ĵ� f̂ �0�, f̂ �0��d� . �A2b�

Here, G�0 is the fundamental property of the collision term,

and the equality holds if and only if f̂ �0� is a local Maxwellian
distribution.1–5 Integration of Eq. �A1� with respect to x over
the cross section S of the pipe leads to

− �
�S

H · nd� = �
S

Gdx � 0, �A3�

where d� is the line element along the pipe wall in the
�x1 ,x2� plane, and the Gauss theorem has been used. On the
other hand, for the boundary condition �28�, the following
inequality holds:

H · n � −
1

T̂w

� n · �����2 − �v̂�0��2� f̂ �0�d� , �A4�

where the equality sign holds if and only if f̂ �0� is the Max-
wellian satisfying both the Boltzmann equation �27� and the
boundary condition �28�. Equation �A4� is obtained just by
adjusting the estimate obtained by Darrozes and Guiraud65

�see also Refs. 2, 4, and 5� to the present problem. Let us

multiply Eq. �27� by 1 and ���2 and integrate over the whole
space of �. Then we have

�x ·� � f̂ �0�d� = 0, �A5a�

�x ·� ����2 f̂ �0�d� = 0, �A5b�

because of the property of the collision term. Integrating Eq.
�A5� with respect to x over the cross section S of the pipe
and using the Gauss theorem, we obtain

�
�S
�� n · � f̂ �0�d��d� = 0, �A6a�

�
�S
�� n · ����2 f̂ �0�d��d� = 0. �A6b�

Therefore, integration of Eq. �A4� over the cross section
gives

�
�S

H · nd� � 0. �A7�

From Eqs. �A3� and �A7�, it follows that

�
�S

H · nd� = 0. �A8�

That is, the equality sign holds in Eq. �A3�. This means that

f̂ �0� is a local Maxwellian. Let us put

f̂ �0� =
�̂a

��T̂a�3/2
exp�−

�� − v̂a�2

T̂a

� , �A9�

where �̂a, v̂a, and T̂a are functions of t̂ and x. If we insert Eq.

�A9� into Eq. �27�, we find that �̂a, v̂a, and T̂a are of the
following form:

�̂a = a�t̂,x3�exp��v̂a�2/T̂a� , �A10a�

v̂a = b�t̂,x3�e3 Ã x + c�t̂,x3� , �A10b�

T̂a = d�t̂,x3� , �A10c�

where a, b, c, and d are arbitrary functions of t̂ and x3, the e3

is the unit vector in the x3 direction, and Ã indicates the
vector product. This solution corresponds to the superposi-
tion of a solid-body rotation and a uniform flow.1,5,66 From
the assumption stated after Eq. �8�, the Maxwellian of the
form of Eq. �30� is the only Maxwellian �within the arbitrari-
ness of ��0�� that satisfies the boundary condition �28�.
Therefore, Eq. �A9� with Eqs. �A10a�–�A10c� should coin-
cide with Eq. �30� on the pipe wall. It is possible only when

b=c=0 and d= T̂w�x3�. This means that Eq. �30� is the unique
solution �within the arbitrariness of ��0�� to Eqs. �27� and
�28�.

A similar uniqueness proof for the case of the diffuse-
reflection boundary condition is found in Ref. 67, where a
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gas flow in reactive porous media is investigated. The
present proof is its extension to a general boundary condi-
tion. It should also be mentioned that a similar method has
been used to show the uniqueness of a Maxwellian solution
in a half space for a general boundary condition.5,68

APPENDIX B: CASE OF THE BGK MODEL

We first go back to the analysis in Sec. II C with the
BGK model36,37 and the diffuse reflection on the pipe wall.
For the BGK model, the J�f , f� in Eq. �1� is replaced by

J�f , f� = JBGK�f� = Ac��fe − f� , �B1a�

fe =
�

�2�RT�3/2 exp�−
�� − v�2

2RT
� , �B1b�

where �, v, and T are given by Eq. �11�, and Ac is a constant
�Ac� is the collision frequency of the molecules�. For this
equation, the mean free path l* is given by

l* =
2

	�

�2RT*�1/2

Ac�*
. �B2�

In this case, L̂T̂w
��� in Eq. �38� becomes

L̂T̂w
��� = T̂w

−1/2����� − �� , �B3a�

���� = ���� + 2u��� · c + ������c�2 − 3/2� , �B3b�

���� =� �E�c�dc , �B3c�

u��� =� c�E�c�dc , �B3d�

���� = �2/3� � ��c�2 − 3/2��E�c�dc . �B3e�

Therefore, if we introduce a new local Knudsen number K̃,

K̃ =
K*�T̂w�x3��1/2

�̂�0��t̂,x3�
=

K*�T̂w�x3��3/2

p̂�0��t̂,x3�
, �B4�

we can get rid of T̂w from the equation. As a consequence,

f̂ �1� in Eq. �46� is obtained in the following form:

f̂ �1� = f̂ �0�
�P�x,
�

T̂w
1/2

;K̃�t̂,x3���x3
ln p̂�0�

+ �T�x,
�

T̂w
1/2

;K̃�t̂,x3���x3
ln T̂w� . �B5�

Here, �
�x ,c ; K̃� �
= P ,T� is the solution to the equation

c · �x�
 =
2

	�

1

K̃
����
� − �
� − I
, �B6�

where I
 is given by Eq. �45�, and the boundary condition

�
�x,c;K̃� = − 2	��
c*·n�0

c* · n�
�x,c*;K̃�E�c*�dc*,

for c · n � 0, x � �S, �B7�

where kT̂w
=−2	�c* ·n for the diffuse reflection has been

used �see the sentence following Eq. �40g��. Note that �
 is

affected by T̂w only through K̃. Then, corresponding to Eqs.

�49� and �56�, we obtain u
�x ; K̃� and M
�K̃ ;S�. We must use

these MP and MT, i.e., MP�T̂w
3/2K* / p̂�0� ;S� and

MT�T̂w
3/2K* / p̂�0� ;S�, in Eq. �57b�. Correspondingly, QP and

QT in Eqs. �97a� and �97b� become QP�T̂w
1/2ŜK* /� ;S� and

QT�T̂w
1/2ŜK* /� ;S�, which should be used throughout Sec. IV.

In particular, the following replacement should be made: For

= P, T,

Q
# → Q
� T̂w
1/2Ŝ

�#

K*

N
;S�, in Eqs. �139� and �156� , �B8a�

�2Q
# → T̂w
1/2Q
�� T̂w

1/2Ŝ

�#

K*

N
;S�, in Eq. �156� , �B8b�

where � indicates the derivative with respect to the argument,
i.e., Q
��x ;S�= �d /dx�Q
�x ;S�.
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